TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

1. Motherhub Summary

Source TBM/Bin at	2	Source Geological	1
Pivot		Domain	
Approx. Source Tunnel	15	Approx. Source Tunnel	27
Chainage From		Chainage To	
Approx. Rings From	9	Approx. Rings To	14
Foaming Agent	TamSoil 287AC	Water Source	Potable (City West
			Water)
For BSF Holding Bay	E05.01	Start of Filling From	16/04/2022
No:		(Time / date)	
Tonnes Put in Holding	9953.06	Finish of Filling (Time /	18/04/2022
Bay No:		Date)	
Classified Volume	4000	Spoil Classification	NPIW-CONTAINMENT
(LCM)		Decision	
Sampling Ratio	1:137.93	Approx. Bank Cubic	2293.61
(samples per LCM)		Meters (BCM)	

2. Agon Spoil Classification Decision

Spoil Categorisation Decision (State Yes or No in each Row)		
NPIW Containment - 2020/476 (SO 9042848)	Yes	
NPIW Landfill - 2019/404 (SO 9038429)	Yes	
PIW-Category C - 2019/405 (SO 9038560)	No	
PIW-Category B - 2019/406 (SO 9038561)	No	
PIW-Category A	No	

3. Agon Spoil Classification Assessment

3.1 Applicable Samples

Table 3.1 - 1 lists the applicable sample numbers for this spoil. These have been determined from:

- The date / time bay filling was started
- The date / time bay filling was finished
- The ID of the first truck that deposited spoil in the bay and the date / time that it was filled at Pivot
- The ID of the last truck that deposited spoil in the bay and the date / time it was filled at Pivot
- The sample ID that was associated with the first truck noting that a time window to be associated with each sample is half the time interval between its sampling time and the time of the preceding and the following samples. For example, is samples were collected at 8am, noon and 4 pm, the time window for the noon sample is between 10 am and 2 pm. That is this sample "belongs" to all truck loaded in this time window

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.1 - Applicable Sample ID's

Table 3.1 - 1 Applicable Sample ID's

	Applicable Spoil Sample ID's	
SX_IB_20220416_23_55_SS_Primary	SX_IB_20220417_15_56_SS_Duplicat	SX_IB_20220418_08_07_SS_Primary
_ALS	e_EUF	_ALS
SX_IB_20220417_00_01_SS_Primary	SX_IB_20220417_15_56_SS_Primary	SX_IB_20220418_08_08_SS_Triplicat
_EUF	_EUF	e_EUF
SX_IB_20220417_03_57_SS_Primary	SX_IB_20220417_15_57_SS_Triplicat	SX_IB_20220418_08_09_SS_Primary
_EUF	e_ALS	_EUF
SX_IB_20220417_04_02_SS_Primary	SX_IB_20220417_15_58_SS_Primary	SX_IB_20220418_11_57_SS_Primary
_ALS	_ALS	_EUF
SX_IB_20220417_08_05_SS_Primary	SX_IB_20220417_20_03_SS_Primary	SX_IB_20220418_11_58_SS_Primary
_EUF	_EUF	_ALS
SX_IB_20220417_08_07_SS_Primary ALS	SX_IB_20220418_00_02_SS_Primary ALS	SX_IB_20220418_16_07_SS_Primary ALS
SX IB 20220417 08 10 SS Duplicat	SX IB 20220418 00 05 SS Primary	SX IB 20220418 16 08 SS Primary
e ALS	EUF	EUF
SX IB 20220417 08 10 SS Triplicat	SX IB 20220418 03 59 SS Primary	SX IB 20220418 16 09 SS Duplicat
e_EUF	_ALS	e_EUF
SX_IB_20220417_12_28_SS_Primary	SX_IB_20220418_04_01_SS_Primary	SX_IB_20220418_16_10_SS_Triplicat
_EUF	_EUF	e_ALS
SX_IB_20220417_12_29_SS_Primary	SX_IB_20220418_08_07_SS_Duplicat	
_ALS	e_ALS	
Total Sample Numbers	29	Ratio Acceptable
Primary Sample Numbers	21	Yes
Classified Volume (LCM)	4000 m ³	
Volume: Sample Number Ratio	1:137.93	
(Samples per LCM)		
(23)		

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

3.2 Data Quality Compliance with SAQP

Table 3.2-1 evaluates the compliance of the data quality for this spoil – by reference to the criteria in the SAQP (Yes / No).

Table 3.2 - 1 Evaluation of Quality of Data for this Spoil

DQI	Field Consideration	Laboratory Consideration	Overall Data Quality Acceptability
Precision	Yes	Yes	Yes
Accuracy	Yes	Yes	Yes
Representativeness	Yes	Yes	Yes
Completeness	Yes	Yes	Yes
Comparability	Yes	Yes	Yes

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

3.3 Selection of the Spoil Sample Testing Regime

Table 3.3 - 1 Selection of the Spoil Sample Testing Regime

		(State Yes or No in each Row)
A.	Is testing all spoil samples taken required for spoil in this Holding Bay, because prior to this Holding Bay, less than 10 Holding Bays of spoil have been tested from this Domain	Yes
	If the answer is Yes, go to E. If the answer is No, go to B.	
В.	If the answer to A is No (i.e., 10 or more Holding Bays of spoil have been tested from this Domain), do trends in the maximum data values from the previous 10 bays indicate that results are trending at <75% of the containment criteria?	NA
	If the answer is Yes, go to C. If the answer is No, go to D.	
C.	If the answer to B is Yes, then was testing of spoil for this Holding Bay reduced to two primary samples per bay plus QC samples (Minimum Testing Regime) as allowed by the SAQP (See SAQP Section 6.2.7)?	NA
D.	If the answer to B is No, then was the default testing regime implemented for all samples collected for the spoil in this Holding Bay (as required by the SAQP)?	NA
E.	Based on the answers to Questions A to D above, was the default testing regime (as defined in the SAQP) applied to the spoil in this Holding Bay?	Yes
F.	Based on the answers to Questions A to D above, was the Minimum testing Regime (as defined in the SAQP) applied to the spoil in this Holding Bay?	No

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

3.4 Spoil Compliance with SAQP Criteria for Containment Cell

Table 3.4 - 1 Spoil Compliance with SAQP Criteria for Containment Cell

Table	4 - 1 Spoil Compilance with SAQF Criteria for Containment Cen	
Need f	or IWRG 621.1 or 655.1 Testing	
	Is Spoil in this Holding Bay from a Zone of Exception or	
	Anomalous and required testing for IWRG 621.1?	No
В.	Is IWRG 621.1 testing required for spoil in this Holding Bay, because prior to this Holding Bay, less than 10 Holding Bays of spoil have been tested from this Domain?	Yes
C.	Is IWRG 621.1 testing required for spoil in this Holding Bay, because the moving 95% UCL values for the previous 10 consecutive Holding Bays of spoil from this Domain are not below TCO?	No
D.	Is testing pursuant to IWRG 655.1 required for spoil in this Holding Bay, because the spoil comes from Exception Zone 3 (See SAQP Section 5.4)?	No
E.	Has spoil testing for IWRG 621.1 Parameters been triggered by results of spoil water tests for previous Holding Bays of spoil from this geological domain?	No
Outcor	ne from IWRG 621.1 testing (if needed)	
F.	If Yes to one or more Questions A, B, C or E, (and not NOC< applicable background concentrations) then do test results for IWRG 621.1 (see Table 3.4-2) prohibit NPIW Containment as a spoil Classification Outcome? If no to all of Questions A, B, C and E, then respond NA to this question.	No
Outcor	ne from IWRG 655.1 testing (if needed)	
G.	If Yes to Questions D, then do test results for IWRG 655.1 (see Table 3.4-3) permit NPIW Containment as a spoil Classification Outcome? If no to Question D, respond NA to this question	NA
	ne from PFAS Testing	
Н.	Do test results for PFAS (see Table 3.4-4 below) permit NPIW Containment as a spoil Classification Outcome?	Yes

If Yes to either or both of Question E or F, then Spoil is Not Suitable for Containment; Go to Section 3.5. Otherwise, it is Suitable for Containment

Notes:

1. Criteria taken from EPA Grandfathered Classifications for TBM Spoil (2020/476 (SO 9042848)), and from the EPA approved EMP for Hi Quality's Containment Cell

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.4 - 2 IWRG 621.1 Parameter Concentration Statistics & Spoil Suitability for Containment

					IWRG	621.1 E	xceedan	e Test Re	sults			
Chemical	Unit	LOR	No. of samples	No. of primary samples	Sample: LCM Ratio	No > LOR	Min	Mean	95% UCL on Mean	Max	Limiting Criteria for NPIW Containment	Comment
Arsenic	mg/kg	2	29*	21	1:137.93	29	15	30.24	34.46	120	20	NPIW-Containment - considered to be naturally occurring chemical, see comment 1 (Section 4)
Nickel	mg/kg	5	29*	21	1:137.93	29	148	180.2	189	270	60	NPIW-Containment - considered to be naturally occurring chemical, see comment 1 (Section 4)
Chromium (Hexavalent)	mg/kg	1	29*	21	1:137.93	2	<1	1.25	N/A	1.3	1	NPIW-Containment - considered to be naturally occurring chemical, see comment 1 (Section 4)
Fluoride	mg/kg	100	29*	21	1:137.93	27	150	333.7	462.5	680	450	NPIW-Containment - considered to be naturally occurring chemical, see comment 1 (Section 4)

[&]quot;*" - Ratio used for categorisation of spoil is samples to LCM due to spoil not being from a zone of exception. (See Section 4)

TBM Spoil Waste Cat Report 6 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.4 – 3 IWRG 655.1 (WASS) Parameter Concentration Statistics & Spoil Suitability for Containment

IWRG 655.1 Test Results											
Chemical	Unit	LOR	No. of primary samples	Sample: LCM Ratio	No > LOR	Min	Mean	95% UCL on Mean	Max	Limiting Criteria for NPIW Containment	Comment
pHF	рН									5	
pHFox	рН									5	
Delta pH										2	
%S	%									0.03%	
Mol H+ /tonne	Mol/ tonne									18	
Mol H+ /tonne	-										

TBM Spoil Waste Cat Report 7 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.4 - 4 PFAS Parameter Concentrations & Spoil Suitability for Containment

					I	PFAS Tes	t Result	s			
Chemical	Unit	LOR	No. of Samples	No. of primary samples	No > LOR	Min	Mean	95% UCL on Mean	Max	Upper Limiting Criteria for NPIW Containment	Spoil Category for PFAS
					Tota	l PFAS Co	oncentra	tions		1	
Total PFOS	ug/kg	5	29*	21	0	N/A	N/A	N/A	<5	N/A	NPIW-Containment
Total PFOA	ug/kg	5	29*	21	0	N/A	N/A	N/A	<5	N/A	NPIW-Containment
Total PFHxS	ug/kg	5	29*	21	0	N/A	N/A	N/A	<5	N/A	NPIW-Containment
					ASLP (pF	l= 5) PFA	S Conce	ntrations			
PFOA	ug/L	0.01	29*	21	0	N/A	N/A	N/A	<0.01	56	NPIW-Containment
PFOS+PFHxS	ug/L	0.01	29*	21	0	N/A	N/A	N/A	<0.01	7	NPIW-Containment
					ASLP (pF	l= 7) PFA	S Conce	ntrations			
PFOA	ug/L	0.01	29*	21	0	N/A	N/A	N/A	<0.01	56	NPIW-Containment
PFOS+PFHxS	ug/L	0.01	29*	21	0	N/A	N/A	N/A	<0.01	7	NPIW-Containment

[&]quot;*" - Ratio used for categorisation of spoil is samples to LCM due to spoil not being from a zone of exception. (See Section 4)

TBM Spoil Waste Cat Report 8 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

3.5 Waste Classification for Spoil **Not Suitable for Containment Cell**

This Section 3.5 and the Tables 3.5-1 to 3.5-3 only apply if the spoil is classified in Section 3.4 as not suitable for the Containment Cell. If the spoil is classified in Section 3.4 as not suitable for the Containment Cell, then Tables 3.5-1 and 3.5-2 contain no data and no assessment.

- Table 3.5 1 below contains the statistics for IWRG 621.1 Parameter concentrations, and Agon's assessment of their implications for the spoil waste category
- Table 3.5 2 below contains the statistics for IWRG 655.1 Parameter concentrations, and Agon's assessment of their implications for the spoil waste category
- Table 3.5 3 below contains the statistics for PFAS concentration, and Agon's assessment of their implications for the spoil waste category

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.5 - 1 IWRG 621.1 Parameter Concentration Statistics & Waste Classifications

						IWI	RG 621.1 E	xceedand	e Test F	Results			
Chemical	Unit	LOR	No. of primary samples	Sample: LCM Ratio	No > LOR	Min	Mean	95% UCL on Mean	Max	Limiting Criteria for NPIW	Limiting Criteria for Cat C	Limiting Criteria for Cat B	Comment
Arsenic	mg/kg												
Copper	mg/kg												
Chromium (Hexavalent)	mg/kg												
Nickel	mg/kg												
Fluoride	mg/kg												

TBM Spoil Waste Cat Report 10 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing WGT-302-000-WKN-CJH-105-SWI-0001_01

Table 3.5 – 2 IWRG 655.1 (WASS) Parameter Concentration Statistics & Waste Classification

	IWRG 655.1 Test Results											
Chemical	Unit	LOR	No. of primary samples	Sample: LCM Ratio	No > LOR	Min	Mean	95% UCL on Mean	Max	Limiting Criteria for NPIW Containment	Comment	
pHF	рН									5		
рНГох	рН									5		
Delta pH										2		
%S	%									0.03%		
Mol H+ /tonne	Mol/ tonne									18		

TBM Spoil Waste Cat Report 11 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

Table 3.5 - 3 PFAS Parameter Concentrations and Waste Classifications

							PFAS	Test Resi	ults				
Chemical	Unit	LOR	No. of primary samples	No > LOR	Min	Mean	95% UCL on Mean	Max	Upper Limiting Criteria for NPIW Containment	Upper Limiting Criteria for NPIW Landfill	Upper Limiting Criteria for PIW Cat C	Upper Limiting Criteria for PIW Cat B	Spoil Category for PFAS
							Total PFAS	S Concen	trations				
Total PFOS	ug/kg												
Total PFOA	ug/kg												
Total PFHxS	ug/kg												
						ASI	_P (pH= 5) F	PFAS Con	centrations				
PFOA	ug/L												
PFOS+PFHxS	ug/L												
						ASI	_P (pH= 7) F	PFAS Con	centrations				
PFOA	ug/L												
PFOS+PFHxS	ug/L												

TBM Spoil Waste Cat Report 12 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

4. Comments and Limitations

Comments	and	Limitations
COHIHERICS	anu	LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

- 1. Naturally Occurring Chemicals listed in IWRG 621.1 that are within the Background range despite being reported at concentrations that would otherwise categorise the material as PIW:
 - 1. Technical discussion around the naturally occurring metal concentrations found in soils beneath the WGTP is detailed in *Golder* (2017b) Technical Report B, Appendix E Environmental characterisation of spoil (natural soil and rock). The report indicates that elevated metals (including arsenic, nickel, copper, chromium (CrVI), zinc and mercury) were considered to be associated with natural enrichment instead of anthropogenic contamination.
 - a. **Arsenic** Golder (2017b) Technical Report B, Appendix E section 6.2 Arsenic enrichment in the residual soil of the upper Older Volcanics (Tvo1) found that while the soil of the upper Older Volcanics sub-unit contains arsenic, the arsenic is not characteristic of the wider sub unit (i.e the rock) or the lower sub-unit (soil or rock). The concentration of arsenic therefore appears to be related to the chemical and biological weather of the unit over time. This is further supported by:
 - i. The residual soil of the sub-unit being characterised by iron-oxide staining and containing goethite. Goethite is an iron oxyhydroxide mineral, which can contain elevated concentrations of arsenic.

Golder therefore concluded that based on the broad vertical distribution of arsenic and the presence of arsenic throughout the greater project area, arsenic results in Upper Older Volcanics soil are not likely to be associated with anthropogenic contamination.

- b. **Nickel** *Golder (2017b) Technical Report B, Appendix E* section 6.3 *Nickel enrichment within the upper Older Volcanics* found that
 - i. Nickel is known to be enriched within olivine and pyroxene basalt minerals, leading to nickel enrichment of soils weathered from basalt (Martini and Chesworth, 2013).
 - ii. The reported mean nickel concentrations within the Older Volcanics (Tvo) were comparable to results reported within soils derived from basalt in Auckland and basalt rock of Finland (ARC, 2001; Koljonen, 1992), Older Volcanics observed in the Melbourne Metro Project (Golder, 1026a) and Newer Volcanics basalt of the Westenra Plains (Birch, 2003).
 - iii. Enriched nickel concentrations corresponded with enriched cobalt (all units) and iron (except tertiary volcanics (Tvo2) soil) indicating that the nickel is likely associated with geochemical enrichment rather than added contamination.

TBM Spoil Waste Cat Report 13 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

iv. Enriched nickel concentrations also corresponded with enriched copper (Tvo2 soil and rock) and zinc (all units) indicating that the nickel is likely associated with geochemical enrichment rather than added contamination.

Golder therefore concluded that the nickel is likely associated with geochemical enrichment rather than added contamination.

The Golder study found that based on review of the depth, site history and the geochemical association of elements, the reported elevated concentrations of arsenic and nickel are considered representative of geogenic conditions and are not expected to be associated with contamination.

- 2. Previous reviews of the presence of **hexavalent chromium (CrVI)** in soil data outlined on the SAQP (Rev 5) were undertaken by Golders (2017) and later consolidated with data compiled by Mikkonen by AJJV (2019). The AJJV review of the consolidated data set identified:
 - Samples reported to contain hexavalent chromium above the IWRG621 Table 2 Fill Material Upper Limit of 1mg/kg, were not collected in areas not considered to be anthropogenic sources of CrVI
 - The ratio of tests reported above the laboratory LOR of 0.5 mg/kg was 15 out of 84 tests
 - The ratio of tests where CrVI was above 1mg/kg was 3 in 84 samples
 - The maximum reported concentration was 2.8mg/kg
 - The 95%UCLave was 0.439

The AJJV data review was to assess whether the spoil derived from the tunnelling operations would contain chemicals that would results in the spoil being classified as something other than Fill Material. AJJV concluded the CrVI was present due to natural enrichment. Refer extract from the AJJV report below:

In summary, the reported CrVI concentration reported in the Older Volcanics are considered to be naturally occurring / enriched based on the following:

- No potential CrVI sources have been identified in the vicinity of the sampling locations that reported the CrVI concentrations.
- Similar concentrations of CrVI were reported in the Older Volcanics on the MMRP, that were deemed to be naturally occurring.
- The 2017 Golder report concluded that enriched arsenic concentrations in the Older Volcanics on WGT
- Corresponded with enriched vanadium indicating that the arsenic is likely associated with geochemical enrichment rather than added contamination. The elevated CrVI is also found through this area deemed to be geochemically enriched.

TBM Spoil Waste Cat Report 14 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

There were limited exceedances of CrVI in the groundwater, which suggested no evidence of an anthropogenic source or Potential pathway from the surface

Given the large volume of ground to be tunnelled, the 95% UCL's in Table E.2 and the likely naturally enriched nature of the reported CrVI, AJJV consider that the CrVI impacts will not alter the spoil classification within Domain 5. AJJV note that the material will undergo ongoing sampling as the TBM spoil is produced – sampling will be outlined within the SAQP. If any contaminated material is encountered beyond the extent of the nominated potentially contaminated domains, this will trigger management of the material in accordance with Tunnel Spoil Disposal Framework.

Agon notes that Table E1: Summary of elevated concentration within Natural materials concludes the presence of hexavalent chromium may "Potentially" classify the spoil as PIW.

												Soil g	reater the surf		below	Find	iings		
Unit	Element Exceeding Criteria	Count	Detects	Min	Max	Mean	Median	Standard Deviation	Count of Exceedance	95% UCL	Fill Material Upper Limit	Count	Min#	Max	Mean	95% UCL Statistical Assessment	Victorian Soil Database Assessment	Classification as PIW	
	Fluoride	84	1	50	600	204	185	109	2	225.1	450	92	<100	790	283	Not Exceeding	Natural Origin	No Affect	
	Arsenic	101	84	<4	860	33	7	116	25	84.6	20	994	<u><10</u>	1200	<u>18</u>	Exceeding	Natural Origin	No Affect	
	Cadmium	103	6	<0.1	3	0.52	0.5	0.41	2	NA	3	-	•	-		NA	No Data	No Affect	
	Chromium (VI) ¹	84	15	<0.5	2.8	0.927	0.7	0.592	3	0.439	1	-	-	-		NA	No Data	Potentially	
Older Volcanics	Copper	101	98	<5	326	63	55	44	15	82.4	100	799	<25	87	<25	Not Exceeding	No Data	No Affect	
	Mercury	101	7	<0.1	1.7	0.077	0.05	0.17	1	NA	1	-	-	-	-	NA	No Data	No Affect	
	Nickel	101	99	<2	451	127	115	73	88	140.6	60	830	<25	170	28	Exceeding	Natural Origin	No Affect	
	Zinc	101	99	<5	483	84	63	79	6	98.7	200	819	<25	190	<25	Not Exceeding	No Data	No Affect	

A review of the Agon data for spoil reported in data set B.05 shows:

- A similar ratio of test results >1mg/kg compared to the overall data set;
- If a ½ LOR is substituted for results reported as <LOR (of 1mg/kg), then like the AJJV 95% UCL, the calculation is <1mg/kg The results also show that there are no synthetic compounds reported above the laboratory LOR, another indication that anthropogenic contamination is not present
- 3. Previous reviews of the presence of Fluoride in soil data outlined on the SAQP (Rev 5) were undertaken by AJJV (2019). The AJJV review of the consolidated data set identified:

Samples which reported elevated fluoride concentrations were found to be within the range the ambient background from the parent or similar material in the Victorian Soil Database:

TBM Spoil Waste Cat Report 15 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

	 i. Newer Volcanics Group – Maximum 820 mg/kg ii. Older Volcanics – Maximum 600 mg/kg iii. Sub-Basaltic Alluvium – Maximum 240 mg/kg In addition, the 95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell. A review of the Agon data for spoil reported in this data set shows:
	iii. Sub-Basaltic Alluvium – Maximum 240 mg/kg In addition, the 95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell.
	In addition, the 95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell.
	respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell.
	A review of the Agon data for spon reported in this data set shows.
	 A similar ratio of test results > LOR compared to the overall data set;
	 If a ½ LOR is substituted for results reported as <lor (of="" 100mg="" 450mg="" 95%="" ajjv="" be="" calculation="" cell.<="" containment="" disposed="" for="" is="" kg="" kg),="" less="" li="" like="" limit="" of="" spoil="" than="" the="" then="" to="" ucl,="" upper=""> </lor>
	The results also show that there are no synthetic compounds reported above the laboratory LOR, another indication that anthropogenic contamination is not present.
	est result outcomes can lead to two classification possibilities, however the classification decision follows the preference of the waste nanagement hierarchy.
	poil is not from a "Zone of Exception". Zone of exception applies a sampling ratio of only Primary Samples to LCM to categorise spoil as per
	he SAQP revision 5. Sample to categorised volume ratio in zones of exception is to be as per IWRG702 with 1 primary spoil sample ategorising a maximum 250 m3 of spoil.
4. Lo	oose Cubic metres (LCM) to mass (tonnes) conversion ratio used is 1 LCM:1.6 tonnes
p tł	his report has been prepared in accordance with industry recognised standards and procedures current at the time of the work. The report presents the results of the assessment based on the quoted scope of works (unless otherwise agreed in writing) for the specific purposes of the engagement by the Client. No warranties expressed or implied, are offered to any third parties and no liability will be accepted for use of this report by third parties.
	Il information provided by third parties has been assumed to be correct and complete. Agon does not assume any liability for nisrepresentation of information by third parties or for matters not visible, accessible or present on the subject site.
7. O	Opinions and judgements expressed herein are based on Agon's understanding of current regulatory standards and should not be construed s legal opinions.
	lo responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties other than hose listed above.
	his report should be read in full.

TBM Spoil Waste Cat Report 16 of 15

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

5. Attachments

ATTACHMENT A: TABULATED RESULTS

ATTACHMENT B: 95% UCL AVE CALCULATIONS

ATTACHMENT C: LABORATORY CERTIFICATES

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

ATTACHMENT A: TABULATED RESULTS

	Arsenic	Cadmium	Copper	Chromium (III+VI)	Chromium (hexavalent)	реад	Mercury	Molybdenum	Nickel
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
CQL	2	0.4	5	5	1	5	0.1	5	5
PA PFAS Classification - Tunnel Zone - 2019/404 (SO 9038429) Threshold									
PA PFAS Classification - Tunnel Zone - 2019/405 (SO 9038560) Threshold									
PA PFAS Classification - Tunnel Zone - 2019/406 (SO 9038561) Threshold									
PA PFAS Classification - Tunnel Zone - No option for disposal threshold									
PA Victoria IWRG621 Category B Leached Upper Limits									
PA Victoria IWRG621 Category B Upper Limits	2,000	400	20,000		2,000	6,000	300	4,000	12,000
PA Victoria IWRG621 Category C Leached Upper Limits									
PA Victoria IWRG621 Category C Upper Limts	500	100	5,000		500	1,500	75	1,000	3,000
PA Victoria IWRG621 Fill Upper Limits	20	3	100		1	300	1	40	60
ocation Code Field ID Sample Code Date Lab Report Number Lab Name Sample Type Parent Sample									

Location Code	Field ID	Sample Code	Date	Lab Report Number	Lab Name	Sample Type	Parent Sample	27	1	F0.	116	-1.0	-F	-0.1		171
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	EM2206998009	16/04/2022	EM2206998	ALSE-Melbourne	Normal		27	1	58	116	<1.0	<5	<0.1	<5	171
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	EM2206998032	16/04/2022	EM2206998	ALSE-Melbourne	Normal		20	10.4		120	1.2	-F	-0.1		160
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	M22-Ap0036827	17/04/2022	880891	MGT	Normal		29	<0.4	57	130	1.3	<5	<0.1	<5	160
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	M22-Ap0036851	17/04/2022	880891	MGT	Normal		_	-	 	-					
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	M22-Ap0036875	17/04/2022	880891	MGT	Normal		20	10.4	C.F.	1.10		-F	-0.1		210
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	M22-Ap0036828	17/04/2022	880891	MGT	Normal		30	<0.4	65	140	<1	<5	<0.1	<5	210
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	M22-Ap0036852	17/04/2022	880891	MGT	Normal		_	-	 	-					
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	M22-Ap0036876	17/04/2022	880891	MGT	Normal		16		F0	114	-1.0		-0.1		152
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	EM2206998010	17/04/2022	EM2206998	ALSE-Melbourne	Normal		16	<1	50	114	<1.0	<5	<0.1	<5	152
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	EM2206998033	17/04/2022	EM2206998	ALSE-Melbourne	Normal		10	10.4	42	120		-F	-0.1		150
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	M22-Ap0036829	17/04/2022	880891	MGT	Normal		18	<0.4	42	120	<1	<5	<0.1	<5	150
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	M22-Ap0036853	17/04/2022	880891	MGT	Normal		_	-	 	-					
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	M22-Ap0036877	17/04/2022	880891	MGT	Normal		22	-12		104	-1.0	.F	-0.1		150
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	EM2206998011	17/04/2022	EM2206998	ALSE-Melbourne	Normal		22	<1	52	104	<1.0	<5	<0.1	<5	159
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	EM2206998034	17/04/2022	EM2206998	ALSE-Melbourne	Normal		26		62	442	-1.0		.0.4		105
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	EM2206998012	17/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998011	26	<5	62	113	<1.0	<5	<0.1	<5	195
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	EM2206998035	17/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998034	20	-0.4	62	420	-		.0.4		100
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	M22-Ap0036830	17/04/2022	880891	MGT	Interlab_D	EM2206998011	38	<0.4	63	130	<1	<5	<0.1	<5	190
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	M22-Ap0036854	17/04/2022	880891	MGT	Interlab_D	EM2206998011		1			1				
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	M22-Ap0036878	17/04/2022	880891	MGT	Interlab_D	EM2206998034					1.0				212
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	M22-Ap0036831	17/04/2022	880891	MGT	Normal		28	<0.4	70	140	1.2	<5	<0.1	<5	210
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	M22-Ap0036855	17/04/2022	880891	MGT	Normal						1				
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	M22-Ap0036879	17/04/2022	880891	MGT	Normal		- 15			100	1.0				
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	EM2206998013	17/04/2022	EM2206998	ALSE-Melbourne	Normal		46	1	59	130	<1.0	<5	<0.1	<5	151
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	EM2206998036	17/04/2022	EM2206998	ALSE-Melbourne	Normal				<u> </u>		1				
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	M22-Ap0036833	17/04/2022	880891	MGT	Field_D	M22-Ap0036832	27	<0.4	54	130	<1	<5	<0.1	<5	160
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	M22-Ap0036857	17/04/2022	880891	MGT	Field_D	M22-Ap0036856			-						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	M22-Ap0036881	17/04/2022	880891	MGT	Field_D	M22-Ap0036880									
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	M22-Ap0036832	17/04/2022	880891	MGT	Normal		27	<0.4	66	140	<1	<5	<0.1	<5	210
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	M22-Ap0036856	17/04/2022	880891	MGT	Normal						1				
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	M22-Ap0036880	17/04/2022	880891	MGT	Normal				-						
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	EM2206998014	17/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036832	18	<1	57	112	<1.0	<5	<0.1	<5	173
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	EM2206998037	17/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036880			-						
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	EM2206998015	17/04/2022	EM2206998	ALSE-Melbourne	Normal		15	1	57	104	<1.0	<5	<0.1	<5	160
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	EM2206998038	17/04/2022	EM2206998	ALSE-Melbourne	Normal									₩	
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	M22-Ap0036834	17/04/2022	880891	MGT	Normal		32	<0.4	75	150	<1	<5	<0.1	<5	230
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	M22-Ap0036858	17/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	M22-Ap0036882	17/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	EM2206998016	18/04/2022	EM2206998	ALSE-Melbourne	Normal		23	<5	57	122	<1.0	<5	<0.1	<5	166
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	EM2206998039	18/04/2022	EM2206998	ALSE-Melbourne	Normal										
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	M22-Ap0036835	18/04/2022	880891	MGT	Normal		33	<0.4	74	140	<1	<5	<0.1	<5	210
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	M22-Ap0036859	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	M22-Ap0036883	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	EM2206998017	18/04/2022	EM2206998	ALSE-Melbourne	Normal		28	<1	58	109	<1.0	<5	<0.1	<5	173
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	EM2206998040	18/04/2022	EM2206998	ALSE-Melbourne	Normal										
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	M22-Ap0036836	18/04/2022	880891	MGT	Normal		120	<0.4	58	140	<1	5.6	<0.1	<5	180
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	M22-Ap0036860	18/04/2022	880891	MGT	Normal										<u> </u>
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	M22-Ap0036884	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	EM2206998019	18/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998018	18	<1	56	108	<1.0	<5	<0.1	<5	172
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	EM2206998042	18/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998041									
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	EM2206998018	18/04/2022	EM2206998	ALSE-Melbourne	Normal		17	<1	54	110	<1.0	<5	<0.1	<5	168
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	EM2206998041	18/04/2022	EM2206998	ALSE-Melbourne	Normal										
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	M22-Ap0036837	18/04/2022	880891	MGT	Interlab_D	EM2206998018	33	<0.4	69	150	<1	<5	<0.1	<5	200

														Metals		
								Arsenic	Cadmium	Copper	Chromium (III+VI)	Chromium (hexavalent)	Lead	Mercury	Molybdenum	Nickel
		_	Τ	1	1	T	_	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	M22-Ap0036861	18/04/2022	880891	MGT	Interlab_D	EM2206998018									
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	M22-Ap0036885	18/04/2022	880891	MGT	Interlab_D	EM2206998041	F2	٠٥.4	FF	120	-1	F 2	-0.1	4 F	170
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	M22-Ap0036838	18/04/2022	880891	MGT	Normal		52	<0.4	55	130	<1	5.3	<0.1	<5	170
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	M22-Ap0036862	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	M22-Ap0036886	18/04/2022	880891	MGT	Normal		20	-0.4	CO	120	-1	4 F	-0.1	4 F	100
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	M22-Ap0036839	18/04/2022	880891	MGT	Normal		20	<0.4	69	120	<1	<5	<0.1	<5	180
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	M22-Ap0036863	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	M22-Ap0036887	18/04/2022	880891	MGT	Normal									_	100
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	EM2206998020	18/04/2022	EM2206998	ALSE-Melbourne	Normal		22	<5	79	100	<1.0	<5	<0.1	<5	188
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	EM2206998043	18/04/2022	EM2206998	ALSE-Melbourne	Normal										
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	EM2206998021	18/04/2022	EM2206998	ALSE-Melbourne	Normal		24	<1	50	105	<1.0	<5	<0.1	<5	148
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	EM2206998044	18/04/2022	EM2206998	ALSE-Melbourne	Normal										
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	M22-Ap0036840	18/04/2022	880891	MGT	Normal		26	<0.4	56	120	<1	<5	<0.1	<5	160
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	M22-Ap0036864	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	M22-Ap0036888	18/04/2022	880891	MGT	Normal										
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	M22-Ap0036841	18/04/2022	880891	MGT	Field_D	M22-Ap0036840	41	<0.4	84	170	<1	6.0	<0.1	<5	270
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	M22-Ap0036865	18/04/2022	880891	MGT	Field_D	M22-Ap0036864									Ī
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	M22-Ap0036889	18/04/2022	880891	MGT	Field_D	M22-Ap0036888									
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	EM2206998022	18/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036840	21	1	60	109	<1.0	<5	<0.1	<5	161
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	EM2206998045	18/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036888									

ENVIRO	NMENTAL																						
																P.A	АН						
		Selenium	Silver	Έ	Zinc	PAHs (Vic EPA List)	Benzo(b+j+k)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Half)	Benzo(a) pyrene	Benzo(b+j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene
[mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL FPA PFAS Classification	- Tunnel Zone - 2019/404 (SO 9038429) Thresh	2	2	10	5	0.5	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	- Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
	- Tunnel Zone - 2019/406 (SO 9038561) Thresh																						
	- Tunnel Zone - No option for disposal threshol Category B Leached Upper Limits																						
EPA Victoria IWRG621 C		200	720		140,000	400									20								
	Category C Leached Upper Limits	50	180	500	35 000	100									5								
EPA Victoria IWRG621 C EPA Victoria IWRG621 F		10	10	50	35,000 200	100 20									1								
																			•				
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS	<5	<2	<10	90	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5	1	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS		_																				
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<2	<2	<10	110			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF																						
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF																						
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<5	<2	<10	84	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS																						
E05.01 E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF	<2	<2	<10	81			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF																						
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<5	<2	<10	86	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	<5	<2	<10	92	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS																						
E05.01 E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_10_33_TTIplicate_EUF																						
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF																					 	
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<5	<2	<10	96	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<2	-22	<10	100			<0.5	<0.5	<0 F	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0 F	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<2	<2	<10	100			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	₹0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<5	<2	<10	87	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<5	<2	<10	85	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	-					-																
E05.01 E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<2	<2	<10	140			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF																						
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<5	<2	<10	90	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220418_00_02_SS_Primary_ALS SX_IB_20220418_00_05_SS_Primary_EUF	<2	<2	<10	140			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	ļ	12	110	140			10.5	10.5	,0.5	10.5	10.5	1.2	0.0	10.5	10.5	10.5	10.5	10.5	10.5	,,,,,	10.5	10.5
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF			.10	02	.0.5	.4.0	.0.5	.0.5	-0.5	.0.5	-0.5	4.2	0.6	.0.5		.0.5		-0.5	.0.5	.0.5	.0.5	
E05.01 E05.01	SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_03_59_SS_Primary_ALS	<5	<2	<10	93	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF																		-			 	
E05.01 E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_08_07_SS_Duplicate_ALS	<5	<2	<10	98	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS					_			_	-	_	_					_				-		
E05.01 E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<5	<2	<10	97	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<2	<2	<10	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

ENVIR	ONMENTAL																						
																P	AH						
		Selenium	Silver	πn	Zinc	PAHs (Vic EPA List)	Benzo(b+j+k)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Half)	Benzo(a) pyrene	Benzo(b+j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																					\longmapsto	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																					\longrightarrow	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<2	<2	<10	110			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																					\longrightarrow	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																					\longrightarrow	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<2	<2	<10	140			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																					$\overline{}$	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																					$\overline{}$	
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<5	<2	<10	101	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<5	<2	<10	85	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<2	<2	<10	110			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<2	<2	<10	180			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<5	<2	<10	94	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																					1	

ENVIRO	DNMENTAL																						
								ВТ	TEX						TRH						ТРН		
					-								втех)		s s			total)					tota
		_	e e		ftota					(a			inus		a in C			n of 1					<u>5</u>
		alene	thren		о Е	a)	zene		<u> </u>	8	Fotal		<u> </u>		(F2 i			(Sur					ns) 9:
		hth	nant	e e	1s (Sı	zene	ylber	nen	eue (eue (l ene	C10	C10 (0-C16	-C16 (F2	-C34	, C40	C40	ච	FC14	-C28	-C36	S-0
		e e	P.	\$	PA	Ber	돮	2	Ž	×	×	9	9	ū	Na C	2	Ğ.	25	9	22	25	55	Ψ
EQL		mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.2	mg/kg 0.3	mg/kg 20	mg/kg 20	mg/kg 50	mg/kg 50	mg/kg 100	mg/kg 100	mg/kg 50	mg/kg 20	mg/kg 20	mg/kg 50	mg/kg 50	mg/kg 50
	n - Tunnel Zone - 2019/404 (SO 9038429) Thresh		0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.2	0.5	20	20	30	30	100	100	50	20	20	50	30	30
	n - Tunnel Zone - 2019/405 (SO 9038560) Thresho																						
	n - Tunnel Zone - 2019/406 (SO 9038561) Thresh																						
	n - Tunnel Zone - No option for disposal threshol																						
	L Category B Leached Upper Limits L Category B Upper Limits				400	16													2,600				40.000
	L Category C Leached Upper Limits				400	10													2,000				10,000
	L Category C Upper Limts				100	4													650				10,000
EPA Victoria IWRG621	L Fill Upper Limits				20	1													100				1,000
Location Code	Field ID																						
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS																						
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01 E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF																						
E05.01	SX_IB_20220417_00_01_33_P1111a1y_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																						
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF			0.5					0.5							100	400				400	100	
E05.01 E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS SX_IB_20220417_08_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF						-																
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF																						
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_07_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_08_07_3S_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS																						
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01 E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF																						
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																						
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF			0.5					0.5							100	400				400	100	
E05.01 E05.01	SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_12_29_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	0.5		0.5	0.5											100	100	400					<u> </u>
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	.0.5	-0.5	-0.5		.0.2	-0.5	-0.5	.0.5	-0.5	-0.5	-20	-20	-50	.50	.100	.400	.50	-20	.50	.400	.100	
E05.01 E05.01	SX_IB_20220417_15_58_SS_Primary_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF																						
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	-0.5	-0.5	-O.F		.0.2	-0.5	-0.5	-O.F	40 F	-0.5	-20	-20	-50	-50	-100	1100	-50	-20	-50	-100	-100	-50
E05.01 E05.01	SX_IB_20220418_00_02_SS_Primary_ALS SX_IB_20220418_00_02_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF																						
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	40 F	-0.5	40 F		-0.2	-0.5	-0.5	-0.5	40 F	-0.5	-20	-20	-50	-50	-100	-100	-50	-20	.50	-100	-100	.50
E05.01 E05.01	SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_03_59_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF																						
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	-0.5	-0.5	-0.5		-0.0	-0.5	-0.5	-0.5	-0.5	-0.5	-20	-20	.50	.50	-400	-400	-50	-20	-50	-400	-400	-50
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50

ENVII	RONMENTAL																						
								ВТ	EX						TRH						ТРН		
		Naphthalene	Phenanthrene	Pyrene	PAHs (Sum of total)	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene Total	C6-C10	C6-C10 (F1 minus BTEX)	C10-C16	C10-C16 (F2 minus Naphthalene)	C16-C34	C34-C40	C10-C40 (Sum of total)	67-93	C10-C14	C15-C28	629-636	+C10-C36 (Sum of total)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF									-		-	-										
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	+														100	100	100					
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF									-		-	-										
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	+														100	100	100					
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.5	<0.5	<0.5		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						<u>. </u>

ENVIRON	IMENTAL																						
	[Orga	nochlorine Pest	icides							
														ate .				e		9			
				ř				Q				a a	yde	<u> </u>		(si	'ans)	enzei		poxic			
				Dielc				E+DI	au –	an E		eton	de	gus	_ 	ne (c	ne (t	orob	<u>o</u>	or e			
		Ę	drin		g .	_	DDE	± DD	osni	osnij	Ę	Ë	Ë	osnij	rdar	orda	orda	achi	tach	tach	오	오	오
	г	Ald	Die	Ald	۵	Γαα	4,4	Laa	Ē	ᇤ	E	Ē	<u> </u>	Ē	ਝ	<u> </u>	รี้	Ě	He He	H H	a-B	8-8	8-B
501		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							
EQL EPA PEAS Classification -	Tunnel Zone - 2019/404 (SO 9038429) Thresh	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.03	0.03	0.05	0.05	0.05	0.05	0.05	0.05
	Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
EPA PFAS Classification -	Tunnel Zone - 2019/406 (SO 9038561) Thresh																						
	Tunnel Zone - No option for disposal threshol																						
EPA Victoria IWRG621 Ca EPA Victoria IWRG621 Ca	Itegory B Leached Upper Limits			4.8				50							16				4.8				
	rtegory C Leached Upper Limits			4.0				30							10				4.0				
EPA Victoria IWRG621 Ca				1.2				50							4				1.2				
EPA Victoria IWRG621 Fil	l Upper Limits																						
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	.0.03	10.03	.0.50	.0.03	.0.03	.0.03	.0.03	10.03	.0.03	.0.03		.0.03	.0.03	10.20	.0.03	.0.03	.0.03	.0.03	.0.03	10.00		.0.03
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1		•	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF																						
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.1			10.03	10.03	10.03	10.03	10.05	10.03
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																						
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS SX_IB_20220417_08_05_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	10.03	10.03	10.03	10.03	٧٥.03	10.03	10.03	10.03	10.03	10.03	10.05	10.03	10.03	10.1			10.03	10.03	10.03	10.03	10.05	10.05
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF																						
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.03	<0.05	<0.30	<0.03	<0.05	<0.05	<0.05	<0.05	V0.05	<0.05		<0.05	<0.03	<0.10	<0.03	<0.03	<0.03	<0.03	<0.05	<0.03	<0.05	<0.03
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF																						
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.05	<0.05	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.03	<0.1			<0.03	<0.03	<0.05	<0.03	<0.05	<0.03
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																						
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.05	<0.05	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.05	<0.03	V0.1			<0.03	<0.03	<0.05	<0.05	<0.05	<0.03
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	10.03	10.03	10.50	10.03	10.03	10.03	10.03	10.03	10.03	10.03		10.03	10.03	10.10	10.03	10.03	10.03	10.03	10.03	10.03	10.03	10.05
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	.0.05	.0.05	.0.05	.0.05	.0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	.0.05	-0.4			.0.05	.0.05	.0.05	.0.05	-0.05	
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF																						
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	0.05	2.25	0.05	0.05	0.05	2.25	0.05		0.05	2.25		0.05					0.05	0.05	0.05	2.25	2.25	
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF																						
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS																						
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF																						
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	-						-															
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
								2.35	1 2.35			1											

ENVIRO	NMENTAL																						
														Orga	nochlorine Pesti	cides							
		Aldrin	Jieldrin	Aldrin + Dieldrin	aac	DOT	1,4-DDE	DDT+DDE+DDD	endo sulfan 1	indosulfan II	indrin	indrin ketone	indrin aldehyde	indosulfan sulphate	Chlordane	Chlordane (cis)	Chlordane (trans)	Hexachlorobenzene	Heptachlor	leptachlor epoxide	•внс	-внс	3-внс
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																						i
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																						1
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						i
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						1
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																						1
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																						1
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.05	<0.05	<0.30	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						1

ENVIRON							,																
			1	T	1	1							1		ı		ı	ı	Phenols	1			
		. g-BHC (Lindane)	, Methoxychlor	Toxaphene	Organochlorine pesticides EPAVIC	Other organochlorine pesticides EPAVic	2-Chlorophenol	, 2,4-Dichlorophenol	, 2,4,5-Trichlorophenol	, 2,4,6-Trichlorophenol	, 2,6-Dichlorophenol	4-chloro-3-methylphenol	, Pentachlorophenol	2,34,5 & 2,3,4,6- Tetrachlorophenol	4,6-Dinitro-2- methylphenol	, Tetrachlorophenols	2,3,5,6-Tetrachlorophenol	Cresol Total	4,6-Dinitro-o-cyclohexyl	Phenois (halogenated) : EPAVic	Phenois (non-halogenated)	, 2,4-Dimethylphenol	. 2-Methylphenol
EQL		mg/kg 0.05	mg/kg 0.05	mg/kg 0.5	mg/kg	mg/kg 0.03	mg/kg 0.5	mg/kg 0.5	mg/kg 1	mg/kg 1	mg/kg 0.5	mg/kg 1	mg/kg 1	mg/kg 0.05	mg/kg 5	mg/kg	mg/kg	mg/kg 0.5	mg/kg 20	mg/kg 1	mg/kg	mg/kg 0.5	mg/kg
	Tunnel Zone - 2019/404 (SO 9038429) Thresh		0.05	0.5	0.1	0.03	0.5	0.5	1	1	0.5	1	1	0.05	5	10	0.03	0.5	20	1	20	0.5	0.2
	Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
EPA PFAS Classification -	Tunnel Zone - 2019/406 (SO 9038561) Thresh																						
	Tunnel Zone - No option for disposal threshol																						
	ategory B Leached Upper Limits																			200			
EPA Victoria IWRG621 Ca	ategory B Upper Limits ategory C Leached Upper Limits					50														320	2,200		
EPA Victoria IWRG621 Ca						10														10	560		
EPA Victoria IWRG621 Fi					1															1	60		
Location Code	Field ID	40.0F	<0.05	T	40.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	41.00	-10	<0.05	4 F	1	<0.03	1	-20	<1.00	<20	-1	-1
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS SX_IB_20220416_23_55_SS_Primary_ALS	<0.05	<0.05		<0.10	\U.U3	\U.3U	\U.3U	\1.00	<u></u>	\U.3U	<1.00	<1.0	\U.U3	<5		\U.U3		<20	<1.00	<u>\20</u>	<1	<1
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF																						
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	-0.05	.0.05	-0.5	-0.4	-0.4	-0.5	.0.5			.0.5	.4				-40		.0.5	-20		<u> </u>		.0.0
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1	-	<5	<10		<0.5	<20		 	<0.5	<0.2
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																						
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS																						
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20		<u> </u>	<0.5	<0.2
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF																					+	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20		 	<0.5	<0.2
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.05	<0.03	<0.5	V0.1	V0.1	ζ0.5	V0.5	<1		₹0.5	<1	<u> </u>		- 3	<10		V0.5	\20			VU.5	<0.2
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF																						
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																				<u> </u>		
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_29_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	10.03	10.03		10.10	10.03	10.50	10.50	11.00	12.00	10.50	11.00	12.0	10.03	,,,		10.03		120	11.00	120		
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																				 '		
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	\0.03	V0.03	\(\) .5	V0.1	V0.1	\0.5	\0.5	\1		\0.3	<u> </u>	\1		\ \	<10		<0.5	<20			VU.5	<u> </u>
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.05	<0.05		z0.10	<0.03	<0.50	20 FO	c1.00	-1.00	<0.50	<1.00	-1.0	<0.05	<5	-	<0.03		<20	<1.00	<20	-1	
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF																						
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF																				<u> </u>	<u> </u>	
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS SX_IB_20220418_00_02_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5	-	<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF																						
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF							_				-											
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5	-	<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_04_01_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1	-	<5	<10		<0.5	<20		 	<0.5	<0.2
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	10.05	10.03	10.5	VV.1	\U.1	10.5	, v	``		\0.J	``			_ ~	110		νο.σ	`~20			10.5	-0.2
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF																						
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	40.0F	40.0F		z0.10	<0.02	-0 F0	-0 F0	c1.00	-1.00	20 F0	z1 00	-1.0	40.0F	٠,-	-	<0.02		-20	-1.00	-20	-1	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5	-	<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
	_ .	•	•	· ·			•				•		•	•	•	•	•	ī.	•				

ENVI	RONMENTAL																						
																			Phenols				
		g-BHC (Lindane)	Methoxychlor	Toxaphene	Organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	2-Chlorophenol	2,4-Dichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,6-Dichlorophenol	4-chloro-3-methylphenol	Pentachlorophenol	2,3,4,5 & 2,3,4,6- Tetrachlorophenol	4,6-Dinitro-2- methylphenol	Tetrachlorophenols	2,3,5,6-Tetrachlorophenol	Cresol Total	4,6-Dinitro-o-cyclohexyl phenol	Phenols (halogenated) EPAVic	Phenols (non-halogenated) EPAVic	2,4-Dimethylphenol	2-Methylphenol
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																						
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																						
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																						
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.05	<0.05	<0.5	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.05	<0.05		<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						

ENVIRO	NMENTAL																						
			ı	I	1		I	1	1			. a		l 0		l 0		I		1 .			
				n&p -d							<u>s</u>	fonic		Ifonic		lfonic		ane	₹		SAA)	9	FOSE)
			_	ا ت					u _O	je.	22 F1	er su		er su		er su		ooct	TFOS	9	E E	1	(NEtF
		<u> </u>	henc	- Phe	<u> </u>			ē ē	d tal	le lor	d (10	e e	ŝ	e e	S	e o u	ŝ	- Inc	S S		Z (2		anol
		obhei	litro	lethy	bhe	ą	_	ls (To	ls (To	luoro	icaci	lorot	F 2:2	lorot	5:2 F1	lorot	12 51	l per	amid	+ 5	tic ac		oeth loeth
		-Nitro	i <u>d</u> -4	&4-IV	Nit.	inose	heno	heno	heno	0:2	ng Ho	.2 F	S)	.2 Ft	cid (6	2. F.	cid (4	Eth	l og	- th	oace	7 4	thyip amid
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
EQL		1	5	0.4	5	20	0.5	1	20	0.00001	0.005	0.00001	0.005	0.00005	0.01	0.00001	0.005	0.00005	0.005	0.00005	0.01	0.00005	0.005
	n - Tunnel Zone - 2019/404 (SO 9038429) Thresho																						
	n - Tunnel Zone - 2019/405 (SO 9038560) Thresh n - Tunnel Zone - 2019/406 (SO 9038561) Thresh																						
	n - Tunnel Zone - No option for disposal threshol																						
	Category B Leached Upper Limits																						
	Category B Upper Limits Category C Leached Upper Limits																						
EPA Victoria IWRG621	Category C Upper Limits																						
EPA Victoria IWRG621	Fill Upper Limits																						
Lacation Cada	Field ID																						
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	ZO 00001	<0.005	<0.00001	<0.005	<0.00005	<0.01	<0.00001	<0.005	<0.00005	<0.005	<0.0000F	<0.01	<0.00005	<0.005
E05.01 E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF									<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	1
E05.01 E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_04_02_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00001 <0.00005	<0.0050	<0.00001 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00001 <0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	`*		1	1 3	120	`-			<0.00005	10.0030	<0.00005	10.0030	<0.00005	10.0100	<0.00005	10.0030	<0.00005	10.0030	<0.00005	10.0100	<0.00005	10.0030
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005
E05.01 E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF									<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00001	<0.0050	<0.00001	<0.0050	<0.00005	<0.0100	<0.00001	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005	<0.0050
E05.01 E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	<0.00005	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	-11	.5	10.4		-20	40 F	-1	-20	<0.00001	40.00F	<0.00001	10.005	<0.00005	10.01	<0.00001	10.005	<0.00005	40.00E	<0.00005	10.01	<0.00005	10.005
E05.01 E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.01	<0.00001	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01 E05.01	SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	<0.00005	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	_								<0.00001		<0.00001		<0.00005		<0.00001	0.000	<0.00005	0.000	<0.00005		<0.00005	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		_		_					<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.01	<0.00001	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.0005	<0.005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01 E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<1	<5	<1	<5	<20	<1		-	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	\ <u>1</u>		\1	\ \	\20	\1			<0.00005	V0.0030	<0.00005	V0.0030	<0.00005	V0.0100	<0.00005	V0.0030	<0.00005	V0.0030	<0.00005	V0.0100	<0.00005	V0.0030
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005
E05.01 E05.01	SX_IB_20220417_20_03_SS_Primary_EUF				-					<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005	<u> </u>
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220418_00_02_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00001	<0.0050	<0.00001	<0.0050	<0.00005	<0.0100	<0.00001	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	-0.00001	<0.005	10.00001	<0.005	10 00005	<0.01	10.00001	<0.005	10.00005	<0.005	*O 0000E	<0.01	10 00005	<0.005
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF									<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001	-	<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005	
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS						2 -			<0.00005		<0.00005	.2.25=	<0.00005		<0.00005		<0.00005		<0.00005	2.5	<0.00005	.0.05=
E05.01 E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	<0.00001	<0.005	<0.0001	<0.005	<0.00005	<0.01	<0.00001	<0.005	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	-1	~E	<1		<20	-1	-		<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050
E05.01 E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<1	<5	<1	<5	\2 U	<1			<0.00005	\U.UU3U	<0.00005	\U.UU3U	<0.00005	~U.U1UU	<0.00005	\U.UU3U	<0.00005	\U.UU5U	<0.00005	~U.U1UU	<0.00005	\U.UU3U
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20	1	<0.005		<0.005		<0.01		<0.005		<0.005	1	<0.01		<0.005

ENVIR	RONMENTAL									T													
		2-Nitrophenol	2,4-Dinitrophenol	3&4-Methylphenol (m&p- cresol)	4-Nitrophenol	Dinoseb	Phenol	Phenols (Total Halogenated)	Phenols (Total Non Halogenated)	10:2 Fluorotelomer	sulfonic acid (10:2 FTS)	8:2 Fluorotelomer sulfonic	acid (8:2 FTS)	6:2 Fluorotelomer sulfonic	acid (6:2 FTS)	4:2 Fluorotelomer sulfonic	acid (4:2 FTS)	N-Ethyl perfluorooctane	sulfonamide (NEtFOSA)	N-ethyl-	perruorooccanesuronami doacetic acid (NEtFOSAA)	-N	namidoethanol (NEFOSE)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF									<0.00001		<0.0001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF									<0.00001		<0.0001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		< 0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		< 0.00005	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		< 0.005		< 0.005		<0.01		<0.005
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<1	<5	<0.4	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		< 0.005		<0.01		<0.005
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF									<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<1	<5	<1	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS									<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	

ENVIRON	IMENTAL																						
				1		I		1		1		ı		I		ı		I		T	PFOS,	/PFOA	
		ctane)SA)	ctane	1	anesul		<u> </u>		onic		<u> </u>		acid		onic		ğ.		fonic		ë	
		uoroo	MeFG	orood		Oocta	<u> </u>	oic ac		e sulf		oicae		Sanoic		esulf		noica		lue su		noic a	
		perfi	8 2	perflu	AA)	fuor	ethar	butan		butan	·	decar		dodec		decar	6	hepta		hepta	· (Sc	hexar	
		ethyl	nami	ethylı	e FOS	hylpe	mido OSE)	uoro	ৰ	luoro	(PFB3	noro	€	luoro	орд)	luoro	(PFD)	luoro	(ed	loron	(PFH)	luoro	(xA)
		Ž	sulfo	- S	N N	⊼ Ret	fona Me F	Perf	(PFB	Perf	acid	Perf	(PE	Perf	GFG	Perf	acid	Perf	H H	Perf	acid	Perf	(PFH
501		mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
EPA PFAS Classification -	Tunnel Zone - 2019/404 (SO 9038429) Thresho	0.00005	0.005	0.00005	0.01	0.00005	0.005	0.00005	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005
	Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
	Tunnel Zone - 2019/406 (SO 9038561) Threshol Tunnel Zone - No option for disposal threshol																						
	stegory B Leached Upper Limits																						
EPA Victoria IWRG621 Ca																							
EPA Victoria IWRG621 Ca EPA Victoria IWRG621 Ca	itegory C Leached Upper Limits																						
EPA Victoria IWRG621 Fill																							
La contra de da	5:445																						
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	<0.00005		<0.00005		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF	<0.00005	<0.005	<0.0005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF		<0.005	2 22225	<0.01		<0.005	2 22225	<0.005		<0.005		<0.005	2 22224	<0.005		<0.005		<0.005	0.00004	<0.005	2 22224	<0.005
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005		<0.00005 <0.00005		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001	
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.00005	<0.005	<0.00005	40 O1	<0.00005	<0.005	<0.0001	<0.005	<0.00002	40.00F	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	40.00F	<0.00002	40.00F	<0.00002	40.00F
E05.01 E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_07_SS_Primary_ALS	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.0001 <0.0001	<0.005	<0.00002 <0.00002	<0.0050												
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.00005	10.005	<0.00005	10.01	<0.00005	10.005	<0.0001	+0.00F	<0.00002	10.005	<0.00002	10.005	<0.00002	10.005	<0.00002	40.00F	<0.00002	10.005	<0.00002	40.00F	<0.00002	10.005
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00005	<0.005	<0.0005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01 E05.01	SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.0001	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<0.00005	<0.003	<0.00005	<0.01	<0.00005	<0.003	<0.00005	<0.003	<0.00001	<0.003	<0.00001	<0.003	<0.00001	<0.003	<0.00001	<0.003	<0.00001	<0.003	<0.00001	<0.005	<0.0001	<0.003
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.0001 <0.0001	<0.005	<0.00002 <0.00002	<0.0050												
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	<0.00005	<0.005	<0.00005	40.01	<0.00005	<0.005	<0.0001	<0.005	<0.00002	40.00F	<0.00002	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00002	40.00F	<0.00002	<0.005	<0.00002	<0.005
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS SX_IB_20220418_00_02_SS_Primary_ALS	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.0001 <0.0001	<0.005	<0.00002 <0.00002	<0.0050												
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	\0.00003	<0.005	V0.00003	<0.01	\0.00003	<0.005	V0.0001	<0.005	\0.00002	<0.005	V0.00002	<0.005	V0.00002	<0.005	V0.00002	<0.005	V0.00002	<0.005	<0.00002	<0.005	<0.0000Z	<0.005
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_03_59_SS_Primary_ALS	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.0005 <0.0001	<0.005	<0.00001 <0.00002	<0.0050												
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.00005		<0.00005		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.00005	<0.005	<0.00005	<0.01	<0.00005	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF	<0.00005		<0.00005 <0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001 <0.00001		<0.00001		<0.00001		<0.00001		<0.00001 <0.00001	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.00005 <0.00005	<0.0050	<0.00005 <0.00005	<0.0100	<0.00005 <0.00005	<0.0050	<0.0001 <0.0001	<0.005	<0.00002 <0.00002	<0.0050												
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.00005	\0.0030	<0.00005	~U.U1UU	<0.00005	10.0030	<0.0001	-0.003	<0.00002	\0.0030	<0.00002	\0.0030	<0.00002	\0.0030	<0.00002	10.0030	<0.00002	\0.0030	<0.00002	\0.0030	<0.00002	~0.0030
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.005		<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005

MENTAL																						
	-																			PFOS	/PFOA	
	N-Methyl perfluorooctane	sulfonamide (NMeFOSA)	N-methylperfluorooctane sulfonamidaaceit acid	(NMeFOSAA)	N- Methyperfluorooctanesul	fonamidoethano! (N- MeFOSE)	Perfluorobutanoic acid	(FFBA)	Perfluorobutane sulfonic	acid (PFBS)	Perfluorodecanoic acid	(PFDA)	Perfluorododecanoic acid	(PFDoDA)	Perfluorodecanesulfonic	acid (PFDS)	Perfluoroheptanoicacid	(РҒНрА)	Perfluoroheptane sulfonic	acid (PFHpS)	Perfluorohexanoic acid	(PFHKA)
	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
SX_IB_20220418_08_08_SS_Triplicate_EUF																						
SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_08_09_SS_Primary_EUF		<0.005		<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
SX_IB_20220418_08_09_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_08_09_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_11_57_SS_Primary_EUF		<0.005		<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
SX_IB_20220418_11_57_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_11_57_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_11_58_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
SX_IB_20220418_11_58_SS_Primary_ALS	<0.00005		<0.00005		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	
SX_IB_20220418_16_07_SS_Primary_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
SX_IB_20220418_16_07_SS_Primary_ALS	<0.00005		<0.00005		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	
SX_IB_20220418_16_08_SS_Primary_EUF		<0.005		<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
SX_IB_20220418_16_08_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_16_08_SS_Primary_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.005		<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00005		<0.00005		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050
SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00005		<0.00005		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	
	SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF	mg/L	SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Primary_EUF SX_IB_20220418_16_09_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_2	mg/L mg/kg mg/L	Ref SX_B_20220418_08_08_SS_Triplicate_EUF C0.00005 C0.00005	Republic Republic	May May	SX_IB_20220418_08_09_SS_Primary_EUF <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0	Record R	Major Majo	SX_IB_20220418_08_09_SS_Primary_EUF	SK.IB_20220418_08_09_SS_Primary_EUF	SX_IB_20220418_08_08_5S_Triplicate_EUF	The color of the	The color of the	The color of the	St.	The color of the	Part Part	No.	Proceedings	Part Part

ENVIRON	MENTAL																						
						1		ı		ı		1		1		1		ı		ı		I	
				nic Snic		<u>.</u>				Cid Di		fonic		fonic		, <u>s</u>		acid		acid		Ę	
		oic ac		saufc	•	ic aci			osa)	oica		e sul		lesult		canc		noic		noic		sulfo	
		onan		onan	(trac	ctano		ctane	e (PF	entar		entar		opar		trade	ৰ	ideca		Jdec		ctane	
		oro		orong .	FNS)) oor	_	J. Oo.	amid p	oro pope	2	oro a	FPes	l oro	FPrS]	FTeD	protr	₹)rour	(A))roor	FOS)
		erflu	AN	erflu	g)	erflu	FOA	erflu	lfon	erflu	₹Pe	erflu	P)	erflu	P)	l in	P)	erflu	r F	erflu	Į.	erflu	eid (P
		mg/L	mg/kg	mg/L	ਲ mg/kg	mg/L	mg/kg	mg/L	ಸ mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
EQL		0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00005	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005
	Tunnel Zone - 2019/404 (SO 9038429) Thresh	•				0																	
	Tunnel Zone - 2019/405 (SO 9038560) Thresh Tunnel Zone - 2019/406 (SO 9038561) Thresh					0.00056 0.0056																	
	Tunnel Zone - No option for disposal threshol					0.056																	
	tegory B Leached Upper Limits																						
EPA Victoria IWRG621 Cat																							
EPA Victoria IWRG621 Cat	tegory C Leached Upper Limits tegory C Upper Limts																						
EPA Victoria IWRG621 Fill																							
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002	0.000			<0.00005	0.000	<0.00002		<0.00002	0.000	<0.00001	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF		<0.005	2 22224	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	0.0004	<0.005		<0.005	0.00004	<0.005
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF	<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	10.00001	<0.005	10.00001	<0.005	VO.00001	<0.005	10.00003	<0.005	VO.00001	<0.005	10.00001	<0.005	10.00001	<0.005	10.00001	<0.005	V0.00001	<0.005	10.00001	<0.005	10.00001	<0.005
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_04_02_SS_Primary_ALS	<0.00001 <0.00002	<0.0050	<0.00001		<0.00001 <0.00001	<0.0050	<0.00005 <0.00005	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001		<0.00001 <0.00005	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001 <0.00001	<0.0050
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.00002	<0.0030			<0.00001	<0.0030	<0.00005	V0.0030	<0.00002	V0.0030	<0.00002	V0.0030			<0.00005	V0.0030	<0.00002	<0.0030	<0.00002	\0.0050	<0.00001	V0.0030
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001 <0.00001		<0.00001	
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_07_SS_Primary_ALS	<0.00001 <0.00002	<0.0050	<0.00001		<0.00001 <0.00001	<0.0050	<0.00005 <0.00005	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001		<0.00001 <0.00005	<0.0050	<0.00001 <0.00002	<0.0050	<0.00001	<0.0050	<0.00001 <0.00001	<0.0050
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00002	<0.005		<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00002	<0.005	<0.00002	<0.005		<0.005	<0.00005	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00001	2.22	<0.00001	0.00=	<0.00001	2.00	<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01 E05.01	SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00002	<0.005		<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00002	<0.005	<0.00002	<0.005		<0.005	<0.00005	<0.005	<0.00002	<0.005	<0.00002	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00001	-0.005	<0.00001	.0.005	<0.00001	-0.005	<0.00005	-0.005	<0.00001	-0.005	<0.00001	-0.005	<0.00001	.0.005	<0.00001	.0.005	<0.00001	-0.005	<0.00001	0.005	<0.00001	.0.005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<0.00002 <0.00002	<0.0050			<0.00001 <0.00001	<0.0050	<0.00005 <0.00005	<0.0050	<0.00002 <0.00002	<0.0050	<0.00002 <0.00002	<0.0050			<0.00005 <0.00005	<0.0050	<0.00002 <0.00002	<0.0050	<0.00002 <0.00002	<0.0050	<0.00001 <0.00001	<0.0050
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	<0.00002	10.0030			<0.00001	10.0030	<0.00005	10.0030	<0.00002	10.0030	<0.00002	10.0030			<0.00005	10.0030	<0.00002	10.0050	<0.00002	10.0030	<0.00001	10.0030
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF	<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001	
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<0.00001	<0.0050	10.00001		<0.00001	<0.0050	<0.00005	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	10.00001		<0.00001	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001	
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF	<0.00001	 	<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	 	<0.00001	
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.00002	<0.005		<0.00F	<0.00001	<0.005	<0.00005	<0.005	<0.00002	ZO 00F	<0.00002	<0.005		<0.005	<0.00005	<0.005	<0.00002	<0.00F	<0.00002	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00005	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.00002 <0.00002	<0.0050			<0.00001 <0.00001	<0.0050	<0.00005 <0.00005	<0.0050	<0.00002 <0.00002	<0.0050	<0.00002 <0.00002	<0.0050			<0.00005 <0.00005	<0.0050	<0.00002 <0.00002	<0.0050	<0.00002 <0.00002	<0.0050	<0.00001 <0.00001	<0.0050
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.00002	2.0000			<0.00001	2.0000	<0.00005	3.0350	<0.00002	2.0000	<0.00002	3.0350			<0.00005	3.0000	<0.00002		<0.00002	2.0000	<0.00001	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005

				1		I		I															
		Perfluorononanoic acid (PFNA)		Perfluorononanesulfonic acid (PFNS)(trace)		Perfluorooctanoic acid (PFOA)		Perfluorooctane sulfonamide (PFOSA)		(PFPeA)		Perfluoropentane sulfoni acid (PFPeS)		Perfluoropropanesulfoni acid (PFPrS)		Perfluorotetradecanoic acid (PFTeDA)		Perfluorotride canoic acid (PFTrDA)		undecano ic acic		ooctanesulfonic	
																				Perfluore	(PFUnDA	Perfluore	acid (PFC
		mg/L mg/kg mg/L		mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001	
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00002	<0.0050			<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00002				<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001	

ENVIROI																							
						ı									1							- I	
		ë			S	FOS			*										9	ω.			e e
		<u>ş</u>			9	AS (P		FAS	PFOA)			_		ane	_	<u>a</u>	<u>a</u>	aue	etha	han	e .		etha
		ne s			and	PF/			+			ane	Jene	prop	Jane	opar	opar	eth	loro	met	etha		o o o
		Je xa	<u>જ</u>		HXS	(H)		Hea	PFOS	AS	AS	oet	roet	loro	oet	ğ	ropr	l or	ract	5	loro	F	ra c
		oro.	£		F.	ļ š	*₹	ā	+	f PF.	f PF.	亨	l de	trich	l g	ō	o de) de	2-tet	dict	trich	ofori	2-tet
		erflu	Cid (Ē	Jo wn	<u> </u>	Ĕ	PFHXS	Ę	Ę	<u> 6</u>	ib-f	2,3-	2-di	2-di	ب ا ه در	ē Ē	1,1,	ě	.1,1-	hlore	1,2,7
		mg/L	mg/kg	mg/L	mg/kg	mg/L	+ mg/kg	mg/L	mg/kg	mg/L	mg/kg	ਜ਼ੌ mg/kg	mg/kg	mg/kg	ਜ਼ mg/kg	mg/kg	ਜ਼ੌ mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.0001	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
EPA PFAS Classification -	- Tunnel Zone - 2019/404 (SO 9038429) Thresh			0																			
EPA PFAS Classification -	- Tunnel Zone - 2019/405 (SO 9038560) Thresh			0.00007																			
EPA PFAS Classification -	- Tunnel Zone - 2019/406 (SO 9038561) Thresh			0.0007																			
	- Tunnel Zone - No option for disposal threshol			0.007																			
	ategory B Leached Upper Limits																						
EPA Victoria IWRG621 C																							
EPA Victoria IWRG621 C	ategory C Leached Upper Limits																						
EPA Victoria IWRG621 Fi																							
Location Code	Field ID																						
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS	<0.00001	.0.00=	<0.00001	-0.00=		.0.00=		.0.00=	<0.00010	-0.0-	-0.5	-0.5	.0.5	.0.5	.0.5	-0.5			-0.5	.0.5	.0.5	-0.5
E05.01 E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													<u> </u>
E05.01	SX_IB_20220417_00_01_33_F1111a17_E0F SX_IB_20220417_03_57_SS_Primary_EUF	2.20001	<0.005	.0.0001	<0.005	2.20001	<0.005	3.30001	<0.005	5.5001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	<0.00001	.0.005	<0.00001	.0.005		-0.005		-0.005	<0.00010	-0.05	-0.5	.0.5	.0.5	.0.5	.0.5	.0.5	.0.5	.0.5	.0.5	.0.5	.0.5	
E05.01 E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050	0.0000				<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.00001		<0.00001						<0.00010													
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.00001		<0.00001	1					<0.00010													
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	40 00001	<0.005	40 00001	<0.005	40 00001	<0.005	<0.00001	<0.005	40.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.00001 <0.00001		<0.00001 <0.00001	1	<0.00001 <0.00001		<0.00001 <0.00001		<0.0001 <0.0001													
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	\0.00001	<0.005	<0.00001	<0.005	V0.00001	<0.005	V0.00001	<0.005	V0.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.0001		<0.0001													1
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	<0.00001	2 225	<0.00001	2 225		2 225		2 225	<0.00010	2.25			0.5	0.5						0.5		
E05.01 E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	10.00001	<0.005	10.00001	<0.005	10.00002	<0.005	10.00001	<0.005	1010002	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													1
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.00001	.0.0050	<0.00001	.0.0050					<0.00010	.0.0500		.0.50		.0.50				-0.50		.0.50	0.50	
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS SX_IB_20220417_15_58_SS_Primary_ALS	<0.00001 <0.00001	<0.0050	<0.00001 <0.00001	<0.0050					<0.00010 <0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220417_13_36_33_F1111aly_ALS SX_IB_20220417_20_03_SS_Primary_EUF	\0.00001	<0.005	<0.00001	<0.005		<0.005		<0.005	\0.00010	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.00001	0.000	<0.00001	1	<0.00001		<0.0001	0.000	<0.0001													
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	<0.00001		<0.00001						<0.00010													
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.00001	<0.005	<0.0001	<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050	\0.00001		V0.00001		<0.0001	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS	<0.00001		<0.00001	1					<0.00010	0.0000												
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.00001	<0.0050	<0.00001 <0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50			-	<0.50		<0.50	<0.50	<0.50
E05.01 E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.00001 <0.00001	<0.0050	<0.00001	<0.0050					<0.00010 <0.00010	<0.0500		<0.50		<0.50			-	<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS	<0.00001	\0.0030	<0.00001	\0.0030					<0.00010	\0.0300		VU.JU		\U.JU				\0.JU		·0.50	V0.30	, U.JU
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.005		<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
-			_		_			_				_	_		_		_	_	_	_			

ENVIR	ONMENTAL																						
		Perfluorohexane sulfonic acid (PFHxS)		Sum of PFHxS and PFOS		Sum of US EPA PFAS (PFOS + PFOA)*		Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*		Sum of PFAS	Sum of PFAS	1,1-dichloroethane	1,1-dichloroethene	1,2,3-trichloropropane	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	Bromochloromethane	1,1,1,2-tetrachloroethane	Bromodichloromethane	1,1,1-trichloroethane	Chloroform	1,1,2,2-tetrachloroethane
		mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF		<0.005		<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS	<0.00001		<0.00001						<0.00010													
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS	<0.00001		<0.00001						<0.00010													1
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		< 0.005		< 0.005		<0.005		<0.005		< 0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													1
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													1
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.005		<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.00001		<0.00001		<0.00001		<0.00001		<0.0001													
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00001	<0.0050	<0.00001	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.00001		<0.00001						<0.00010													1

ENVIRON	IMENTAL																						
	-			Chlorinated	Hydrocarbons																NA		
	-								ş			ē											
		chloromethane	cis-1,3-dichloropropene	Dibromomethane	Dichloromethane	Hexachlorobutadiene	Other chlorinated nydrocarbons EPAVic	rrichloroethene	Chlorinated hydrocarbon	:is-1,2-dichloroethene	1,1,2-trichloroethane	rans-1,3-dichloroproper	Vinyl chloride	Bromoform	Carbon tetrachloride	Chlorodibromomethane	Chloroethane	rans-1,2-dichloroethene	Tetrachlo roethene	Sum of WA DWER PFAS	(n=10)*	Moisture Content	Arochlor 1232
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/L	UG/KG	%	mg/kg
EQL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.05	1	0.1
EPA PFAS Classification -	Tunnel Zone - 2019/404 (SO 9038429) Thresh																						
	Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
	Tunnel Zone - 2019/406 (SO 9038561) Threshol																						
	Itegory B Leached Upper Limits																						
EPA Victoria IWRG621 Ca						11	50						4.8										
EPA Victoria IWRG621 Ca	itegory C Leached Upper Limits																						
EPA Victoria IWRG621 Ca						2.8	10						1.2										
EPA Victoria IWRG621 Fil	l Upper Limits								1														
Lasatian Cada	Field ID																						
Location Code E05.01	Field ID SX_IB_20220416_23_55_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	27.6	
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS																			<0.05			
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF																				<0.05	\vdash	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.5	20 F	-0 F	-0 F	-0.F	-0 F	-0 F	-0 F	-0 F	-0 F	<0.5	-0 F	20 F	20 F	-0 F	-0 F	20 F	<0.5		<0.05		ZO 1
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10 <0.05	$\overline{}$	<0.1
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	31.2	1
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS																			<0.05			
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10	——	<0.1
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF																	-			<0.05 <0.05	 	
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_07_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.03	30.0	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																			<0.05			
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	31.4	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS																			<0.05			
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10	 	<0.1
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF																				<0.05 <0.05		
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05 <0.05	<10.0	30.3	i
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<10		<0.1
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	10.15	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.5	10.15	10.0	10.0		<0.05		
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																				<0.05		1
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																				<0.05	 	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<0.05 <10.0	30.4	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS				.0.5	.0.50	.0.50	10.50	.0.50	10.50	10.50		10.50		10.50			10.50	10.50	<0.05	120.0	30.4	
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	30.8	
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS																			<0.05		\vdash	
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10	\longrightarrow	<0.1
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF			 								-	-	-	-	-	-	1			<0.05 <0.05		
E05.01	SX_IB_20220417_20_03_33_Primary_EUP SX_IB_20220418_00_02_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.03	29.8	
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS																			<0.05			
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF											-		-				1			<0.05		i
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF			-	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50		<0.50			<0.50	<0.50	<0.05	<0.05 <10.0	30.0	
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_03_59_SS_Primary_ALS			-	\U.5	\U.3U	\U.3U	\U.3U	\U.3U	\U.3U	<u> </u>	+	<u> </u>		<u> </u>			<u.3u< td=""><td>\U.3U</td><td><0.05</td><td>\1U.U</td><td>30.0</td><td></td></u.3u<>	\U.3U	<0.05	\1U.U	30.0	
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	.5.03	<10		<0.1
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS			-	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50		-	<0.50	<0.50	<0.05	<10.0	27.4	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS			 	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	-	<0.50	-	-	<0.50	<0.50	<0.05 <0.05	<10.0	27.7	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS				10.3	10.50	VV.30	10.50	\v.50	10.50	\0.J0		10.50		\0.50			\0.50	10.50	<0.05	110.0		
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1

ENVI	RONMENTAL																						
				Chlorinated I	Hydrocarbons																NA		
		Chloromethane	cis-1,3-dichloropropene	Dibromomethane	Dichloromethane	Hexachlorobutadiene	Other chlorinated hydrocarbons EPAVIc	Trichloroethene	Chlorinated hydrocarbons EPAVic	cis-1,2-dichloroethene	1,1,2-trichloroethane	trans-1,3-dichloropropene	Vinyl chloride	Bromoform	Carbon tetrachloride	Chlorodibromomethane	Chloroethane	trans-1,2-dichloroethene	Tetrachloroethene	Sum of WA DWER PFAS	(n=10)*	Moisture Content	Arochlor 1232
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/L	UG/KG	%	mg/kg
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																				<0.05		 '
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																				<0.05		<u> </u>
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																				<0.05		<u> </u>
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																				<0.05		<u> </u>
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																				<0.05		[
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	29.7	
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																			<0.05			<u> </u>
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	32.5	
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																			<0.05			
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																				<0.05		
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<10		<0.1
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																				<0.05		
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																				<0.05		
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS				<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<0.05	<10.0	29.8	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS				0.0	3.50	3.50	3.50	3.50	3.50	3.50	1	3.50		1 3.50			3.50	3.50	<0.05			

ENVIRON	IMENTAL																						
	- -			PC	CBs	I	1	ı		I	ı	Inorg	ganics	1		ı		ı	На	logenated Benze	nes		
		Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1221	Arochlor 1260	Arochlor 1016	PCBs (Sum of total)	рн (after HCL)	pH (Final)	рн (Initial)	pH of Leaching Fluid	pH (aqueous extract)	Fluoride	Moisture Content (dried @ 103°C)	Cyanide Total	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Bromobenzene	4-chlorotoluene	Chloro benzene
		mg/kg	-	-	-	-	-	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
EQL EPA PFAS Classification -	Tunnel Zone - 2019/404 (SO 9038429) Thresh	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100	1	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Tunnel Zone - 2019/405 (SO 9038560) Thresh																						
	Tunnel Zone - 2019/406 (SO 9038561) Threshol Tunnel Zone - No option for disposal threshol																						
EPA Victoria IWRG621 Ca	itegory B Leached Upper Limits																						
EPA Victoria IWRG621 Ca	Itegory B Upper Limits Itegory C Leached Upper Limits													40,000		10,000							
EPA Victoria IWRG621 Ca	tegory C Upper Limts													10,000		2,500							
EPA Victoria IWRG621 Fil	l Upper Limits							2						450		50							
Location Code	Field ID		_	,										_									
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS SX_IB_20220416_23_55_SS_Primary_ALS							<0.1	1.3	5.1 9.1	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		3.1			11	<100	34	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF									7.4 11		5.0 6.3											
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				0.5	9.4	<100	30	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF									5.7 10.0		5.0 6.3											
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS							<0.1	1.2	5.3	10.3	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS	10.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1		10.4			10	600	25		40 F	40 F	40 F	40 F	40 F	-0.5	40 F
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		7.6		5.0	10	680	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF							.0.1	4.2	10	0.2	6.3		470			.0.50	.0.50		.0.50			-0.50
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_07_SS_Primary_ALS							<0.1	1.3	5.0 9.5	9.3	5.0		170		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS							<0.1	1.3	5.0	9.6	5.0		150		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		9.4			9.0	420	30	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF									5.5		5.0											
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		9.7		6.3	8.4	540	28	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF									5.4		5.0											
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_29_SS_Primary_ALS							<0.1	1.2	9.4 5.1	9.8	6.3 5.0		170		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS									10.0													
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		5.4		5.0	9.0	470	31	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF									9.7		6.3											
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		5.3		5.0	8.4	520	31	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF									9.5		6.3											
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_57_SS_Triplicate_ALS							<0.1	1.1	5.0 9.1	9.5	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS							<0.1	1.2	5.0	8.9	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS SX_IB_20220417_20_03_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		9.0			8.7	560	30	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF	-0.2	10.12	1012	1012	10.12	1012	.0.1		5.3		5.0	0	300			10.15	10.0	10.0	10.15	10.15	1010	
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220418_00_02_SS_Primary_ALS							<0.1	1.2	9.5 5.0	8.8	6.3 5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS							10.1	1.2	9.0	0.0	3.0		100			10.50	10.50		10.50			10.50
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		5.3		5.0	8.6	500	30	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF									9.5		6.3											
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS							<0.1	1.2	5.1 9.6	9.4	5.0		160		<5	<0.50	<0.50		<0.50			<0.50
E05.01 E05.01	SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_04_01_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		3.0			9.0	490	32	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF								-	5.4 9.6		5.0 6.3											
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_08_07_SS_Duplicate_ALS							<0.1	1.2	5.0	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS							-0.4	4.4	9.4	0.7			100			-0 F0	r0 F0		-0.50			40.50
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS			 	 		 	<0.1	1.1	5.0 9.5	9.7	5.0	-	180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					9.0	460	29	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

ENVI	RONMENTAL																						
				PC	CBs							Inor	ganics						На	logenated Benze	nes		
		Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1221	Arochlor 1260	Arochlor 1016	PCBs (Sum of total)	рН (after HCL)	рН (Final)	рН (Initial)	рН of Leaching Fluid	pH (aqueous extract)	Fluoride	Moisture Content (dried @ 103°C)	Cyanide Total	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Bromobenzene	4-chlorotoluene	Chlorobenzene
		mg/kg	-	-	-	-	-	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		1		-					5.4		5.0			-								
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF									9.7		6.3											
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					8.7	530	32	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF									5.5		5.0											
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF									9.8		6.3											
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					8.8	450	31	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF									5.3		5.0											
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF									9.4		6.3											
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS							<0.1	1.1	5.0	9.3	5.0		180		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS									9.2													
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS							<0.1	1.1	5.1	10.2	5.0		160		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS									10.0													
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					10	500	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF									5.3		5.0											
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF									11		6.3											
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					10	450	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF									5.2		5.0											
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF									11		6.3											
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS							<0.1	1.2	5.0	10.2	5.0		190		<5	<0.50	<0.50		<0.50			<0.50
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS									9.9													

	Г												Ι					
	Į		Halog	genated Hydroca	_				M	IAH 		1		Ι	Solvents	1		SPOCAS
		lodomethane	Bromomethane	1,2-dibromoethane	Dichlorodifluoromethane	Trichlorofluoromethane	Total MAH	Monocylic aromatic hydrocarbons EPAVic	1,3,5-trimethylbenzene	Styrene	lso propylbenzene	1,2,4-trimethylbenzene	4-Methyl-2-pentanone	Acetone	Allyl chloride	Carbon di sulfide	Methyl Ethyl Ketone	рн (СаСІ2)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
EQL EDA DEAS Classificati	on - Tunnel Zone - 2019/404 (SO 9038429) Thresh	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1
	on - Tunnel Zone - 2019/405 (SO 9038560) Thresh																	
	on - Tunnel Zone - 2019/406 (SO 9038561) Thresh																	
	on - Tunnel Zone - No option for disposal threshol																	
	21 Category B Leached Upper Limits 21 Category B Upper Limits							240										
	21 Category C Leached Upper Limits							240										
	21 Category C Upper Limts							70										
EPA Victoria IWRG62	21 Fill Upper Limits							7										
Location Code	Field ID																	
Location Code E05.01	SX_IB_20220416_23_55_SS_Primary_ALS							<0.5		<0.5								7.6
E05.01	SX_IB_20220416_23_55_SS_Primary_ALS																	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01 E05.01	SX_IB_20220417_00_01_SS_Primary_EUF																	
E05.01	SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																	
E05.01	SX_IB_20220417_03_57_SS_Primary_EUF																	
E05.01	SX_IB_20220417_04_02_SS_Primary_ALS							<0.5		<0.5								9.0
E05.01 E05.01	SX_IB_20220417_04_02_SS_Primary_ALS SX_IB_20220417_08_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF	10.5	10.5	10.5	10.5	10.5	10.5		10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	
E05.01	SX_IB_20220417_08_05_SS_Primary_EUF																	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS							<0.5		<0.5								7.9
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS							<0.5		<0.5							-	7.8
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS							\0.3		\0.5								7.0
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF																	
E05.01 E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF	<0.5	V0.5	<0.5	\U.5	<0.5	<0.5		\U.5	VU.5	<0.5	VU.3	VU.3	\(\(\) \(\)	<0.5	VU.3	VU.3	
E05.01	SX_IB_20220417_12_28_SS_Primary_EUF																	
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS							<0.5		<0.5								8.0
E05.01	SX_IB_20220417_12_29_SS_Primary_ALS	40 F	40 F	40 ت	40 ۲	40 F	40.5		40 ۲	40 F	40 F	40 ۲	40 ۲	40 F	40 F	40 ۲	40 F	
E05.01 E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																	
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS							<0.5		<0.5								7.5
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS																	1.0
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS							<0.5		<0.5								7.4
E05.01	SX_IB_20220417_15_58_SS_Primary_ALS	-0.5	40 F	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	40 F	-0.5	
E05.01 E05.01	SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220417_20_03_SS_Primary_EUF																	
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS							<0.5		<0.5								7.4
E05.01	SX_IB_20220418_00_02_SS_Primary_ALS	.0.5	-0.5	-0-			-0-				-0.5			-0-			-0-	-
E05.01 E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF					<u> </u>				1					1		1	
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS							<0.5		<0.5								8.3
E05.01	SX_IB_20220418_03_59_SS_Primary_ALS																	
E05.01 E05.01	SX_IB_20220418_04_01_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF					 						-	-	-		-		1
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS							<0.5		<0.5								7.7
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS																	
	lav := aaaaa aa a= aa =		l	1				<0.5		<0.5		I	1					7.9
E05.01 E05.01	SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS																	

ENVIR																		
			Halog	genated Hydroca	rbons				М	AH					Solvents			SPOCAS
		lodomethane	Bromomethane	1,2-dibromoethane	Dichloro difluoromethane	Trichlorofluoromethane	Тоtal MAH	Monocylic aromatic hydrocarbons EPAVic	1,3,5-trimethylbenzene	Styrene	Isopropylbenzene	1,2,4-trimethylbenzene	4-Methyl-2-pentanone	Acetone	Allyl chloride	Carbon disulfide	Methyl Ethyl Ketone	рн (сасі2)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																	
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ļ
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																	ļ
E05.01	SX_IB_20220418_08_09_SS_Primary_EUF																	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																	
E05.01	SX_IB_20220418_11_57_SS_Primary_EUF																	
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS							<0.5		<0.5								7.4
E05.01	SX_IB_20220418_11_58_SS_Primary_ALS																	1
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS							<0.5		<0.5								9.2
E05.01	SX_IB_20220418_16_07_SS_Primary_ALS																	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF											1						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF											1						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS							<0.5		<0.5								8.8
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																	

Metals

EQL							mg/kg 2	mg/kg	mg/kg 5	mg/kg	mg/kg By/gmuinm (hexavalent)	mg/kg 5	mg/kg 0.1	wnuəpqAioW mg/kg 5	ng/kg 5	ening y mg/kg 2	mg/kg 2	E mg/kg 10
Location Code	Field ID	Date	Lab Report Number	Lab Name	Sample Type	Parent Sample												
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	16/04/2022	880891	MGT	Normal		23	<0.4	50	120	<1	5.5	<0.1	<5	130	<2	<2	<10
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF	16/04/2022	880891	MGT	Field_D	M22-Ap0036822	20 14	<0.4 0	38 27	76 45	<1 0	5.7 4	<0.1 0	<5 0	90 36	<2 0	<2 0	<10 0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	16/04/2022	880891	MGT	Normal		23	<0.4	50	120	<1	5.5	<0.1	<5	130	<2	<2	<10
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036822	13	<1	36	61	<1.0	<5	<0.1	<5	78	<5	<2	<10
RPD	SV ID 20220445 45 40 55 D : 5U5	45 (04 (2022	logges4	la sor	lau	-	56	0	33	65	0	10	0	0	50	0	0	0
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF	16/04/2022 16/04/2022	880891 880891	MGT	Normal Field_D	M22-Ap0036848	-						1					
RPD	37_10_1010410_10_11_03_bupileate_101	10/04/2022	000031	Inio	i i ciu_b	MEE APOUSOUTO												
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	16/04/2022	880891	MGT	Normal													
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	16/04/2022	880891	MGT	Field_D	M22-Ap0036872											<u> </u>	
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	16/04/2022	880891	MGT	Normal													
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036872												
RPD		1																
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Normal		20	<1	37	91	<1.0	<5	<0.1	<5	113	<5	<2	<10
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998001	20	<1 0	42 13	88	<1.0 0	<5 0	<0.1 0	<5 0	108 5	<5 0	<2 0	<10 0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Normal		20	<1	37	91	<1.0	<5	<0.1	<5	113	<5	<2	<10
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	16/04/2022	880891	MGT	Interlab_D	EM2206998001	57	<0.4	60	140	<1	8.1	<0.1	<5	150	<2	<2	<10
RPD		1					96	0	47	42	0	47	0	0	28	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Normal		20	<1	37	91	<1.0	<5	<0.1	<5	113	<5	<2	<10
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	16/04/2022	880891	MGT	Interlab_D	EM2206998001							-					
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Normal												 	
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998026												
RPD																		
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	16/04/2022	EM2206998	ALSE-Melbourne	Normal													
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	16/04/2022	880891	MGT	Interlab_D	EM2206998026							1					
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	17/04/2022	880891	MGT	Normal		27	<0.4	66	140	<1	<5	<0.1	<5	210	<2	<2	<10
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	17/04/2022	880891	MGT	Field_D	M22-Ap0036832	27	<0.4	54	130	<1	<5	<0.1	<5	160	<2	<2	<10
RPD							0	0	20	7	0	0	0	0	27	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	17/04/2022	880891	MGT	Normal		27	<0.4	66	140	<1	<5	<0.1	<5	210	<2	<2	<10
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036832	18 40	<1 0	57 15	112 22	<1.0 0	<5 0	<0.1 0	<5 0	173 19	<5 0	<2 0	<10 0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	17/04/2022	880891	MGT	Normal		40	0	15	22	0	0	0	0	19	U	0	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	17/04/2022	880891	MGT	Field_D	M22-Ap0036856												
RPD																		
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	17/04/2022	880891	MGT	Normal												<u> </u>	
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF	17/04/2022	880891	MGT	Field_D	M22-Ap0036880							-					
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	17/04/2022	880891	MGT	Normal													
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036880												
RPD		1																
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Normal		22	<1	52	104	<1.0	<5	<0.1	<5	159	<5	<2	<10
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998011	26 17	<5 0	62 18	113 8	<1.0 0	<5 0	<0.1 0	<5 0	195 20	<5 0	<2 0	<10 0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Normal		22	<1	52	104	<1.0	<5	<0.1	<5	159	<u> </u>	<2	<10
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	17/04/2022	880891	MGT	Interlab_D	EM2206998011	38	<0.4	63	130	<1	<5	<0.1	<5	190	<2	<2	<10
RPD	·		· 				53	0	19	22	0	0	0	0	18	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Normal		22	<1	52	104	<1.0	<5	<0.1	<5	159	<5	<2	<10
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF	17/04/2022	880891	MGT	Interlab_D	EM2206998011							1				 	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Normal						1		1	1			 	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998034							1					
RPD										·								
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	17/04/2022	EM2206998	ALSE-Melbourne	Normal								1				<u> </u>	
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF	17/04/2022	880891	MGT	Interlab_D	EM2206998034											 	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	18/04/2022	880891	MGT	Normal		26	<0.4	56	120	<1	<5	<0.1	<5	160	<2	<2	<10
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	18/04/2022	880891	MGT	Field_D	M22-Ap0036840	41	<0.4	84	170	<1	6.0	<0.1	<5	270	<2	<2	<10
IC0927 - West Gate T	Funnal Spail Tasting					1 of 24												BSF

													Metals					
							Arsenic	Cadmium	Copper	Chromium (III+VI)	Chromium (hexavalent)	Fead	Mercury	Molybdenum	Nickel	Selenium	Silver	ξ mg/kg
RPD							mg/kg 45	mg/kg 0	mg/kg 40	mg/kg 34	mg/kg 0	mg/kg 18	mg/kg ()	mg/kg 0	mg/kg 51	mg/kg 0	mg/kg ()	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	18/04/2022	880891	MGT	Normal		26	<0.4	56	120	<1	<5	<0.1	<5	160	<2	<2	<10
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036840	21	1	60	109	<1.0	<5	<0.1	<5	161	<5	<2	<10
RPD			•	•	<u> </u>		21	86	7	10	0	0	0	0	1	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	18/04/2022	880891	MGT	Normal													
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	18/04/2022	880891	MGT	Field_D	M22-Ap0036864												
RPD																		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	18/04/2022	880891	MGT	Normal													
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	18/04/2022	880891	MGT	Field_D	M22-Ap0036888												
RPD																		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	18/04/2022	880891	MGT	Normal													
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Interlab_D	M22-Ap0036888												
RPD		1																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Normal		17	<1	54	110	<1.0	<5	<0.1	<5	168	<5	<2	<10
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998018	18	<1	56	108	<1.0	<5	<0.1	<5	172	<5	<2	<10
RPD		1					6	0	4	2	0	0	0	0	2	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Normal		17	<1	54	110	<1.0	<5	<0.1	<5	168	<5	<2	<10
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	18/04/2022	880891	MGT	Interlab_D	EM2206998018	33	<0.4	69	150	<1	<5	<0.1	<5	200	<2	<2	<10
RPD							64	0	24	31	0	0	0	0	17	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Normal		17	<1	54	110	<1.0	<5	<0.1	<5	168	<5	<2	<10
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	18/04/2022	880891	MGT	Interlab_D	EM2206998018												
RPD		T																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Normal													
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Field_D	EM2206998041								-				
RPD		T			<u> </u>		_											
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	18/04/2022	EM2206998	ALSE-Melbourne	Normal													
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	18/04/2022	880891	MGT	Interlab_D	EM2206998041												
RPD																		

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

ENVIRO	ONMENTAL																						
				l o		Τ	1	Ι	1	Γ ≈		Τ	P	AH T	1	1	1	1	1	1	1	 	
		Zinc	PAHS (VIC EPA LIST)	Benzo(b+j+k)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(a)pyrene TEQ (LOR	Benzo(a)pyrene TEQ calc (Half)	Benzo(a) pyrene	Benzo(b+j)fluoranthene	Benzo(g.h.i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene
EQL		mg/kg 5	mg/kg 0.5	mg/kg	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5
LQL			0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Location Code	Field ID	100	T	Т	40 F	40.5	40.5	40.5	40.5	1.2	1 00	40.5	40.5	40.5	40.5	40.5	40.5	-0.F	-0.F	-0.5	40.5	T 40 F	40.F
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF	100 91			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.2	0.6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
RPD		9			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	100	-0.5	-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E03.01 RPD	SX_IB_20220416_16_24_SS_Triplicate_ALS	78 25	<0.5	<1.0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	1.2 0	0.6	<0.5 0		<0.5 0		<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF		1																				
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		+	1														+				-	
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF		†																				
RPD																							
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_24_SS_Triplicate_ALS																	-	-			-	
RPD	3A_ID_20220410_10_24_33_111pilicate_AL3																						
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	75	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS	79 5	<0.5 0	<1.0 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	1.2 0	0.6	<0.5 0		<0.5 0		<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	75	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	120			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		46	-0.5	-1.0	0	0	0	0	0 -0 -5	0	0	0		0		0	0	0	0	0	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF	75	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD																							
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		1																				
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS		+															+	+	+			
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																						
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF																						
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	100			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		26			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	130 87	<0.5	<1.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.2 1.2	0.6	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
E05.01 RPD	5X_IB_20220417_15_57_55_111piicate_AL5	40	VU.3	V1.0	0	0	0	0	0.5	0	0.6	0		0.5		0	0.5	0	0	0.5	0.5	0.5	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		-																	-			\vdash
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
RPD	CV ID 20220147 45 55 55 5 1	-	1			-		-		-								-	-	1	-		
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS		+															+	+	+		+	
RPD																							
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	86	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS	92 7	<0.5 0	<1.0 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	1.2 0	0.6	<0.5 0	-	<0.5 0		<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	86	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	130	<u> </u>		<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	41 86	<0.5	<1.0	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	1.2	0.6	0 <0.5		0 <0.5		0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF		10.5	1.0	νο.σ	10.5	νο.σ	10.5	10.5	1.2	0.0	\0.5		νο.5		νο.σ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10.5	10.5	10.5	\0.5	νο.5	10.5
RPD																							
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	-	1			-		-		-							-	1	-	1	-		
RPD	3/V_ID_50550411_00_10_33_Dublicate_ALS	<u> </u>	+			 		 		<u> </u>		<u> </u>	 				 	+	+	†	 	+	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF		<u> </u>															<u> </u>		1			
RPD E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	110	+		<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	180	<u> </u>		<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
				-							-												

													P	АН									
		Zinc	PAHs (Vic EPA List)	Benzo(b-j+k)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Half)	Benzo(a) pyrene	Benzo(b+j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		48			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	110			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	94	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		16			0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																				'		
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																				<u> </u>	i	
RPD																					'		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																				'		
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																				<u> </u>		
RPD																					'		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																				<u> </u>		
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																				<u> </u>		
RPD																					<u> </u>		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	97	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	98	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		1	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	97	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	130			<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		29	1		0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	97	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5		<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																				 '		
RPD				1																	 '		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS			1																	 '		
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS																				<u> </u>		
RPD																					└── '		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																				'		,
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																				'		
RPD			1							1	1						1	1	1		, '	ı	.

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIRON	MENTAL																						
	-				ВТ	EX		1		1	1	TRH	1		ı		1	TPH	1				
		PAHs (Sum of total)	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene Total	C6-C10	C6-C10 (F1 minus BTEX)	C10-C16	C10-C16 (F2 minus Naphthalene)	C16-C34	C34-C40	C10-C40 (Sum of total)	62-93	C10-C14	C15-C28	C29-C36	+C10-C36 (Sum of total)	Aldrin	Dieldrin	Aldrin + Dieldrin
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.5	0.1	0.1	0.1	0.1	0.2	0.3	20	20	50	50	100	100	50	20	20	50	50	50	0.05	0.05	0.05
Location Code	Field ID																						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.5 0	<0.1	<0.1 0	<0.1	<0.1 0	<0.2 0	<0.3	<20 0	<20 0	<50 0	<50 0	<100 0	<100 0	<100 0	<20 0	<20 0	<50 0	<50 0	<50 0	<0.05 0	<0.05 0	<0.05 0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	260	210	470	<20	<50	<100	250	250	<0.05	<0.05	<0.30
RPD			0	0	0	0	0	0	0	0	0	0	89	71	130	0	0	0	133	133	0	0	0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF																						1
RPD	5X_15_40120																						i
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						<u>'</u>
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF																		1			\vdash	
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS																						i
RPD																							
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS		<0.2 <0.2	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<20 <20	<20 <20	<50 <50	<50 <50	<100 180	<100 140	<50 320	<20 <20	<50 <50	<100 <100	<100 170	<50 170	<0.05 <0.05	<0.05 <0.05	<0.30 <0.30
RPD	3A_IB_20220410_06_34_33_Duplicate_AL3		0.2	0	0	0	0	0	0	0	0	0	57	33	146	0	0	0	52	109	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		0 <0.2	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <20	0 <20	0 <50	0 <50	0 <100	0 <100	0 <50	0 <20	0 <50	0 <100	0 <100	0 <50	0 <0.05	0 <0.05	0 <0.30
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF		10.2	10.5	10.5	10.5	10.5	10.5	120	120	150	130	100	1200	130	120	150	1200	1100	150	10.03	10.03	10.50
RPD																							
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																					\vdash	
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS																						
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																						i
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF																						1
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS		<0.2	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<20 0	<20 0	<50 0	<50 0	<100 0	<100 0	<50 0	<20 0	<50 0	<100 0	<100 0	<50 0	<0.05 0	<0.05 0	<0.30
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF							Ů						"		- ŭ		<u> </u>	<u> </u>				
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
RPD	SV ID 20220447 45 55 55 D 5U5																					\vdash	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF																						
RPD																							i
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						<u></u>
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS																					 	1
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
RPD			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.2 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.1	<0.5 <0.2	<0.5 <0.3	<20 <20	<20 <20	<50 <50	<50 <50	<100 <100	<100 <100	<50 <100	<20 <20	<50 <20	<100 <50	<100 <50	<50 <50	<0.05 <0.05	<0.05 <0.05	<0.30 <0.05
RPD	5X_16_E6EE6417_66_E6_55_TTIPREGREE_E61	10.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF																						
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS																						
RPD																						\Box	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS											-										 	
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF													+									
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05

ENVIKO	N M E N I A E																						
					ВТ	EX						TRH						TPH					
		PAHs (Sum of total)	Вепzепе	Ethylbenzene	Toluene	Xylene (o)	Xylene (m & p)	Xylene Total	c6-c10	C6-C10 (F1 minus BTEX)	010-016	C10-C16 (F2 minus Naphthalene)	C16-C34	C34-C40	C10-C40 (Sum of total)	62-93	C10-C14	C15-C28	C29-C36	+C10-C36 (Sum of total)	Aldrin	Dieldrin	Aldrin + Dieldrin
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
RPD			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
RPD			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.5	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<20	<20	<50	<50	<100	<100	<100	<20	<20	<50	<50	<50	<0.05	<0.05	<0.05
RPD			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<20	<50	<50	<100	<100	<50	<20	<50	<100	<100	<50	<0.05	<0.05	<0.30
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
RPD																						1	1

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

 $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be

LIVIK	COMMENTAL																						
				1	<u> </u>	<u> </u>					Orga	anochlorine Pest	icides	1	Ι			1					
		a	Ь	,4-ррЕ	DT+DDE+DDD	ndosulfan I	ndosulfan II	ndrin	ndrin ketone	ndrin aldehyde	ndosulfan sulphate	nlordane	hlordane (cis)	hlordane (trans)	exachlorobenzene	eptachlor	eptachlor epoxide	внс	внс	внс	-BHC (Lindane)	lethoxychlor	охарнепе
		ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg								
EQL		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.03	0.03	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5
Location Code	Field ID																						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	0 <0.05	0 <0.1			0 <0.05	<0.05	<0.05	<0.05	0 <0.05	<0.05	0 <0.05	0 <0.05	0 <0.5									
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10.00	<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.5
RPD		0	0	0	0	0	0	0		0	0	0			0	0	0	0	0	0	0	0	
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF																					-	
RPD	JA_1B_20220410_10_22_33_Bupilcate_L01																						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF																					-	
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						.
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS																						
RPD	CV ID 20220445 00 24 55 Drivery ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	i
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
RPD		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.0F	<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40 F
E03.01 RPD	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.05 0	<0.05	<0.05 0	<0.05 0	<0.1 0			<0.05 0	<0.05	<0.05 0	<0.05 0	<0.05 0	<0.05 0	<0.05 0	<0.05 0	<0.5						
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF			1																			
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS			1																			
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS																						
RPD	Inv																						
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF																						
RPD	[
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.5
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.05 0	<0.05 0	<0.05	<0.05 0	<0.05 0	<0.05 0	<0.05	<0.05 0	<0.05	<0.05 0	<0.1			<0.05 0	<0.05	<0.05 0	<0.05 0	<0.05 0	<0.05	<0.05 0	<0.05 0	<0.5 0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	0	0	0	0	0	0	0		0	0	0			0	0	0	0	0	0	0	0	<u> </u>
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																						i
RPD				1																			
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF			+														1				+	<u> </u>
RPD	Ws_10110 11, _10_00_00_0 # Wester_10.																						
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS			+														1				+	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	0 <0.05		0 <0.05	0 <0.05	0 <0.10	0 <0.03	0 <0.03	0 <0.05	0 <0.05	0 <0.05	0 <0.05	0 <0.05	0 <0.05	0 <0.05	0 <0.05							
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5
RPD		0	0	0	0	0	0	0		0	0	0			0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF			+		 							-	1	-			+					
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS			1		-							-	1	-			1				<u> </u>	<u> </u>
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS			+										1				+					
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF																						
RPD	OV ID 20222222 22 22 22 2	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.1			-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	10.05	-0.5
E05.01 E05.01	SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.05 <0.05	<0.1 <0.1	-	1	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.5 <0.5									
			1	1						1						1		1		1			

					,				,		Orga	nochlorine Pesti	icides		ı		ı					,	
					E+DDD	ian I	ian II		etone	ldehyde	ian sulphate	ē	ne (cis)	ne (trans)	orobenzene	lor	lor epoxide				indane)	rchlor	eu.
		QQQ	ТОО	4,4-DDE	DDT+DD	Endosulf	Endosuli	Endrin	Endrin k	Endrina	Endosult	chlordar	Chlordaı	Chlordaı	Hexachle	Heptach	Heptach	а-ВНС	р-внс	д-внс	1) ЭНВ-В	Methoxy	Тохарће
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
RPD		0	0	0	0	0	0	0		0	0	0			0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																					1	
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																					i	
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
RPD		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05		<0.05	< 0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.5
RPD		0	0	0	0	0	0	0		0	0	0			0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.10	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																						
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																					1	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																					1	
RPD																						1	

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIRO	N M E N T A L																						
	-	10						1			l			T =		Phenols		-	1	1			
	r	Organochlorine pesticides EPAVIC	Other organochlorine pesticides EPAVic	2-Chlorophenol	2,4-Dichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,6-Dichlorophenol	4-chloro-3-methylphenol	Pentachlorophenol	2,3.4,5 & 2,3,4,6. Tetrachlorophenol	4,6-Dinitro-2- methylphenol	Tetrachlorophenols	2,3,5,6-Tetrachloropheno	Cresol Total	4,6-Dinitro-o-cyclohexyl phenol	Phenois (halogenated) EPAVic	Phenols (non-halogenatec EPAVic	2,4-Dimethylphenol	2-Methylphenol	2-Nitrophenol	2,4-Dinitrophenol	3&4-Methylphenol (m&p- cresol)
EQL		mg/kg 0.1	mg/kg 0.03	mg/kg 0.5	mg/kg 0.5	mg/kg 1	mg/kg 1	mg/kg 0.5	mg/kg 1	mg/kg 1	mg/kg 0.05	mg/kg 5	mg/kg 10	mg/kg 0.03	mg/kg 0.5	mg/kg 20	mg/kg 1	mg/kg 20	mg/kg 0.5	mg/kg 0.2	mg/kg 1	mg/kg 5	mg/kg 0.4
		0.2	0.00	0.5	0.5			1 0.0			0.00			1 0.00	0.5				1 0.0	1 0.2	_		
Location Code	Field ID	40.1	40.1	40 F	40.5	-1	-1	40.5	-1	-1	I	۷.	-10	Τ	40 F	420	ı	Τ	1 40 5	40.2	-1		40.4
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.1 <0.1	<0.1 <0.1	<0.5 <0.5	<0.5 <0.5	<1 <1	<1 <1	<0.5 <0.5	<1 <1	<1 <1		<5 <5	<10 <10		<0.5 <0.5	<20 <20			<0.5 <0.5	<0.2 <0.2	<1 <1	<5 <5	<0.4 <0.4
RPD		0	0	0	0	0	0	0	0	0		0	0		0	0			0	0	0	0	0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_24_SS_Triplicate_ALS	<0.1 <0.10	<0.1 <0.03	<0.5 <0.50	<0.5 <0.50	<1 <1.00	<1 <1.00	<0.5 <0.50	<1 <1.00	<1 <1.0	<0.05	<5 <5	<10	<0.03	<0.5	<20 <20	<1.00	<20	<0.5 <1	<0.2 <1	<1 <1	<5 <5	<0.4 <1
RPD	3A_IB_20220410_10_24_33_111plicate_AL3	0	0	0	0	0	0	0	0	0	V0.03	0		10.05		0	VI.00	\20	0	0	0	0	0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF																		1				
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF																						
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																						
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS																						
RPD	CV ID 20220445 00 24 55 Drivery ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
RPD		0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.10 <0.1	<0.03 <0.1	<0.50 <0.5	<0.50 <0.5	<1.00 <1	<1.00 <1	<0.50 <0.5	<1.00 <1	<1.0 <1	<0.05	<5 <5	<10	<0.03	<0.5	<20 <20	<1.00	<20	<1 <0.5	<1 <0.2	<1 <1	<5 <5	<1 <0.4
RPD	3A_IB_20220410_00_30_33_111pilcate_LOF	0	0	0	0	0	0	0	0	0		0	\10		\0.5	0			0	0	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E03.01 RPD	SX_IB_20220416_08_36_SS_Triplicate_EUF																						
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																						
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS																						
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																						
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF																						
RPD	CV ID 20220417 15 56 66 Drimony EUF	<0.1	~ 0.1	<0.5	<0.5	<1	<1	∠0. E	<1	<1		<5	<10		<0.5	<20			∠0. E	<0.2	<1		<0.4
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.1 <0.1	<0.1 <0.1	<0.5	<0.5	<1	<1	<0.5 <0.5	<1	<1		<5	<10 <10		<0.5	<20			<0.5 <0.5	<0.2	<1	<5 <5	<0.4
RPD		0	0	0	0	0	0	0	0	0		0	0		0	0			0	0	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.1 <0.10	<0.1 <0.03	<0.5 <0.50	<0.5 <0.50	<1 <1.00	<1 <1.00	<0.5 <0.50	<1 <1.00	<1 <1.0	<0.05	<5 <5	<10	<0.03	<0.5	<20 <20	<1.00	<20	<0.5 <1	<0.2 <1	<1 <1	<5 <5	<0.4 <1
RPD	3X_10_20120417_13_37_33_THIphreate_ALS	0	0	0	0	0	0	0	0	0	10.03	0		10.03		0	12.00	120	0	0	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						<u>-</u>
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF																						
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																						
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS																						
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
RPD		0	0	0	0	0	0	0 <0.50	0	0	0 <0.05	0		0		0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.10 <0.1	<0.03 <0.1	<0.50 <0.5	<0.50 <0.5	<1.00 <1	<1.00 <1	<0.50	<1.00 <1	<1.0 <1	<0.05	<5 <5	<10	<0.03	<0.5	<20 <20	<1.00	<20	<1 <0.5	<1 <0.2	<1 <1	<5 <5	<1 <0.4
RPD		0	0	0	0	0	0	0	0	0		0	-			0			0	0	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF							 						1				+	†	1			
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																						
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS																		1				
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																		1				
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF																						
RPD E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20		-	<0.5	<0.2	<1	<5	<0.4
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2	<1	<5	<0.4

																Phenols							
		Organochlorine pesticides EPAVIC	Other organochlorine pesticides EPAVic	2-Chlorophenol	2,4-Dichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,6-Dichlorophenol	4-chloro-3-methylphenol	Pentachlorophenol	2,3,4,5 & 2,3,4,6- Tetrachlorophenol	4,6-Dinitro-2- methylphenol	Tetrachlorophenols	2,3,5,6-Tetrachlorophenol	Cresol Total	4,6-Dinitro-o-cyclohexyl phenol	Phenols (halogenated) EPAVIC	Phenols (non-halogenated) EPAVIC	2,4-Dimethylphenol	2-Methylphenol	2-Nitrophenol	2,4-Dinitrophenol	3&4-Methylphenol (m&p- cresol)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0	0	0	0	0	0	0	0	0		0	0		0	0			0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2	<1	<5	<0.4
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
RPD		0	0	0	0	0	0	0	0	0		0				0			0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																						\Box
RPD																							\Box
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																						$\overline{}$
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																						\vdash
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
RPD		0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.1	<0.1	<0.5	<0.5	<1	<1	<0.5	<1	<1		<5	<10		<0.5	<20			<0.5	<0.2	<1	<5	<0.4
RPD		0	0	0	0	0	0	0	0	0		0				0			0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.10	<0.03	<0.50	<0.50	<1.00	<1.00	<0.50	<1.00	<1.0	<0.05	<5		<0.03		<20	<1.00	<20	<1	<1	<1	<5	<1
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																						
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																						\vdash
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS				-						-								-			<u> </u>	
RPD																							\vdash
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																					 	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																					 	
RPD				1				1			1	I	1			1				1		1	1

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIRON	IMENIAL .						T																
			I	Ι					, i		2		, i			_	1	3		£ (£)	an e		
						5	ě	2 FTS)	er sulfo		ar sulfo		er sulfo		octan	tFOSA)		EtFOSA		(NEtFOSE)	prooct	1eFOS/	roocta
		lou l			otal ed)	otal No ed)	otelon	id (10	telome	<u>S</u>	telome	S 2	telome	(3)	fluore	de (NE		cid (NE		Jorooc Janol (perfluc	N) e	erfluo
		rophe	ges	<u> </u>	iols (To	iols (Te genate	Fluor	onic ac	luoroi	(8:2 F	luoro	(6:2 F	luoroi	(4:2 F	hyl pe	onamic	<u> </u>	etic a	5	idoet	ethyl	onamic	ethylp
	ı	4-Nit	Dino	Pher	Pher	Pher Halo	10:2	ği ş	8:2	acid	6:2	acid	12:3	acid	ž,	sulfo	Z-et	d og d	ź ·	ethy nam	Σż	sulfo	F 3
EQL		mg/kg 5	mg/kg 20	mg/kg 0.5	mg/kg 1	mg/kg 20	mg/L 0.00001	mg/kg 0.005	mg/L 0.00001	mg/kg 0.005	mg/L 0.00005	mg/kg 0.01	mg/L 0.00001	mg/kg 0.005	mg/L 0.00005	mg/kg 0.005	mg/L 0.00005	mg/kg 0.01	mg/L 0.00005	mg/kg 0.005	mg/L 0.00005	mg/kg 0.005	mg/L 0.00005
														'			'		'				
Location Code E03.01	Field ID SX_IB_20220416_16_18_SS_Primary_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	0 <5	0 <20	0 <0.5	0 <1	0 <20		0 <0.005		0 <0.005		0 <0.01		<0.005		<0.005		0 <0.01		0 <0.005		0 <0.005	
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	0	0	0			<0.00001	0	<0.00001	0	<0.00005	0	<0.00001	0	<0.00005	0	<0.00005	0	<0.00005	0	<0.00005	0	<0.00005
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF						<0.00001		<0.00001		0 <0.00005		0 <0.00001		0 <0.00005		<0.00005		<0.00005		0 <0.00005		0 <0.00005
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF						<0.00001		<0.00001		0 <0.00005		<0.00001		0 <0.00005		<0.00005		0 <0.00005		0 <0.00005		<0.00005
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<5	<20	<1			0 <0.00005	<0.0050	<0.00005	<0.0050	0 <0.00005	<0.0100	0 <0.00005	<0.0050	0 <0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	0 <0.00005	<0.0050	0 <0.00005
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	0 <5	0 <20	0 <1			0 <0.00005	0 <0.0050	<0.00005	0 <0.0050	<0.00005	0 <0.0100	<0.00005	0 <0.0050	0 <0.00005	0 <0.0050	<0.00005	0 <0.0100	<0.00005	0 <0.0050	0 <0.00005	0 <0.0050	0 <0.00005
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	0 <5	0 <20	0 <1			<0.00005	0 <0.0050	<0.00005	0 <0.0050	<0.00005	0 <0.0100	<0.00005	0 <0.0050	<0.00005	0 <0.0050	<0.00005	0 <0.0100	<0.00005	0 <0.0050	<0.00005	0 <0.0050	<0.00005
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS						0 <0.00005		<0.00005		0 <0.00005		<0.00005		0 <0.00005		<0.00005		<0.00005		0 <0.00005		0 <0.00005
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS						0 <0.00005		<0.00005		0 <0.00005		<0.00005		0 <0.00005		<0.00005		<0.00005		0 <0.00005		0 <0.00005
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<5	<20	<0.5	<1	<20	0	<0.005	0	<0.005	0	<0.01	0	<0.005	0	<0.005	U	<0.01	0	<0.005	0	<0.005	- 0
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF	<5 0	<20 0	<0.5 0	<1 0	<20 0		<0.005 0		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS	<5 0	<20 0	<1 0			<0.00005	<0.0050 0	<0.00005	<0.0050 0	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050 0	<0.00005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	U	U	U			<0.00001	U	<0.00001	0	<0.00005	U	<0.00001	0	<0.00005	U	<0.00005	U	<0.00005	U	<0.00005	- 0	<0.00005
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005 0		<0.00005 0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005 0		<0.00005
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS	<5 0	<20 0	<1 0			<0.00005	<0.0050 0	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050 0	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005 0	<0.0050 0	<0.00005
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF	<5 0	<20 0	<0.5 0	<1	<20		<0.005 0		<0.005 0		<0.01 0		<0.005 0		<0.005 0		<0.01 0		<0.005		<0.005 0	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005 0		<0.00005
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	,—— <u> </u>	<0.00005
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<5	<20	<0.5	<1	<20	U	<0.005	U	<0.005	U	<0.01	0	<0.005	U	<0.005	0	<0.01	U	<0.005	U	<0.005	0
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	

		-Nitrophenol	Dinoseb	henol	henois (Total Ialogenated)	henois (Total Non talogenated)	10:2 Fluorotelomer	sulfonic acid (10:2 FTS)	8:2 Fluorotelomer sulfonic	acid (8:2 FTS)	5:2 Fluorotelomer sulfonic	acid (6:2 FTS)	4:2 Fluorotelomer sulfonic	acid (4:2 FTS)	N-Ethyl perfluorooctane	sulfonamide (NEtFOSA)	N-ethyl-	eerluorooctanesulfonami doacetic acid (NEtFOSAA)	Office contracts of the second	enylpernuoroocanesuro namidoethanol (NEtFOSE)	N-Methyl perfluorooctane	sulfonamide (NMeFOSA)	N-methylperfluorooctane
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
RPD		0	0	0	0	0		0		0		0		0		0	1	0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01	<u>'</u>	<0.005		<0.005	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
RPD		0	0	0				0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005
RPD	<u>.</u>						0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005	,	<0.00005
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005	<u> </u>	<0.00005
RPD	<u>.</u>						0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005	,	<0.00005
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	<u> </u>	<0.00005
RPD							0		0		0		0		0		0		0		0	<u> </u>	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
RPD		0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<5	<20	<0.5	<1	<20		<0.005		<0.005		<0.01		<0.005		<0.005		<0.01		<0.005		<0.005	
RPD		0	0	0				0		0		0		0		0		0	<u> </u>	0		0	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<5	<20	<1			<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005	<0.0100	<0.00005	<0.0050	<0.00005	<0.0050	<0.00005
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005	<u> </u>	<0.00005
RPD							0		0		0		0		0		0		0		0	<u> </u>	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	<u> </u>	<0.00005
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	 '	<0.00005
RPD							0		0		0		0		0		0		0		0	<u> </u>	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005		<0.00005	↓ '	<0.00005
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF						<0.00001		<0.00001		<0.00005		<0.00001		<0.00005		<0.00005		<0.00005		<0.00005	 '	<0.00005
RPD							0		0		0		0		0		0		0		0		0

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIRO	DNMENTAL																						
			=		I		1		1		1 -		1		1			PFOS	S/PFOA				
		3	tanesı	ż	acid		fonic		acid		ic acic		fonic		acid		uffoni		oci di	3	acid		fonic
		3	prooc) loue	anoica		ane su		noic		ecano		anesu		tanoic		tane s		noic or		anoic		anesu
		SAA)	erflu	doetha	obuts		opnt	BS)	90		9090	िक	o o o	DS)	ohe		deyo	(Sdн	, x		u ouo.		u ouo.
		NMeFC	Aethylp	onamic	erfluor	PFBA)	erfluor	icid (PF	erfluor	PFDA)	erfluor	PFD0D	erfluor	icid (PF	erfluor	РҒНрА)	erfluor	icid (PF	erfluor	PFHxA)	erfluor	PFNA)	erfluor
FOL		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
EQL		0.01	0.00005	0.005	0.00005	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001
Location Code	Field ID	1	1	1	1 1		T			1		T		1		T	T	T	1	1	Г		T 1
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.01 <0.01		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005		<0.005 <0.005	
RPD	Ws_12220 120_13_12_00_24pinatte_120	0		0		0		0		0		0		0		0		0		0		0	
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E03.01 RPD	SX_IB_20220416_16_24_SS_Triplicate_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005 0	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	<0.0050	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	<0.0050	<0.00002	<0.0050 0	\vdash
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	0	<0.00005	0	<0.00005	U	<0.00001	0	<0.00001	0	<0.00001	1 0	<0.00001	0	<0.00001	0	<0.00001	U	<0.00001	0	<0.00001	U	<0.00001
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF		<0.00005		<0.00005 0		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	+	<0.00001		<0.00001
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00005		<0.00005		<0.0001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	1	<0.00001		<0.0001
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
RPD			0		0		0		0		0		0		0		0		0		0		\Box
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005 <0.005	<0.00002	<0.0050	<0.00002	<0.0050 <0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050 <0.0050	<0.00002	<0.0050	\vdash
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS	<0.0100	<0.00005	<0.0050 0	<0.0001 0	0.005	<0.00002	<0.0050 0	<0.00002	0.0050	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	<0.0050 0	<0.00002	0.0050	<0.00002	<0.0050 0	
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD		0		0		0		0		0		0		0		0		0		0		0	
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.0100	<0.00005 <0.00005	<0.0050	<0.0001 <0.00005	<0.005	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00001
E03.01 RPD	SX_IB_20220416_08_36_SS_Triplicate_EUF		0.00003		0.00003		0.00001		0.00001		0.00001		0.00001		0.00001		0.00001		0.00001		0.00001		<0.00001
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
RPD			0		0		0		0		0		0		0		0		0		0		
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF		<0.00005 <0.00005		<0.0001 <0.00005		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00002 <0.00001		<0.00001
RPD	3A_ID_20220410_00_30_33_111pilcate_L01		0		0		0		0		0		0.00001		0.00001		0		0		0.00001		10.00001
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	0 <0.01		0 <0.005		0 <0.005		0 <0.005		0 <0.005		<0.005		0 <0.005		0 <0.005		0 <0.005		0 <0.005		0 <0.005	
E05.01	SX_IB_20220417_15_58_53_F11111ary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
RPD		0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.0005		0 <0.00005		<0.00001		<0.00001		0 <0.00001		<0.00001		0 <0.00001		<0.00001		<0.00001		<0.00001		0 <0.00001
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	1	<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS		<0.00005		<0.0001 0		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002	1	<0.00002		
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	—
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.01		<0.005 0		<0.005 0		<0.005 0		<0.005	+	<0.005		<0.005 0		<0.005 0		<0.005 0		<0.005 0		<0.005 0	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		\Box
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00005 <0.00005	-	<0.0001 <0.0001		<0.00002 <0.00002	-	<0.00002 <0.00002		<0.00002 <0.00002	-	<0.00002 <0.00002		<0.00002 <0.00002		<0.00002 <0.00002		<0.00002 <0.00002	1	<0.00002		\vdash
E05.01 RPD	SX_IB_20220417_08_10_SS_Duplicate_ALS		<0.00005	 	<0.0001		<0.00002		<0.00002	-	<0.00002		<0.00002	-	<0.00002		<0.00002		<0.00002	1	<0.00002		\vdash
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.0005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.01		<0.005		<0.005		<0.005	-	<0.005 <0.005		<0.005	-	<0.005	-	<0.005		<0.005		<0.005		<0.005	\vdash
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.01	1	<0.005		<0.005	<u> </u>	<0.005	<u> </u>	\U.UU5	1	<0.005	<u> </u>	<0.005	<u> </u>	<0.005	1	<0.005	1	<0.005	ı	<0.005	

																		PFOS,	/PFOA				
			la:				.2				1 2		ي.		_ =		Ë				_		.9
		2	tane	÷	gid		<u> </u>		ğ.		i.		l e		aci		읔		acid		acid		틸
		3	50	5	3		l s		1 3		a o		esn		ğ		l s		Si.		ioic		lesu
		i	luor	re d	ltan ltan		ltan		g		a		g		pta		pta	-	xan		nar		, a
		SA	Jerf	⊕ Set	ļ ģ		9	BS)	ļ ģ		8	ব	8	OS)	ļ ģ	_	j e	Я	ļ ģ	_	j o		i ê
		2 5 2 7	I	i Si	<u> </u>	g g	91	<u>r</u>	9	রি	<u> </u>	Q Q	9	<u>r</u>	<u> </u>	₽ <mark>ф</mark>	<u></u>	<u>E</u>	ion ₁	ξ ¥	l on	(4)	. <u> </u>
			⊼ Ā	MeF	Perf	PF8	Per	acid	Per	PFI	l Per	<u> </u>	Per	acid	Perf	<u>t</u>	Perf	acid	Perf	<u> </u>	Perf	(PFI	Perf
		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
RPD		0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
RPD		0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
RPD			0		0		0		0		0		0		0		0		0		0		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.01		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD		0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0100	<0.00005	<0.0050	<0.0001	<0.005	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
RPD			0		0		0		0		0		0		0		0		0		0		
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.00005		<0.0001		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		<0.00002		
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00005		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		, 7

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs $\ensuremath{\text{f}} \alpha$

 $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIR	JAMENTAL																						
			1		1		1		·		1		1		1		ı		1		ı		
			_ <u>.</u>				<u> </u>		fonic		onic		.5	!	acid		acid		Ë		onic C		ځ
		-	ic aci			OSA)	oic a		e sui		esulf		Cano		90.0		noic		oglifo		sulfe	,	ì
		trace	tanoi		ane	PF(ran		l tan		bau		rade	a	eca .		de ca		lanes		kane	ļ	1
		NS)(SN	0,0		000	nide.	o o o	-	obe.	PeS)	, side	Prs)	otet	Te D/	, otric	~	ļ ģ	∂	000	os)	ope.	HxS)	į
		<u>F</u>	llo	€	lloor	onar	l	PeA)	l	<u> </u>	linor	<u> </u>	lior	<u> </u>	l jui	P.D.	lino	Qu C	lluor	<u>r</u>	lluor	PE	1
		acic	Per	P _F	Per	¥ns snlt	Per	<u>F</u>	Per	acic	Per	acic	Per	acic	Per	4	Per	<u> </u>	Per	acic	Perl	acic	
		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
EQL		0.005	0.00001	0.005	0.00005	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001	0.005	0.00001
1	E.U.D.																						
Location Code E03.01	Field ID SX_IB_20220416_16_18_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD		0		0		0		0		0		0		0		0		0		0		0	
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD	SV ID 20220445 45 40 55 D ivv 5U5		*0.00001	0	40 0000F	0	40.00001	0	<0.00001	0	40.00001		<0.00001	0	<0.00001	0	<0.00001	0	¢0.00001	0	*0.00001	0	±0.00001
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001
RPD	3X_15_20220410_10_222_33_54\$medite_201		0		0		0		0		0		0		0		0		0		0		0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00001		<0.00005		<0.00001	-	<0.00001	-	<0.00001		<0.00001	-	<0.00001		<0.00001	-	<0.00001		<0.00001		<0.00001
E03.01 RPD	SX_IB_20220416_16_24_SS_Triplicate_ALS		<0.00001		<0.00005 0		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.0001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.0001	<0.0050	<0.00001
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD			0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.005	1	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD			10.00001	0	10 00005	0	10.00003	0	10.00003	0			10 00005	0	10.00003	0	10.00000	0	10.00001	0 0050	10.00001	0	10.00001
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF		<0.00001 <0.00001	<0.0050	<0.00005 <0.00005	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00001		<0.00005 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00002 <0.00001	<0.0050	<0.00001 <0.00001	<0.0050	<0.00001 <0.00001	<0.0050	<0.00001 <0.00001
RPD	3X_IB_20220410_06_30_33_111plicate_EUF		0.00001		0.00003		0		0.00001		\0.00001		0.00001		0.00001		0		0.00001		0.00001		0.00001
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS		<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0				0		0		0		0		0	ļ	0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS		<0.00001		<0.00005		<0.00002		<0.00002		0.00004		<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
E03.01 RPD	SX_IB_20220416_08_36_SS_Triplicate_EUF		<0.00001		<0.00005 0		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001 0		<0.00001
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.005		<0.005	0	<0.005		<0.005		<0.005		<0.005	0	<0.005	0	<0.005	0	<0.005		<0.005	0	<0.005	
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD	•	0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00001	0	<0.00005	0	<0.00001	0	<0.00001	0	<0.00001		<0.00001	0	<0.00001	0	<0.00001	0	<0.00001	0	<0.00001	0	<0.00001
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD	5.1.5_10110 11. 115_00_00_5upcate_10.		0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001	ļ	<0.00001
RPD	T		0		0		0		0		0		0	-	0		0		0		0	<u> </u>	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00001 <0.00001		<0.00005 <0.00005		<0.00001 <0.00002		<0.00001 <0.00002		<0.00001		<0.00001 <0.00005		<0.00001 <0.00002		<0.00001 <0.00002		<0.00001 <0.00001		<0.00001 <0.00001		<0.00001 <0.00001
RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS		0.00001		0.00003		0.00002		0.00002				0.00003		0.00002		0		0.00001		0.00001		0.0001
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD			0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005 0		<0.005 0	
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00001	<0.0050	<0.00005	0 <0.0050	<0.00002	0 <0.0050	<0.00002	0 <0.0050			<0.00005	0 <0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF		<0.00001	.0.0000	<0.00005	.0.0000	<0.00002	10.0000	<0.00002	10.0000	<0.00001		<0.00003	10.0000	<0.00002	.0.0000	<0.00002	10.0000	<0.00001	.0.0000	<0.00001	-5.5050	<0.00001
RPD			0		0		0		0				0		0		0		0		0	 	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS		<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
RPD	T		0		0		0		0				0	-	0		0		0		0	<u> </u>	0
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		<0.00001 <0.00001		<0.00005 <0.00005		<0.00002 <0.00001		<0.00002 <0.00001		<0.00001		<0.00005 <0.00001	-	<0.00002 <0.00001		<0.00002 <0.00001		<0.00001		<0.00001 <0.00001		<0.00001 <0.00001
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.0001		<0.00001	1	<0.00001		<0.00001		<0.00001		<0.00001	/	<0.00001
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.005	<u> </u>	<0.005	<u> </u>	<0.005	<u> </u>	<0.005	<u> </u>	<0.005		<0.005	<u> </u>	<0.005	<u> </u>	<0.005	<u> </u>	<0.005		<0.005		<0.005	
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	

									i,		ي				-		70				u		
			ē			_	acid		Ifon		fo.		9		aci.		aci		nic Si		onic		ţ
		â	ic ac			OSA	oica		e su		le su		l sa		jo E		anoi		sulf		18		
		trac	tano		tane	P.	ntar		ntar		opar		rade	ব	deca		dec		tane		xane	_	i 4
)(SN	90		900	nide e	obe.	_	ope	PeS)	ğ	Prs)	ote	TeD.	i di	2	uno.	₹	90	os)	ohe	HXS	i
		<u>a</u>	l on	(S)	l oi	onai	loon	eA)	<u>.</u>	<u>a</u>	9	<u>F</u>	<u> </u>	<u>4</u>	l on	Į.	ion	ď.	ion	(PF	ion	<u> </u>	1
		acid	Perl	P.	Per	sulf	Perl	PE .	Perl	acid	Ped	acid	Per	acid	Per	(PF)	Peri	H)	Peri	acid	Peri	acid	!
		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
RPD		0		0		0		0		0		0		0		0		0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD	1			0		0		0		0				0		0		0		0		0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD	1		0		0		0		0		0		0		0		0		0		0		0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.0001		<0.00001
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS		<0.00001		<0.00005		<0.00002		<0.00002				<0.00005		<0.00002		<0.00002		<0.00001		<0.00001		<0.00001
RPD			0		0		0		0				0		0		0		0		0		0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	-	<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050			<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
RPD		-	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	.0.005	<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050		-0.005	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
RPD	Tay :		-0.00001	0	10.00005	10.0050	10.00003	0	10.00003	0 0050			10 00005	0	10.00003	0	10.00000	0	10.00001	0	10.00001	0	10.00001
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.00001	<0.0050	<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	40.00001		<0.00005	<0.0050	<0.00002	<0.0050	<0.00002	<0.0050	<0.00001	<0.0050	<0.00001	<0.0050	<0.00001
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00001		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD	CV ID 20222440 00 07 05 D		0		0		0		0				0		0		0		£0.00001		•		0
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS		<0.00001 <0.00001		<0.00005 <0.00005		<0.00002 <0.00002		<0.00002 <0.00002				<0.00005 <0.00005		<0.00002 <0.00002		<0.00002 <0.00002		<0.00001 <0.00001		<0.00001		<0.00001 <0.00001
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS				0.00005		0.00002						l		<0.00002 0				0.00001		<0.00001		<0.00001
RPD	CV ID 20220419 09 07 CC Drimory ALC		0 <0.00001		<0.00005		<0.00002		0 <0.00002				<0.00005		<0.00002		0 <0.00002		<0.00001		<0.00001		<0.00001
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS										<0.00001												
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00001 0		<0.00005		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001		<0.00001
RPD			l 0	I	, , ,		U		U				1 0				U		U		0		U

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

 $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIR	ONMENTAL																						
																							Chlorinated I
		,	FOS	3		*										ane	9			ane		o o	
		2	AS (F	- {	PFAS	FOA)				u u	pane		ē	9	ane) eth	than	aue) eth		ben	1
		1	4		t t	4 + S			than the	l fen	opro	l than	ropa	ropa	meth	l ve	l om or	oeth		l je	e e	ropr	hane
		É	l Se	i) *	He He	P	FAS	FAS	oroe	oro) je	oroe	orop	oro g	l orol	etrac	Gh5	, Per	Ē	etrac	etha	icho	met
		5	l	Q Q	Joe	¥S +	of P	of P	di Gi	l gi	3-tric	l ŝ	di E	l ii	l god	1,2-t	l of ib	1-tri	rofo	2,2-t	L C	р-£(1	o mo
		3	uns	+	Sun	<u> </u>	Sur	Sur	1,1	1,1	1,2,	1,2-	1,2-	1,3-	Bro	1,1,	Bro	1,1,	ਝ	1,1,	ਝੁੱ	cis-1	l dig
		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.005	0.00001	0.005	0.00001	0.005	0.0001	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Location Code	Field ID																						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD	CV ID 20220445 45 40 55 Drivery FUE	0 <0.005		0 <0.005		0 <0.005		0 <0.05	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0	0	0
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_24_SS_Triplicate_ALS	<0.0050		<0.003		<0.005	<0.00010	<0.0500	<0.5	<0.50	<0.5	<0.50	<0.5	<0.5	<0.5	<0.50	<0.5	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5
RPD	0.7.15_10110 135_10_1 1_05_11 pineate_110	0					10.00010	0		0		0				0		0	0	0			
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF		<0.00001		<0.00001		<0.0001															<u> </u>	
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00001		<0.00001		<0.0001															<u> </u>	<u> </u>
E03.01	SX_IB_20220416_16_18_33_PTIMATy_EUF		<0.00001	+	<0.00001		<0.0001																
RPD			0		0		0																
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS			1			<0.00010																
RPD	CV IR 20220416 09 21 CC Drimon, ALC	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50		<u> </u>	
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
RPD	912-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	0					0	0		0		0				0		0	0	0			
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD	CV ID 20220445 00 24 55 Drivery ALS	0		1			<0.00010	0 <0.0500		0		0 <0.50				0		<0.50	0 <0.50	0 <0.50		 	
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.0050	<0.00001		<0.00001		<0.00010 <0.0001	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
RPD	0.1_15_10110 125_00_00_05p.neatc_101		10.00002		10.00001		0																
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS						<0.00010																
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS						<0.00010															!	
RPD	CV ID 20220445 00 24 55 Diimmy ALS			1			<0.00010															<u> </u> '	
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF		<0.00001		<0.00001		<0.00010											+	+			 	
RPD	3A_IB_20220420_00_30_33_TTP://dute_201		10.00001		10.00001		0																
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD E05.01	CV ID 20220447 45 50 00 Drivery 5115	0 <0.005		0 <0.005		0 <0.005		0 <0.05	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.0050		<0.003		<0.003	<0.00010	<0.0500	<0.5	<0.50	<0.5	<0.50	<0.5	<0.5	<0.5	<0.50	<0.5	<0.50	<0.50	<0.50	<0.5	ζ0.5	<0.5
RPD		0					0.000	0		0		0				0		0	0	0			
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00001		<0.00001		<0.0001															!	
RPD	CV ID 20220447 45 56 66 Drivery 5H5		<0.00001	1	<0.00001		0 <0.0001															 	\vdash
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF		<0.00001		<0.00001		<0.0001											+	+			 	
RPD			0		0		0											1					
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS						<0.00010															<u> </u>	
RPD	CV ID 20220447 00 07 CC Drivery ALC	<0.0050		1			<0.00010	<0.0500		<0.50		<0.50				<0.F0		<0.50	<0.50	<0.50		 	
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50 <0.50		<0.50	<0.50	<0.50			
RPD		0					0	0		0		0				0		0	0	0			
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	0 <0.0050					<0.00010	0 <0.0500		0 <0.50		0 <0.50		-	-	0 <0.50		0 <0.50	0 <0.50	0 <0.50		 	
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF	\U.UUJU	<0.00001	1	<0.00001		<0.00010	10.0300		\0.30		\U.JU		1	 	\0.30		\0.30	\U.JU	\U.JU			
RPD					0.0000		0																
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS						<0.00010																
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS						<0.00010			-								1	1			<u> </u>	
RPD	CV ID 20220447 00 07 00 0 1						0 <0.00010								-				1				
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF		<0.00001		<0.00001		<0.00010							1				+	+	 		 	
RPD			3.0001		3.00001		0																
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			T				1							т	1		T	1	1		1		Chlorinated I
		סמווו טו דרדואט פוווע דר טט	Sum of US EPA PFAS (PFOS	+ PFOA)*	Sum of enHealth PFAS	(PFHxS + PFOS + PFOA)*	Sum of PFAS	Sum of PFAS	1,1-dichloroethane	1,1-dichloroethene	1,2,3-trichloropropane	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	Bromochloromethane	1,1,1,2-tetrachloroethane	Bromodichloromethane	1,1,1-trichloroethane	Chloroform	1,1,2,2-tetrachloroethane	Chloromethane	cis-1,3-dichloropropene	Dibromomethane
		mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0		0		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
RPD		0						0		0		0				0		0	0	0			
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00001		<0.00001		<0.0001																
RPD			0		0		0																
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF		<0.00001		<0.00001		<0.0001																
RPD			0		0		0																
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF		<0.00001		<0.00001		<0.0001																
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS						<0.00010																
RPD							0																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
RPD		0					0	0		0		0				0		0	0	0			
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.005		<0.005		<0.005		<0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		0						0		0		0				0		0	0	0			
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.0050					<0.00010	<0.0500		<0.50		<0.50				<0.50		<0.50	<0.50	<0.50			
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00001		<0.00001		<0.0001																
RPD							0																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						<0.00010																
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS						<0.00010																
RPD							0																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						<0.00010																
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF		<0.00001		<0.00001		<0.0001																
RPD			1				0							I			1			1		, ,	1

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

 $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIR	ONMENTAL																Т			T			
		lydrocarbons	1	1		<u>«</u>	1		u						1			NA			1		PC
		Dichloromethane	Hexachlorobutadiene	Other chlorinated hydrocarbons EPAVic	Trichloroethene	Chlorinated hydrocarbon: EPAVic	cis-1,2-dichloroethene	1,1,2-trichloroethane	trans-1,3-dichloropropen	Vinyl chloride	Bromoform	Carbon tetrachloride	Chlorodibromomethane	Chloroethane	trans-1,2-dichloroethene	Tetrachloroethene	Sum of WA DWER PEAS	(n=10)*	Moisture Content	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254
EQL		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	UG/KG	μg/L	%	mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.05		1	0.1	0.1	0.1	0.1
Location Code	Field ID																						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<10 0			<0.1	<0.1 0	<0.1 0	<0.1 0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	28.4				
RPD	SV ID 20222445 45 40 55 D : FUE	0	0	0	0	0	0	0		0		0			0	0	0					 	
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF																<0.05 <0.05					 	
RPD	[0						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF																<0.05					<u> </u>	
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF		+														<0.05 0						
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF		1														<0.05						
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS																	<0.05					
RPD	T	.0.5	0.50	-0.50	.0.50	0.50	-0.50	0.50		.0.50		.0.50			.0.50	.0.50	.40.0	.0.05	24.7			<u> </u>	
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS	<0.5 <0.5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50		<0.50 <0.50			<0.50 <0.50	<0.50 <0.50	<10.0 <10.0	<0.05 <0.05	34.7 35.1			 	
RPD	5.C.15_10110 .15_05_006_5 apdate15	0	0	0	0	0	0	0		0		0			0	0	0	0	1				
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	34.7				
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5	<0.5 0	<0.5 0	<0.5	<0.5	<0.5	<0.5 0	<0.5	<0.5	<0.5 0	<0.5	<10 0			<0.1	<0.1	<0.1	<0.1
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	0 <0.50	<0.50	<0.50		<0.50		<0.50			<0.50	0 <0.50	<10.0	<0.05	34.7				
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF																<0.05		-				
RPD																	0						
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS																	<0.05 <0.05				<u> </u>	
RPD	3A_IB_20220410_00_34_33_Duplicate_AL3																	0.03					
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS																	<0.05					
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF																<0.05					<u> </u>	
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS	<0.5 <0.5	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<0.5	<0.5 <0.50	<0.5	<0.5 <0.50	<0.5	<0.5	<0.5 <0.50	<0.5 <0.50	<10 <10.0	<0.05	30.4	<0.1	<0.1	<0.1	<0.1
RPD	3A_10_20220417_13_37_33_111pilicate_AL3	0	0	0	0	0	0	0		0		0			0	0	0	10.03	30.4				
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																<0.05						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																<0.05					<u> </u>	
RPD E05.01	SX_IB_20220417_15_56_SS_Primary_EUF																0 <0.05						
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF																<0.05						
RPD																	0					\Box	
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS			1													<0.05	<0.05					
RPD	3A_10_20220417_13_37_33_111pilicate_AL3																	10.03					
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	30.0				
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	31.4			<u> </u>	
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	0 <0.5	0 <0.50	0 <0.50	0 <0.50	0 <0.50	0 <0.50	0 <0.50		0 <0.50		0 <0.50			0 <0.50	0 <0.50	0 <10.0	0 <0.05	5 30.0				
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
RPD		0	0	0	0	0	0	0		0		0			0	0	0						
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0 <0.05	<0.05	30.0				
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF		†								1	1					0 <0.05	1			 		
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS																	<0.05					
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS		<u> </u>															<0.05				 	
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		+														-	0 <0.05			-	 	
E05.01	SX_IB_20220417_08_07_5S_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF		1														<0.05	\0.03					
RPD																							
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	1		<0.1	<0.1	<0.1	<0.1

		lydrocarbons																NA					PC
		iyarocarbons	ene	Vic		carbons	hene	ane	propene			ide	ethane		ethene	۵	r PFAS	. NA					
		Dichloromethane	Hexachlorobutadi	Other chlorinated hydrocarbons EP/	Trichloroethene	Chlorinated hydro EPAVic	cis-1,2-dichloroet	1,1,2-trichloroeth	trans-1,3-dichlor	Vinyl chloride	Bromoform	Carbon tetrachlor	Chlorodibromom	Chloroethane	trans-1,2-dichlorc	Tetrachloroethen	Sum of WA DWE	(n=10)*	Moisture Content	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	UG/KG	μg/L	%	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	29.8				
RPD		0	0	0	0	0	0	0		0		0			0	0	0						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																<0.05						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																<0.05						
RPD																	0						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																<0.05						
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF																<0.05						
RPD																	0						
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF																<0.05						
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS																	<0.05					
RPD																							
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	27.7				
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	27.4				
RPD		0	0	0	0	0	0	0		0		0			0	0	0	0	1				
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	27.7				
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10			<0.1	<0.1	<0.1	<0.1
RPD		0	0	0	0	0	0	0		0		0			0	0	0						
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50		<0.50			<0.50	<0.50	<10.0	<0.05	27.7				
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																<0.05						
RPD																	0						
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																	<0.05					
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS																	<0.05					
RPD																		0					
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS																	<0.05					
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF																<0.05						1
RPD																							

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

ENVIR	ONMENTAL																						
		Bs		Ι	T		1	T	Inor	ganics	1	1 -	1		1	На	logenated Benz	zenes	T	1		Halog	genated Hydroca
		Arochlor 1221	Arochlor 1260	Arochlor 1016	PCBs (Sum of total)	рн (after HCL)	рН (Final)	рН (Initial)	pH of Leaching Fluid	рН (aqueous extract)	Fluoride	Moisture Content (dried @ 103°C)	Cyanide Total	1,2,4-trichlorobenzene	1,2-dichlor obenzene	1,3-dichlor obenzene	1,4-dichlorobenzene	Bromobenzene	4-chlorotoluene	Chlorobenzene	lodomethane	Bromomethane	1,2-dibromoethane
EQL		mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	0.1	0.1	0.1	0.1	0.1	mg/kg 100	% 1	mg/kg 5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5
LQL		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100			0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Location Code	Field ID		1	T						T				T				T	T			T	1 1
E03.01 E03.01	SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1					12 12	<100 <100	35 31	<5 <5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
RPD	3X_IB_E0EE0410_10_EE_33_Bupileutc_E01	0	0	0	0					0	0	12	0	0	0	0	0	0	0	0	0	0	0
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1					12	<100	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS				<0.1	1.7	9.6	11.2	5.0		200 67		<5 0	<0.50 0	<0.50		<0.50			<0.50		<u> </u>	
RPD E03.01	SX_IB_20220416_16_18_SS_Primary_EUF				0		10		5.0		67		0	1 0	0		0			0		-	
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF						11		5.0														
RPD							10		0														
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF						11		6.3													<u> </u>	
E03.01 RPD	SX_IB_20220416_16_22_SS_Duplicate_EUF						12 9		6.3 0														
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF						11		6.3														
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS						11.4																
RPD					-0.1	1.2	4	44.2	F 0		100			10.50	-0.50		10.50			10.50		<u> </u>	
E03.01 E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS				<0.1 <0.1	1.3	8.3 8.7	11.3 11.2	5.0 5.0		160 160		<5 <5	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50			<0.50 <0.50			
RPD	0.1.5_10110 120_00_0 1_00_0 apdate_, 120				0	0	5	1	0		0		0	0	0		0			0			
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS				<0.1	1.3	8.3	11.3	5.0		160		<5	<0.50	<0.50		<0.50			<0.50			
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.1	<0.1	<0.1	<0.1					12	<100	40	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS				0 <0.1	1.3	8.3	11.3	5.0		46 160		0 <5	0 <0.50	0 <0.50		0 <0.50			0 <0.50			
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF				10.2		10	11.0	5.0		100			10.50	10.50		10.50			10.50			
RPD							19		0														
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS						11.4															<u> </u>	<u> </u>
E03.01 RPD	SX_IB_20220416_08_34_SS_Duplicate_ALS						11.4 0																
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS						11.4																
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF						11		6.3														
RPD	SV ID 2022047 45 55 55 D 515	40.1	40.1	40.1	40 1		4			0.4	F20	21	۷.	40 F	40.5	40 F	40 F	40 F	40 F	40 F	40 F	40 F	40 F
E05.01 E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1					9.0	520 470	31 31	<5 <5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
RPD		0	0	0	0					7	10	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1					8.4	520	31	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01 RPD	SX_IB_20220417_15_57_SS_Triplicate_ALS		1		<0.1	1.1	5.0	9.5	5.0		180 97		<5 0	<0.50 0	<0.50 0		<0.50 0			<0.50 0		<u> </u>	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF				U		5.3		5.0		97		0	0	0		0			0			
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF						5.4		5.0													,	
RPD							2		0														
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF						9.5		6.3													<u> </u>	1
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF						9.7		6.3 0														
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF						9.5		6.3													,	
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS						9.1																
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS				<0.1	1.3	5.0	9.3	5.0		170		<5	<0.50	<0.50		<0.50			<0.50		<u> </u> !	\vdash
E05.01	SX_IB_20220417_08_07_33_PTIMARY_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS				<0.1	1.3	5.0	9.6	5.0		150		<5	<0.50	<0.50		<0.50			<0.50			
RPD	,				0	0	0	3	0		12		0	0	0		0			0			
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS				<0.1	1.3	5.0	9.3	5.0		170		<5	<0.50	<0.50		<0.50			<0.50			
E05.01 RPD	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.1	<0.1	<0.1	<0.1					9.0	420 85	30	<5 0	<0.5 0	<0.5 0	<0.5	<0.5 0	<0.5	<0.5	<0.5 0	<0.5	<0.5	<0.5
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS		+		<0.1	1.3	5.0	9.3	5.0		170		<5	<0.50	<0.50		<0.50			<0.50			
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF						5.5		5.0														
RPD							10		0											<u> </u>			
E05.01 E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS					-	9.5 9.4	-						1						1		<u> </u>	
RPD	3^_ID_20220417_00_10_33_Duplicate_ALS	<u> </u>			<u> </u>	<u> </u>	9.4	-		 	-	-		+				+		+		 	\vdash
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS						9.5																
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF						9.7		6.3										1				\Box
RPD E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1	-	2	-		10	500	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.1	<0.1	<0.1	<0.1					10	450	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
I		•		•			•				•			•		•		•	•	•			

		Bs							Inor	ganics					ı	Ha	logenated Benze	nes				Halog	enated Hydroca
		Arochlor 1221	Arochlor 1260	Arochlor 1016	PCBs (Sum of total)	рН (after HCL)	рн (Final)	рН (Initial)	pH of Leaching Fluid	рН (aqueous extract)	Fluoride	Moisture Content (dried @ 103°C)	Cyanide Total	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Bromobenzene	4-chlorotoluene	Chlorobenzene	lodomethane	Bromomethane	1,2-dibromoethane
		mg/kg	mg/kg	mg/kg	mg/kg	-	-	-	-	-	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RPD		0	0	0	0					0	11	0	0	0	0	0	0	0	0	0	0	0	0
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.1	<0.1	<0.1	<0.1					10	500	35	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS				<0.1	1.2	5.0	10.2	5.0		190		<5	<0.50	<0.50		<0.50			<0.50		,	
RPD					0						90		0	0	0		0			0		,	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						5.3		5.0														
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF						5.2		5.0														
RPD							2		0														
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						11		6.3														
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF						11		6.3														
RPD	•						0		0													,	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF						11		6.3														
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS						9.9																
RPD							11																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.1	1.1	5.0	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50		,	
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS				<0.1	1.2	5.0	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50		,	
RPD	•				0	9	0	0	0		0		0	0	0		0			0			
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.1	1.1	5.0	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50		,	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.1	<0.1	<0.1	<0.1					9.0	460	29	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
RPD					0						88		0	0	0		0			0			
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.1	1.1	5.0	9.7	5.0		180		<5	<0.50	<0.50		<0.50			<0.50		,	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF						5.4		5.0													,	
RPD	•						8		0														
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						9.5																
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS						9.4																
RPD	<u> </u>						1																
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS						9.5			1							1					, ,	
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF						9.7		6.3													,	
RPD	<u> </u>						2																

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

LIVVIK	ONMENTAL			1						I					T spaces
		rbons				I	AH					Solvents	<u> </u>	Τ	SPOCAS
		Dichlorodifluoromethane	Trichlorofluoromethane	Total MAH	Monocylic aromatic hydrocarbons EPAVic	1,3,5-trimethylbenzene	Styrene	Isopropylbenzene	1,2,4-trimethylbenzene	4-Methyl-2-pentanone	Acetone	Allyl chloride	. Carbon disulfide	Methyl Ethyl Ketone	рн (сасі2)
EQL		mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5	mg/kg	mg/kg 0.5	mg/kg	mg/kg	mg/kg 0.5	mg/kg	mg/kg 0.5	0.1
EQL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1
Location Code	Field ID														
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.5	1		<0.5	1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF	<0.5	<0.5	3.8		<0.5	3.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
RPD		0	0	117		0	117	0	0	0	0	0	0	0	
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF	<0.5	<0.5	1	2.2	<0.5	1.0 2.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	11.2
E03.01 RPD	SX_IB_20220416_16_24_SS_Triplicate_ALS				2.3		79								11.3
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF						73								+
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF													 	+
RPD	, = = = = : =														
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF														
E03.01	SX_IB_20220416_16_22_SS_Duplicate_EUF													<u> </u>	
RPD	1														
E03.01	SX_IB_20220416_16_18_SS_Primary_EUF			-									-	 	+
E03.01	SX_IB_20220416_16_24_SS_Triplicate_ALS														+
RPD E03.01	SX_IB_20220416_08_31_SS_Primary_ALS				<0.5		<0.5							+	11.0
E03.01	SX_IB_20220416_08_34_SS_Duplicate_ALS				1.2		1.2							 	11.0
RPD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				82		82								0
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS				<0.5		<0.5								11.0
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
RPD							0							<u> </u>	
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS				<0.5		<0.5								11.0
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF													 	+
RPD E03.01	SV IR 20220416 08 21 SS Primary AIS														+
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS													 	+
RPD	5.15_10110 :10_00_0 :_00_0 ap.natto														<u> </u>
E03.01	SX_IB_20220416_08_31_SS_Primary_ALS														
E03.01	SX_IB_20220416_08_36_SS_Triplicate_EUF														
RPD														<u> </u>	
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	+
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF	<0.5 0	<0.5 0	<0.5 0		<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	<0.5 0	+
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	+
E05.01	SX_IB_20220417_15_57_SS_Triplicate_ALS	\0.5	\0.5	\0.5	<0.5	\0.5	<0.5	\0.5	\0.5	\0.5	\0.5	\0.5	\(\cdot\)	\(\cdot\)	7.5
RPD	o.c.ib_to120 .1., _10_0., _00p.indate_, 110				10.0		0								1.5
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF														
E05.01	SX_IB_20220417_15_56_SS_Duplicate_EUF														
RPD															
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF			-									-	 	+
E05.01 RPD	SX_IB_20220417_15_56_SS_Duplicate_EUF													 	+
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF													 	+
E05.01	SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_57_SS_Triplicate_ALS			<u> </u>									1	 	+
RPD	1														1
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS				<0.5		<0.5								7.9
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS				<0.5		<0.5								7.8
RPD					0		0							<u> </u>	1
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS				<0.5		<0.5	2.5	2.5	2.5					7.9
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	+
RPD E05.01	SX_IB_20220417_08_07_SS_Primary_ALS			-	<0.5		0 <0.5						-	 	7.9
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF			-	\U.J		, vo.3						-	+	1.3
RPD	JN_10_E02E0417_00_10_33_111piicate_EUF													 	+
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS			1											1
E05.01	SX_IB_20220417_08_10_SS_Duplicate_ALS														
RPD															
E05.01	SX_IB_20220417_08_07_SS_Primary_ALS														1
E05.01	SX_IB_20220417_08_10_SS_Triplicate_EUF														
RPD	CV ID 20220449 46 00 00 0 0 0 0 0 0 0	-0 F	-0 F	-0. F		√0 F	-0 F	-0 F	-0 F	-0 F	-0 F	√0 F	20 F	-0 F	+
E05.01 E05.01	SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	+
F03.01	3v_ip_50550410_10_03_32_Dribitcate_ERL	\U.3	\U.3	\U.3	I .	\0.5	\U.3	\U.3	\0.3	\0.3	\0.5	\0.5	\0.5	\0.5	

		rbons				M	IAH					Solvents			SPOCAS
		Dichloro difluoromethane	Trichlorofluoromethane	Total MAH	Monocylic aromatic hydrocarbons EPAVic	1,3,5-trimethylbenzene	Styrene	Iso propylbenzene	1,2,4-trimethylbenzene	4-Methyl-2-pentanone	Acetone	Allyl chloride	Carbon disulfide	Methyl Ethyl Ketone	рн (caci2)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
RPD		0	0	0		0	0	0	0	0	0	0	0	0	
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS				<0.5		<0.5								8.8
RPD							0								
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF														
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF														
RPD															
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF														
E05.01	SX_IB_20220418_16_09_SS_Duplicate_EUF														
RPD	•														
E05.01	SX_IB_20220418_16_08_SS_Primary_EUF														
E05.01	SX_IB_20220418_16_10_SS_Triplicate_ALS														
RPD															
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.5		<0.5								7.9
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS				<0.5		<0.5								7.7
RPD					0		0								3
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.5		<0.5								7.9
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
RPD							0								
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS				<0.5		<0.5								7.9
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF														
RPD															
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS														
E05.01	SX_IB_20220418_08_07_SS_Duplicate_ALS														
RPD															
E05.01	SX_IB_20220418_08_07_SS_Primary_ALS														
E05.01	SX_IB_20220418_08_08_SS_Triplicate_EUF														
RPD															

^{*}RPDs have only been considered where a concentration is greater than 1 times t

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc

^{***}Interlab Duplicates are matched on a per compound basis as methods vary be

TBM Spoil Waste Categorisation Report

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

ATTACHMENT B: 95% UCL AVE CALCULATIONS

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2		T			
3	User Selected Options		00.47 DM		
4	Date/Time of Computation	ProUCL 5.16/05/2022 4:3	38:17 PW		
5	From File Full Precision	WorkSheet.xls OFF			
6	Confidence Coefficient	95%			
7					
8	Number of Bootstrap Operations	2000			
9					
10	Arsenic				
11	Alsonic				
12			General	Statistics	
13	Total	Number of Observations	29	Number of Distinct Observations	21
14				Number of Missing Observations	0
15		Minimum	15	Mean	30.24
16		Maximum	120	Median	27
17		SD	19.39	Std. Error of Mean	3.601
18 19		Coefficient of Variation	0.641	Skewness	3.793
20				<u> </u>	
21			Normal C	GOF Test	
22	S	hapiro Wilk Test Statistic	0.595	Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.926	Data Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.271	Lilliefors GOF Test	
25	5	% Lilliefors Critical Value	0.161	Data Not Normal at 5% Significance Level	
26		Data Not	Normal at 5	% Significance Level	
27					
28		As	suming Norr	nal Distribution	
29	95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	36.37	95% Adjusted-CLT UCL (Chen-1995)	38.87
31				95% Modified-t UCL (Johnson-1978)	36.79
32					
33				GOF Test	
34		A-D Test Statistic	1.362	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.748	Data Not Gamma Distributed at 5% Significance Leve	l
36		K-S Test Statistic	0.192	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.163	Data Not Gamma Distributed at 5% Significance Leve	
38		Data Not Gamr	na Distribute	ed at 5% Significance Level	
39			0	Chatlatia	
40				Statistics	4 0 4 7
41		k hat (MLE) Theta hat (MLE)	4.789 6.314	k star (bias corrected MLE) Theta star (bias corrected MLE)	4.317 7.005
42			v.ə14	meta star (bias corrected MLE)	7.005
		` ′		nu star /higa garrastad)	250.4
43	h.a.	nu hat (MLE)	277.8	nu star (bias corrected)	250.4
43 44	M	` ′		MLE Sd (bias corrected)	14.55
43 44 45		nu hat (MLE) LE Mean (bias corrected)	277.8 30.24	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	14.55 214.7
43 44 45 46		nu hat (MLE)	277.8	MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	14.55
43 44 45 46 47		nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	277.8 30.24 0.0407	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	14.55 214.7
43 44 45 46 47 48	Adjus	nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	277.8 30.24 0.0407	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	14.55 214.7
43 44 45 46 47 48 49		nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	277.8 30.24 0.0407	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	14.55 214.7 212.8
43 44 45 46 47 48 49	Adjus	nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	277.8 30.24 0.0407 suming Gam 35.26	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	14.55 214.7 212.8
43 44 45 46 47 48 49 50	Adjus 95% Approximate Gamma	nu hat (MLE) LE Mean (bias corrected) sted Level of Significance	277.8 30.24 0.0407 suming Gam 35.26	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value Ima Distribution 95% Adjusted Gamma UCL (use when n<50)	14.55 214.7 212.8
43 44 45 46 47 48 49 50 51 52	95% Approximate Gamma	nu hat (MLE) LE Mean (bias corrected) sted Level of Significance Ass UCL (use when n>=50))	277.8 30.24 0.0407 suming Gam 35.26 Lognormal	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	14.55 214.7 212.8
43 44 45 46 47 48 49 50	95% Approximate Gamma	nu hat (MLE) LE Mean (bias corrected) sted Level of Significance Ass UCL (use when n>=50))	277.8 30.24 0.0407 suming Gam 35.26 Lognormal 0.889	MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	14.55 214.7 212.8

	A B C D E	F	G H I J K	L
55	5% Lilliefors Critical Value	0.161	Data appear Lognormal at 5% Significance Level	
56	Data appear Approx	ximate Logn	ormal at 5% Significance Level	
57				
58		Lognorma		
59	Minimum of Logged Data	2.708	Mean of logged Data	3.301
60	Maximum of Logged Data	4.787	SD of logged Data	0.421
61				
62			ormal Distribution	
63	95% H-UCL	34.46	90% Chebyshev (MVUE) UCL	36.71
64	95% Chebyshev (MVUE) UCL	39.95	97.5% Chebyshev (MVUE) UCL	44.45
65	99% Chebyshev (MVUE) UCL	53.28		
66				
67			tion Free UCL Statistics	
68	Data appear to follow a I	Discernible I	Distribution at 5% Significance Level	
69	N			
70	•		tribution Free UCLs	20.27
71	95% CLT UCL	36.16	95% Jackknife UCL	36.37 43.74
72	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	36.05 61.2	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	36.62
73	95% BCA Bootstrap UCL	39.48	95% Percentile Bootstrap OCL	30.02
74	90% Chebyshev(Mean, Sd) UCL	41.04	95% Chebyshev(Mean, Sd) UCL	45.94
75	97.5% Chebyshev(Mean, Sd) UCL	52.73	99% Chebyshev(Mean, Sd) UCL	66.07
76	97.5% Chebyshev(weah, 3u) OCL	32.73	99 % Chebyshev(Mean, Su) OCL	00.07
77		Suggested	UCL to Use	
78	95% Student's-t UCL	36.37	or 95% Modified-t UCL	36.79
79	or 95% H-UCL	34.46	of 35 % Modifica-t GGE	30.73
80	01 00% 11 002	01.10		
81	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
82			a size, data distribution, and skewness.	
83			ulation studies summarized in Singh, Maichle, and Lee (2006).	
84 85	However, simulations results will not cover all Real W	orld data set	ts; for additional insight the user may want to consult a statisticia	ın.
86			<u> </u>	
87	ProUCL computes and outpu	ts H-statistic	c based UCLs for historical reasons only.	
88	H-statistic often results in unstable (both high a	nd low) valu	es of UCL95 as shown in examples in the Technical Guide.	
89	It is therefore recommende	ed to avoid the	he use of H-statistic based 95% UCLs.	
90	Use of nonparametric methods are preferred to com	pute UCL95	for skewed data sets which do not follow a gamma distribution	n.
91				
92				
	Nickel			
94				
95		General	Statistics	
96	Total Number of Observations	29	Number of Distinct Observations	21
97			Number of Missing Observations	0
98	Minimum	148	Mean	180.2
99	Maximum	270	Median	172
100	SD	27.79	Std. Error of Mean	5.16
101	Coefficient of Variation	0.154	Skewness	1.426
102				
103			GOF Test	
104	Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test	
105	5% Shapiro Wilk Critical Value	0.926	Data Not Normal at 5% Significance Level	
106	Lilliefors Test Statistic	0.189	Lilliefors GOF Test	
107	5% Lilliefors Critical Value	0.161	Data Not Normal at 5% Significance Level	
	Data Not	Normal at 5	% Significance Level	

	A B C D E	F	G H I J K	L
109				
110		suming Norr	nal Distribution	
111	95% Normal UCL	100	95% UCLs (Adjusted for Skewness)	100.0
112	95% Student's-t UCL	189	95% Adjusted-CLT UCL (Chen-1995)	190.2
113			95% Modified-t UCL (Johnson-1978)	189.2
114		Commo	GOF Test	
115	A-D Test Statistic	0.86	Anderson-Darling Gamma GOF Test	
116	5% A-D Critical Value	0.744	Data Not Gamma Distributed at 5% Significance Leve	اد
117	K-S Test Statistic	0.179	Kolmogorov-Smirnov Gamma GOF Test	-
118	5% K-S Critical Value	0.162	Data Not Gamma Distributed at 5% Significance Leve	<u> </u>
119			ed at 5% Significance Level	
120				
121		Gamma	Statistics	
122	k hat (MLE)	48.26	k star (bias corrected MLE)	43.29
123	Theta hat (MLE)	3.735	Theta star (bias corrected MLE)	4.163
124 125	nu hat (MLE)	2799	nu star (bias corrected)	2511
126	MLE Mean (bias corrected)	180.2	MLE Sd (bias corrected)	27.39
127			Approximate Chi Square Value (0.05)	2396
128	Adjusted Level of Significance	0.0407	Adjusted Chi Square Value	2389
129			1	
130	Ass	suming Gam	ma Distribution	
131	95% Approximate Gamma UCL (use when n>=50))	188.9	95% Adjusted Gamma UCL (use when n<50)	189.5
132				
133		Lognorma	GOF Test	
134	Shapiro Wilk Test Statistic	0.916	Shapiro Wilk Lognormal GOF Test	
135	5% Shapiro Wilk Critical Value	0.926	Data Not Lognormal at 5% Significance Level	
136	Lilliefors Test Statistic	0.171	Lilliefors Lognormal GOF Test	
137	5% Lilliefors Critical Value	0.161	Data Not Lognormal at 5% Significance Level	
138	Data Not L	ognormal at	5% Significance Level	
139			10	
140	Minimum of Logged Data	•	I Statistics	F 101
141	Maximum of Logged Data Maximum of Logged Data	4.997 5.598	Mean of logged Data SD of logged Data	5.184 0.143
142	Maximum of Logged Data	5.596	SD of logged Data	0.143
143	Δεςι	ımina Loana	ormal Distribution	
144	95% H-UCL	188.9	90% Chebyshev (MVUE) UCL	194.6
145	95% Chebyshev (MVUE) UCL	201.2	97.5% Chebyshev (MVUE) UCL	210.2
146	99% Chebyshev (MVUE) UCL	228.1	57.5% Shooyanev (WVSE) 00E	
147	20% 225,2 (22, 002			
148	Nonparame	tric Distribu	tion Free UCL Statistics	
149 150	·		ernible Distribution (0.05)	
151			- *	
152	Nonpar	ametric Dis	tribution Free UCLs	
153	95% CLT UCL	188.7	95% Jackknife UCL	189
154	95% Standard Bootstrap UCL	188.5	95% Bootstrap-t UCL	190.8
155	95% Hall's Bootstrap UCL	191.8	95% Percentile Bootstrap UCL	188.8
156	95% BCA Bootstrap UCL	190.7		
157	90% Chebyshev(Mean, Sd) UCL	195.7	95% Chebyshev(Mean, Sd) UCL	202.7
158	97.5% Chebyshev(Mean, Sd) UCL	212.5	99% Chebyshev(Mean, Sd) UCL	231.6
159				
159 160		Suggested	UCL to Use	
	95% Student's-t UCL	Suggested 189	UCL to Use or 95% Modified-t UCL	189.2

	A B C D E	F	G H I J K	L
163			ovided to help the user to select the most appropriate 95% UCL.	
164		•	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
165	•		turation studies summarized in Singh, Malchie, and Lee (2006). ts; for additional insight the user may want to consult a statisticia	.n
166	nowever, simulations results will not cover all Real vi	vonu uata se	is, for additional insignt the user may want to consult a statisticia	III.
167	Fluoride			
108	i luolide			
169		General	Statistics	
170	Total Number of Observations	29	Number of Distinct Observations	17
171	Number of Detects	27	Number of Non-Detects	2
172	Number of Distinct Detects	16	Number of Distinct Non-Detects	1
173 174	Minimum Detect	150	Minimum Non-Detect	100
175	Maximum Detect	680	Maximum Non-Detect	100
176	Variance Detects	30501	Percent Non-Detects	6.897%
177	Mean Detects	333.7	SD Detects	174.6
178	Median Detects	190	CV Detects	0.523
179	Skewness Detects	0.31	Kurtosis Detects	-1.612
180	Mean of Logged Detects	5.669	SD of Logged Detects	0.548
181			1	
182	Norn	nal GOF Tes	t on Detects Only	
183	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
184	5% Shapiro Wilk Critical Value		Detected Data Not Normal at 5% Significance Level	
185	Lilliefors Test Statistic		Lilliefors GOF Test	
186	5% Lilliefors Critical Value		Detected Data Not Normal at 5% Significance Level	
187	Detected Date	a Not Norma	l at 5% Significance Level	
188	Mandan Maion (MM) Obskistics and	N	all de la companya de	
189	Kapian-Meier (KM) Statistics usi KM Mean		ritical Values and other Nonparametric UCLs KM Standard Error of Mean	33.24
190	KM SD		95% KM (BCA) UCL	373.4
191	95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	370.7
192	95% KM (z) UCL		95% KM Bootstrap t UCL	377.4
193	90% KM Chebyshev UCL		95% KM Chebyshev UCL	462.5
194	97.5% KM Chebyshev UCL		99% KM Chebyshev UCL	648.3
195 196			<u> </u>	
197	Gamma GOF	Tests on De	etected Observations Only	
198	A-D Test Statistic	2.883	Anderson-Darling GOF Test	
199	5% A-D Critical Value	0.75	Detected Data Not Gamma Distributed at 5% Significance	Level
200	K-S Test Statistic	0.309	Kolmogorov-Smirnov GOF	
201	5% K-S Critical Value	0.169	Detected Data Not Gamma Distributed at 5% Significance	Level
202	Detected Data Not	Gamma Dist	ributed at 5% Significance Level	
203				
204			Detected Data Only	
205	k hat (MLE)		k star (bias corrected MLE)	3.308
206	Theta hat (MLE)		Theta star (bias corrected MLE)	100.9
207	nu hat (MLE)		nu star (bias corrected)	178.6
208	Mean (detects)	333.7		
209	Oamer: BOO	Ctotletics	sing Imputed Non Detects	
210			sing Imputed Non-Detects NDs with many tied observations at multiple DLs	
211			s <1.0, especially when the sample size is small (e.g., <15-20)	
212			yield incorrect values of UCLs and BTVs	
213			on the sample size is small.	
214		-	y be computed using gamma distribution on KM estimates	
215	Minimum		Mean	314.8
216	William	.0.20	Weart	J . 1.J

	Α	В	С	D E	F	G	Н	I	J	K	L
217				Maximum	680					Mediar	
218				SD	182.5					C\	0.58
219				k hat (MLE)	2.747			k sta	ır (bias d	orrected MLE	2.486
220				Theta hat (MLE)	114.6			Theta sta	ır (bias d	corrected MLE	126.7
221				nu hat (MLE)	159.3			r	nu star (pias corrected	144.2
222			Adjusted	Level of Significance (β)	0.0407						
223		Appr	oximate Chi S	Square Value (144.17, α)	117.4		P	Adjusted Chi Sq	uare Va	lue (144.17, β	116
224		95% Gamma	Approximate	e UCL (use when n>=50)	386.6		95% Ga	amma Adjusted	UCL (u	se when n<50	391.4
225											
226				Estimates of G	amma Parai	meters using	y KM Estima	ites			
227				Mean (KM)	317.6					SD (KM	175.6
228				Variance (KM)	30853				SE	of Mean (KM	33.24
229				k hat (KM)	3.269					k star (KM	2.954
230				nu hat (KM)	189.6					nu star (KM	171.3
231				theta hat (KM)	97.15					theta star (KM	107.5
232			80%	gamma percentile (KM)	453.8			90% g	jamma p	percentile (KM	565.3
233			95%	gamma percentile (KM)	669.5			99% g	jamma p	ercentile (KM	895.4
234											
235				Gamm	a Kaplan-M	eier (KM) Sta	atistics				
236		Appr	oximate Chi S	Square Value (171.33, α)	142.1		P	Adjusted Chi Sq	uare Va	lue (171.33, β	140.5
237	95%	Gamma App	proximate KM	I-UCL (use when n>=50)	383		95% Gamm	na Adjusted KM	-UCL (u	se when n<50	387.4
238						Į.					1
239				Lognormal GO	F Test on D	etected Obs	ervations O	nly			
240			SI	napiro Wilk Test Statistic	0.778			Shapiro Wilk	GOF Te	est	
241			5% Sh	napiro Wilk Critical Value	0.923	De	etected Data	Not Lognorma	l at 5% S	Significance Le	evel
242				Lilliefors Test Statistic	0.298			Lilliefors Go	OF Test		
243			50	% Lilliefors Critical Value	0.167	De	etected Data	Not Lognorma	l at 5% S	Significance Le	evel
244				Detected Data	Not Lognorm	nal at 5% Sig	gnificance Le	evel			
245											
246				Lognormal RO	S Statistics (Using Impute	ed Non-Dete	ects			
247				Mean in Original Scale	316.7				Mea	n in Log Scale	5.586
248				SD in Original Scale	179.9				S	D in Log Scale	0.612
249		95% t U	JCL (assume:	s normality of ROS data)	373.6			95% Pe	rcentile	Bootstrap UCL	. 370
250				95% BCA Bootstrap UCL	375.8				95% B	ootstrap t UCI	374.9
251				95% H-UCL (Log ROS)	407.4						
252						Į.					
253			Statis	tics using KM estimates	on Logged [Data and Ass	suming Logr	normal Distribu	tion		
254				KM Mean (logged)	5.595					KM Geo Mear	269.2
255				KM SD (logged)	0.584			95% Cri	tical H V	alue (KM-Log	2.019
256			KM Standar	d Error of Mean (logged)	0.111			!	95% H-I	JCL (KM -Log	399.1
257				KM SD (logged)	0.584			95% Cri	tical H V	'alue (KM-Log	2.019
258			KM Standar	d Error of Mean (logged)	0.111						
259						<u>I</u>					1
260					DL/2 S	tatistics					
261			DL/2 N	lormal				DL/2 Log-Tra	nsforme	ed	
262				Mean in Original Scale	314.1				Mea	n in Log Scale	5.548
263				SD in Original Scale	183.5				S	D in Log Scale	0.696
264			95% t U	ICL (Assumes normality)	372.1				95	5% H-Stat UCL	432.1
265			DL/2 i	s not a recommended me	ethod, provid	ded for comp	oarisons and	d historical reas	sons		1
266											
267				Nonparame	etric Distribu	tion Free UC	CL Statistics				
				•							
268				Data do not follow a Di	iscernible Di	stribution at	5% Signific	ance Level			
268 269				Data do not follow a Di	iscernible Di	stribution at	5% Signific	ance Level			
268 269 270				Data do not follow a Di		stribution at UCL to Use	5% Signific	ance Level			

	Α	В	С	D	Е	F	G	Н	I	J	K	L			
271			95	% KM (Cheb	yshev) UCL	462.5									
272															
273		Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
274		Recommendations are based upon data size, data distribution, and skewness.													
275		These recom	nmendations	are based ι	pon the resu	ılts of the sim	ulation studi	es summariz	zed in Singh,	Maichle, and	d Lee (2006).				
276	Н	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.													
277															

TBM Spoil Waste Categorisation Report

TBM Spoil Waste	E05.0120220427101753_03	This report is attached as part of a WCR form
Cat Report No:		referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u>

ATTACHMENT C: LABORATORY CERTIFICATES

Sydney Laboratory
Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 Brisbane Laboratory Perth Laboratory Melbourne Laboratory
6 Monterey Road Dandenong South VIC 3175 CHAIN OF CUSTODY RECORD nit 2 91 Leach Highway Kewdale WA 6105 it 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com 03 8564 5000 EnviroSampleVic@eurofins.com Emma.S - EP Risk Project Manager Company Proiect № Sampler(s) AGON Environmental - Tunnel Spoil Testing Craig Trimbur LR - EP RISK WGTP-Tunnel Ref: 20220419042301-Eurofin-21 Handed over by Project Name Esdat Address Unit H76, 63-85 Turner St, Port Melbourne VIC 3207 Email for Invoic LabReports.TST@agonenviro.com.au LabReports.TST@agonenviro.com.au Craig Trimbur David Lawson agonenvironmental@esdat.com.au motherhublabresults1@wgtp.com.au Email for Results Fluordef pH
PFAS Extended Suite - 0.1- 5ug/kg
ASLP PH 5 - PFAS 0.01-0.05 ug/l Amrit.Kaur@agile-analytics.com.au PFAS 0.01-0.05ug/l +61 400 826 907 (Craig) +61 490 411 004 (David) Please provide an interim lab report if finalised report has not been provided by 14 days from sample receipt. S ☐ Overnight (reporting by 9am) ◆ Spoil Sample Pre Please provide eSRN along with oter sample recipt ASLP I Agon WGTP TST Client Sample ID SX_20220416_08_36_SS_Triplicate_EUF XXXXX XXXX SX_20220416_08_44_SS_Primary_EUF 16/04/22 XXXXX SX IB 20220416 12 10 SS Primary EUF 16/04/22 XXXX SX IB 20220416 16 18 SS Primary EUF 16/04/22 S XXXXX SX_IB_20220416_16_22_SS_Duplicate_EUF 16/04/22 SX IB 20220416 16 49 SR Rinsate EUF 16/04/22 s SX IB 20220416 16 50 SB Blank EUF X 16/04/22 S SX_IB_20220416_20_02_SS_Primary_EUF s XXXXX SX_IB_20220417_00_01_SS_Primary_EUF 17/04/22 XXXX SX IB 20220417 03 57 SS Primary EUF 17/04/22 s XXXXX XXXXX SX IB 20220417 08 05 SS Primary EUF 17/04/22 SX_IB_20220417_08_10_SS_Triplicate_EUF 17/04/22 XXXXX XXXXX SX_IB_20220417_12_28_SS_Primary_EUF 17/04/22 SX_IB_20220417_15_56_SS_Primary_EUF XXXXX 17/04/22 S XXXXX SX_IB_20220417_15_56_SS_Duplicate_EUF XXXX SX_IB_20220417_20_03_SS_Primary_EUF 17/04/22 S SX_IB_20220418_00_05_SS_Primary_EUF 18/04/22 s XXXXX X X X X X SX_IB_20220418_04_01_SS_Primary_EUF 18/04/22 S SX_IB_20220418_08_08_SS_Triplicate_EUF 18/04/22 XXXXX XXXXX SX_IB_20220418_08_09_SS_Primary_EUF 18/04/22 S s | X | X | X | X SX IB 20220418 11 57 SS Primary EUF 18/04/22 SX_IB_20220418_16_08_SS_Primary_EUF 18/04/22 XXXX XXXXX SX_IB_20220418_16_09_SS_Duplicate_EUF 18/04/22 SX IB 20220418 19 59 SS Primary EUF X X X X X 18/04/22 S XXXXX SX IB 20220419 00 03 SS Primary EUF 19/04/22 S X X X X X SX_IB_20220419_03_57_SS_Primary_EUF 19/04/22 S 24 24 26 24 24 Method of Shipment Courier (#) Hand Delivered Postal Name Signature Date SYD | BNE | MEL | PER | ADL | NTL | DRW Received By Signature Date Temperature Laboratory Use Only Received By SYD | BNE | MEL | PER | ADL | NTL | DRW Date Signature Time Report № Eurofins Environment Testing Australia Ptv Ltd

Jaconity	Received By				_	PER AL	DL NTL	DRW S	ignature	-			Dute	19412	22	Time		7	30			erature ort No	12-	20
ory Use Only		m. Mi			Pos MEL		Name DL [NTL]		ignature	sa	-	nature	Date			Date	_					íme		
od of	Courier (#	Total Count	and Delivered	24	24	26		24												1	5			
							11																	
SX_IB_20220419	L03_57_SS_Primary_EUF	19/04/22	S	X	X	×	X	×																
	0_00_03_SS_Primary_EUF	19/04/22	S	X	×	X	X	×																
	3_19_59_SS_Primary_EUF	18/04/22	S	X	X	×	X	×											F					T
	_16_09_SS_Duplicate_EUF	18/04/22	S	X	X	×	×	×																
	8_16_08_SS_Primary_EUF	18/04/22	S	X	×	×		×																
	8_11_57_SS_Primary_EUF	18/04/22	8	X	X	×		X																
	8_08_09_SS_Primary_EUF	18/04/22	S	X	X	×	X	×																
	3_08_08_SS_Triplicate_EUF	18/04/22	S	X	X		×	×																
	8_04_01_SS_Primary_EUF	18/04/22	S	X	X		X	×																
	18_00_05_SS_Primary_EUF	18/04/22	s	X			X	×																
	17_20_03_SS_Primary_EUF	17/04/22	S	×	X	×	X	×																
	7_15_56_S\$_Duplicate_EUF	17/04/22	S	X			×	X													A	- 9		
	17_15_56_SS_Primery_EUF	17/04/22	S	X	-	_	X	×													1			
	17_12_28_SS_Primary_EUF	17/04/22	S	X	X	×	×	×													1			
	17_08_10_\$S_Triplicate_EUF	17/04/22	S	X	X	×	×	×													1			
	17_08_05_SS_Primary_EUF	17/04/22	S	X	X	X	X	X													t			
	117_03_57_SS_Primary_EUF	17/04/22	s	X	×	X	×	X													1			
	117_00_01_SS_Primary_EUF	17/04/22	s	X	X	X	×	×							NI I						1			
	416_20_02_\$\$_Primary_EUF	16/04/22	s	X		X	×	×													1			
	0416_16_50_SB_Blank_EUF	16/04/22	8			×															1			
	416_16_49_SR_Rinsate_EUF	16/04/22	S			×															1			
	H6_16_22_SS_Duplicate_EUF	16/04/22	ŝ	>	(>	(X	×	X													4			
	416_16_18_S\$_Primary_EUF	16/04/22	S	×	()	(X	×	×													ā			
	9416_12_10_SS_Primary_EUF	16/04/22	S	>	()	(X	×	×													1			
	116_08_44_SS_Primary_EUF	16/04/22	s	>	()	K X	×	×													1			
SX_202204	16_08_36_SS_Triplicate_EUF	16/04/22	\$	>	()	K X	×	X									1				1		-	
Ρ,	Client Sample (D	Date/Time ddmmlyy hti mm	Solid (S) Water (W		Suite WG	(As, Cd, C															- S	Sar. Dangerous	ple Com Goods F	me laz
		Sampled	Matrix		TP-R1-TR	Cr, Cu, Ni,										500mL Plastic	125mL	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	/Ashestos AS4	Other(
se Order e ID №	Agon WGTP TST			Sull	ods H/PAH/P	Pb,Hg, Ag	ASLP P	ASLP Reag								500mL Plastic	125mL Plastic	ber Glass	DA vial	AS Bottle	264, WA G.	2 days (Œ	1
	Please provide eSRN along w documentation.	rith oter sample recip	ot	TE code mus	Sample henols/O	Sn, Mo,	15-PFAS	e t													3 5	Overnigi Same da		ngi
Directions	+61 490 411 004 (David) Please provide an interim lab not been provided by 14 days	report if finalised rep from sample receip	port has t.	to used to at	Spoil Sample Preparation H/ Phenols/ OCP/ PCR/ V/	Ni, Pb,Hg, Ag, Sn, Mo, Se, Zny Gr64 CN/ Total Fluoride/ pH PFAS Extended Suite - 0.1. Fluotice	ASLP PH 5 - PFAS 0.01-0.05 ug/l	- PFAS 0.01-0.05ugil								Cr	nange con	Conta lamer typ	ainers >e & size	if necess	ary.	Required Default	Mill be 5 day	rs d r
one Ne	+61 400 826 907 (Cralg)			rect SUITE p	C/ Vind	H/CN/Tot	F6)Sugil								Emai	l for Re	sults		agoner mother	ivironmeni hublabres	el@esdat.d lits1@wgt analytics.	om.au o.com.au	
act Name	Craig Trimbur David Lawson			or "Faltered"	Phoridal I.	tal Fluoride										Emai	l for In	voice	H	LabRe _i LabRe _i	orts.TST@ ports.TST@	gagonenvii Qagonenvii	o.com.au	
idress	Unit H76, 63-85 Turner St, I	Port Melbourne VIC	3207	Ī			22041904	2301-Eurofi	n-21	ESdat	EQuIS etc	Esdat					ded ov		H	finance	enone@e	viro.com.a		
				oject Na		WGTP	Tunnel			_	Manager Format	Cralg Trin	nbur			s	ampler	(s)	п	LR - E				
		inel Spoil Testing		Project N	₩.	JC092	7				Marine Street										S - EP Ris	6		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066
Phone: +61 3 8564 5000 Phone: +61 2 9900 84 NATA # 1261 Site # 1254

179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name: Contact name:

Agon Environmental Pty Ltd - VIC Agon Lab Reports (Spoil Project) 20220419042301-Eurofin-21

Project name: Project ID: Turnaround time:

JC0927 3 Day

Date/Time received **Eurofins reference**

Apr 19, 2022 3:30 PM

880891

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Michael Cassidy on phone: +61 3 8564 5000 or by email: Michael Cassidy@eurofins.com

Results will be delivered electronically via email to Agon Lab Reports (Spoil Project) - labreports.TST@agonenviro.com.au.

Note: A copy of these results will also be delivered to the general Agon Environmental Pty Ltd - VIC email address.

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
	ourne Laborato			4		Х	Χ	Х	Х
	ney Laboratory								
Bris	bane Laborator	y - NATA # 1261	Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Sit	e # 2370						
Exte	rnal Laboratory				i				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		Soil	M22- Ap0036819		Х	х	Х
2	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036820		Х	Х	х
3	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022	M22- Ap0036821		Х	Х	Х		
4	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036822		Х	Х	х

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

Phone: Fax:

179 Magowar Road

Eurofins Environment Testing Australia Pty Ltd

Sydney

08 8338 1009

Priority: 3 Day **Contact Name:**

Agon Lab Reports (Spoil Project)

Apr 21, 2022

Apr 19, 2022 3:30 PM

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite	
Melb	ourne Laborato	ry - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	
Sydr	ney Laboratory	- NATA # 1261 :	Site # 18217							
Brisl	oane Laboratory	/ - NATA # 1261	Site # 20794	ļ.						
Mayt	ield Laboratory	- NATA # 1261	Site # 25079							
Perti	n Laboratory - N	IATA # 2377 Sit	e # 2370							
Exte	rnal Laboratory									
5	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		Soil	M22- Ap0036823		x	x	x	
6	SX_IB_202204 16_16_49_SR _Rinsate_EUF	Apr 16, 2022		Water	M22- Ap0036824			Х		
7	SX_IB_202204 16_16_50_SB _Blank_EUF	Apr 16, 2022		Water	M22- Ap0036825			Х		
8	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036826		Х	Х	Х	
9	SX_IB_202204	Apr 17, 2022		Soil	M22-		Х	Х	Х	

Melbourne 6 Monterey Road

ABN: 50 005 085 521

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Phone: +64 9 526 45 51

IANZ # 1327

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com **Company Name:**

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891

Phone: Fax:

08 8338 1009

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Day

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Contact Name: Agon Lab Reports (Spoil Project)

		Sam	nple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mel	bourne Laborato	ory - NATA # 126	1 Site # 1254			Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261 Si	ite # 18217						
Bris	bane Laborator	y - NATA # 1261	Site # 20794						
May	field Laboratory	- NATA # 1261 S	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Site	# 2370						
Exte	rnal Laboratory	,							
9	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022	S	Soil	M22- Ap0036827				
10	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022	S	Soil	M22- Ap0036828		х	Х	х
11	SX_IB_202204 17_08_05_SS _Primary_EUF	M22- Ap0036829		х	х	х			
12	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022	S	Soil	M22- Ap0036830		х	х	х
13	SX_IB_202204	Apr 17, 2022	5	Soil	M22-		Х	Х	Х

Melbourne Sydney 6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

email: EnviroSales@eurofins.com

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: Phone:

08 8338 1009

880891

Fax:

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite	
Mell	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217							
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	4						
May	field Laboratory	- NATA # 1261	Site # 25079	ı						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory	,								
	17_12_28_SS _Primary_EUF				Ap0036831					
14	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036832		х	х	х	
15	SX_IB_202204 17_15_56_SS _Duplicate_EU F		M22- Ap0036833		х	х	х			
16	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036834		Х	Х	х	
17	SX_IB_202204 18_00_05_SS	Apr 18, 2022		Soil	M22- Ap0036835		Х	Х	х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID: JC0927 Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
	oourne Laborato	-		4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261 :	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory			,	i				
	18_00_05_SS _Primary_EUF				Ap0036835				
18	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036836		х	х	х
19	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036837		х	x	х
20	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036838		х	х	х
21	SX_IB_202204 18_11_57_SS	Apr 18, 2022		Soil	M22- Ap0036839		Х	Х	Х

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: Phone:

880891 08 8338 1009

Fax:

Eurofins Environment Testing Australia Pty Ltd

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laborator	y - NATA # 126 ²	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079)					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T							
	_Primary_EUF								
22	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036840		х	х	х
23	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036841		х	х	х
24	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036842		х	х	х
25	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036843		х	х	х

email: EnviroSales@eurofins.com

Environment Testing

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51

Phone: 0800 856 450 IANZ # 1290

Company Name: Address:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

IANZ # 1327

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 [,]	Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory			•	1				
26	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036844		х	х	х
27	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036845	Х		Х	
28	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036846	х		х	
29	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036847	х		Х	
30	SX_IB_202204 16_16_18_SS	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036848	Х		Х	

email: EnviroSales@eurofins.com

Environment Testing

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Newcastle 1/21 Smallwood Place 4/52 Industrial Drive Mayfield East NSW 2304 Murarrie QLD 4172 Phone: +61 7 3902 4600 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 20794 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 Perth

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450

IANZ # 1290

Company Name:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton SA 5063

Project Name:

Project ID:

20220419042301-Eurofin-21

JC0927

Order No.: Report #:

880891

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

08 8338 1009

Priority: Contact Name:

Received:

Due:

Agon Lab Reports (Spoil Project)

Apr 19, 2022 3:30 PM

Apr 21, 2022

3 Day

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Χ	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
	bane Laboratory	*							
	field Laboratory								
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory		r	r	r				
	_Primary_EUF								
31	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036849	Х		х	
32	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036850	Х		Х	
33	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036851	Х		Х	
34	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036852	Χ		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Apr 19, 2022 3:30 PM

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Due: **Priority:**

3 Day

Contact Name: Agon Lab Reports (Spoil Project)

Apr 21, 2022

		Saı	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 126	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory -	- NATA # 1261 S	Site # 18217						
Bris	bane Laboratory	/ - NATA # 1261	Site # 20794	ı					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	e # 2370						
Exte	rnal Laboratory								
35	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036853	Х		х	
36	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036854	Х		х	
37	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036855	Х		х	
38	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036856	Х		Х	
39	SX_IB_202204	Apr 17, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Apr 19, 2022 3:30 PM

NZBN: 9429046024954

Auckland

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

Phone: Fax:

Due: 08 8338 1009 **Priority:**

3 Day

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Contact Name: Agon Lab Reports (Spoil Project)

Apr 21, 2022

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
	ourne Laborato		Х	Х	Х	Х			
Syd	ney Laboratory	- NATA # 1261 :	Site # 18217						
	bane Laborator								
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	,	<u> </u>						
	17_15_56_SS _Duplicate_EU F			- pH 5.0	Ap0036857				
40	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036858	Х		х	
41	SX_IB_202204 18_00_05_SS _Primary_EUF	M22- Ap0036859	Х		х				
42	SX_IB_202204 18_04_01_SS _Primary_EUF	M22- Ap0036860	Х		х				
43	SX_IB_202204 18_08_08_SS	M22- Ap0036861	Х		Х				

ABN: 50 005 085 521

Melbourne Sydney 6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name: 20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Due: Apr 21, 2022

Priority: 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

Apr 19, 2022 3:30 PM

		Sa	ımple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite	
Mell	bourne Laborato	ourne Laboratory - NATA # 1261 Site # 1254								
Syd	ney Laboratory	- NATA # 1261	Site # 18217							
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4						
May	field Laboratory	- NATA # 1261	Site # 25079							
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370							
Exte	rnal Laboratory	1	,	1						
	18_08_08_SS _Triplicate_EU F			- pH 5.0	Ap0036861					
44	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036862	х		х		
45	SX_IB_202204 18_11_57_SS _Primary_EUF	M22- Ap0036863	х		х					
46	SX_IB_202204 18_16_08_SS _Primary_EUF	M22- Ap0036864	х		х					
47	SX_IB_202204 18_16_09_SS	M22- Ap0036865	Х		Х					

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: 880891

08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail Sample Detail								IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Duplicate_EU F								
48	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036866	х		х	
49	SX_IB_202204 19_00_03_SS _Primary_EUF	х		х					
50	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036868	Х		Х	
51	SX2022041 6_08_36_SS_ Triplicate_EUF	M22- Ap0036869	Х		х				

Melbourne 6 Monterey Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

Apr 19, 2022 3:30 PM

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID: JC0927

Order No.: Report #:

880891

Phone:

08 8338 1009

Fax:

Due: Apr 21, 2022

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Priority: 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126	Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	l .					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	,							
52	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036870	Х		Х	
53	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036871	Х		Х	
54	SX_IB_202204 16_16_18_SS _Primary_EUF	M22- Ap0036872	Х		Х				
55	SX_IB_202204 16_16_22_SS _Duplicate_EU F	M22- Ap0036873	х		х				
56	SX_IB_202204	Apr 16, 2022		AUS Leachate	M22-	Χ		Х	

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

IANZ # 1327

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Apr 19, 2022 3:30 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received:

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Due: Apr 21, 2022 **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

Eurofins Analytical Services Manager: Michael Cassidy

Company	Mama:	Aa
CUIIIDAIIV	maille.	Au

agon Environmental Pty Ltd - VIC

Fullarton

SA 5063

Project Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

20220419042301-Eurofin-21

3/224 Glen Osmond Road

Project ID:

Address:

JC0927

			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite				
Mel	bourne Laborato	ory - NATA # 12		Х	Х	Х	Х]		
Syd	ney Laboratory	- NATA # 1261	Site # 18217							
Bris	bane Laboratory	y - NATA # 126 [,]	1 Site # 20794	1						
May	field Laboratory	- NATA # 1261	Site # 25079							
Per	th Laboratory - N	IATA # 2377 Si	te # 2370							
Exte	ernal Laboratory		ī	ı	•					1
	16_20_02_SS _Primary_EUF			- Reagent Water	Ap0036874					
57	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036875	х		х		
58	SX_IB_202204 17_03_57_SS _Primary_EUF	M22- Ap0036876	х		х					
59	SX_IB_202204 17_08_05_SS _Primary_EUF	M22- Ap0036877	Х		х					
60	SX_IB_202204 17_08_10_SS _Triplicate_EU	M22- Ap0036878	х		х					

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

	Sample Detail elbourne Laboratory - NATA # 1261 Site # 1254								IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126	1 Site # 2079	4					
	field Laboratory								
	h Laboratory - N		te # 2370						
Exte	ernal Laboratory	I		1					
	_Triplicate_EU F			Water					
61	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036879	Х		х	
62								х	
63	SX_IB_202204 17_15_56_SS _Duplicate_EU F	M22- Ap0036881	х		х				
64	SX_IB_202204 17_20_03_SS	M22- Ap0036882	Х		Х				

Melbourne 6 Monterey Road Phone: +61 3 8564 5000

ABN: 50 005 085 521

NATA # 1261 Site # 1254

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: Phone:

880891 08 8338 1009

Fax:

Received:

46-48 Banksia Road

Welshpool WA 6106

Perth

Due:

Apr 19, 2022 3:30 PM Apr 21, 2022

Priority: 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12		Х	Х	Х	Х		
Sydr	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	l .					
Perti	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Primary_EUF			Water					
65	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036883	х		х	
66	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036884	х		х	
67	SX_IB_202204 18_08_08_SS _Triplicate_EU F	M22- Ap0036885	х		х				
68	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036886	Х		Х	

email: EnviroSales@eurofins.com

Environment Testing

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

NZBN: 9429046024954

Apr 21, 2022

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

Due: **Priority: Contact Name:**

Received:

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

3 Day Agon Lab Reports (Spoil Project)

Apr 19, 2022 3:30 PM

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	urne Laboratory - NATA # 1261 Site # 1254							
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	/ - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
69	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036887	х		х	
70	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036888	х		х	
71	SX_IB_202204 18_16_09_SS _Duplicate_EU F	M22- Ap0036889	х		х				
72	SX_IB_202204 18_19_59_SS _Primary_EUF	M22- Ap0036890	х		х				
73	SX_IB_202204	Apr 19, 2022		AUS Leachate	M22-	Х		Х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Agon Environmental Pty Ltd - VIC

> 3/224 Glen Osmond Road Fullarton

SA 5063

Project Name: 20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.:

Report #: Phone:

880891 08 8338 1009

Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Received: Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Day

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail							Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
	ey Laboratory								
	pane Laboratory								
	ield Laboratory								
	Laboratory - N		e # 2370						
Exte	rnal Laboratory	· · · · · · · · · · · · · · · · · · ·		1					
	19_00_03_SS _Primary_EUF	Ap0036891							
74	SX_IB_202204 19_03_57_SS _Primary_EUF	M22- Ap0036892	Х		Х				
Test	Counts		48	24	74	24			

Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Agon Lab Reports (Spoil Project)

Report 880891-L

Project name 20220419042301-Eurofin-21

Project ID JC0927
Received Date Apr 19, 2022

	ı	1	1	1	1	1
Client Sample ID			SX20220416 _08_36_SS_Tri plicate_EUF	SX20220416 _08_44_SS_Pri mary_EUF	SX_IB_202204 16_12_10_SS_ Primary_EUF	SX_IB_202204 16_16_18_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036845	M22- Ap0036846	M22- Ap0036847	M22- Ap0036848
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	10	10	5.6	10
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	72	80	78	86
13C5-PFPeA (surr.)	1	%	78	84	83	96
13C5-PFHxA (surr.)	1	%	63	65	75	73
13C4-PFHpA (surr.)	1	%	79	94	83	101
13C8-PFOA (surr.)	1	%	69	83	73	86
13C5-PFNA (surr.)	1	%	70	86	78	91
13C6-PFDA (surr.)	1	%	77	101	74	88
13C2-PFUnDA (surr.)	1	%	61	88	62	82
13C2-PFDoDA (surr.)	1	%	53	79	60	73
13C2-PFTeDA (surr.)	1	%	-	73	51	78
Perfluoroalkyl sulfonamido substances	·	т				
Perfluorooctane sulfonamide (FOSA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			SX_20220416 _08_36_SS_Tri plicate_EUF AUS_Leachate	mary_EUF AUS Leachate	Primary_EUF AUS Leachate	SX_IB_202204 16_16_18_SS_ Primary_EUF AUS_Leachate
Sample Matrix			- pH 5.0 M22-	- pH 5.0 M22-	- pH 5.0 M22-	- pH 5.0 M22-
Eurofins Sample No.			Ap0036845	Ap0036846	Ap0036847	Ap0036848
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	82	103	80	93
D3-N-MeFOSA (surr.)	1	%	121	174	127	100
D5-N-EtFOSA (surr.)	1	%	130	184	141	99
D7-N-MeFOSE (surr.)	1	%	67	85	73	73
D9-N-EtFOSE (surr.)	1	%	65	89	74	72
D5-N-EtFOSAA (surr.)	1	%	97	137	107	102
D3-N-MeFOSAA (surr.)	1	%	89	145	114	117
Perfluoroalkyl sulfonic acids (PFSAs)		1				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01 68	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.) 18O2-PFHxS (surr.)	1	%	63	74 65	87 53	81 70
13C8-PFOS (surr.)	1	%	77	91	73	82
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	ı	/0	11	91	73	02
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	63	68	69	70
13C2-6:2 FTSA (surr.)	1	%	112	141	130	133
13C2-8:2 FTSA (surr.)	1	%	65	80	68	70
13C2-10:2 FTSA (surr.)	1	%	43	77	68	74
PFASs Summations		T				
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID Sample Matrix			SX_IB_202204 16_16_22_SS_ Duplicate_EUF AUS Leachate - pH 5.0 M22-	SX_IB_202204 16_20_02_SS_ Primary_EUF AUS Leachate - pH 5.0 M22-	SX_IB_202204 17_00_01_SS_ Primary_EUF AUS Leachate - pH 5.0 M22-	SX_IB_202204 17_03_57_SS_ Primary_EUF AUS Leachate - pH 5.0 M22-
Eurofins Sample No.			Ap0036849	Ap0036850	Ap0036851	Ap0036852
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	11	9.4	7.4	5.7
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	86	83	85	88
13C5-PFPeA (surr.)	1	%	94	84	97	99
13C5-PFHxA (surr.)	1	%	96	74	90	91
13C4-PFHpA (surr.)	1	%	105	93	93	89
13C8-PFOA (surr.)	1	%	95	80	78	77
13C5-PFNA (surr.)	1	%	95	85	81	84
13C6-PFDA (surr.)	1	%	88	88	71	85
13C2-PFUnDA (surr.)	1	%	71	79	66	71
13C2-PFDoDA (surr.)	1	%	59	67	54	58
13C2-PFTeDA (surr.)	1	%	61	74	49	49
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	96	98	92	82
D3-N-MeFOSA (surr.)	1	%	99	98	71	83
D5-N-EtFOSA (surr.)	1	%	96	97	73	84
D7-N-MeFOSE (surr.)	1	%	64	69	67	73
D9-N-EtFOSE (surr.)	1	%	66	70	65	72
D5-N-EtFOSAA (surr.)	1	%	99	105	92	95
D3-N-MeFOSAA (surr.)	1	%	111	112	111	104

Client Sample ID Sample Matrix Eurofins Sample No.			SX_IB_202204 16_16_22_SS_ Duplicate_EUF AUS Leachate - pH 5.0 M22- Ap0036849	SX_IB_202204 16_20_02_SS_ Primary_EUF AUS Leachate - pH 5.0 M22- Ap0036850	SX_IB_202204 17_00_01_SS_ Primary_EUF AUS Leachate - pH 5.0 M22- Ap0036851	SX_IB_202204 17_03_57_SS_ Primary_EUF AUS Leachate - pH 5.0 M22- Ap0036852
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	93	73	93	96
18O2-PFHxS (surr.)	1	%	90	63	78	62
13C8-PFOS (surr.)	1	%	82	80	77	79
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	65	75	76	67
13C2-6:2 FTSA (surr.)	1	%	81	125	69	100
13C2-8:2 FTSA (surr.)	1	%	61	69	54	59
13C2-10:2 FTSA (surr.)	1	%	56	66	55	46
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036853	M22- Ap0036854	M22- Ap0036855	M22- Ap0036856
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	7.6	5.5	5.4	5.3

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0 M22-	AUS Leachate - pH 5.0 M22-	AUS Leachate - pH 5.0 M22-	AUS Leachate - pH 5.0 M22-
Eurofins Sample No.			Ap0036853	Ap0036854	Ap0036855	Ap0036856
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	85	82	59	95
13C5-PFPeA (surr.)	1	%	93	96	62	93
13C5-PFHxA (surr.)	1	%	91	84	58	82
13C4-PFHpA (surr.)	1	%	93	89	60	89
13C8-PFOA (surr.)	1	%	85	81	97	88
13C5-PFNA (surr.)	1	%	87	86	53	92
13C6-PFDA (surr.)	1	%	80	87	95	97
13C2-PFUnDA (surr.)	1	%	76	82	78	82
13C2-PFDoDA (surr.)	1	%	61	76	68	75
13C2-PFTeDA (surr.)	1	%	57	81	14	95
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	91	89	51	96
D3-N-MeFOSA (surr.)	1	%	77	86	40	105
D5-N-EtFOSA (surr.)	1	%	78	101	49	116
D7-N-MeFOSE (surr.)	1	%	66	71	43	81
D9-N-EtFOSE (surr.)	1	%	68	72	43	81
D5-N-EtFOSAA (surr.)	1	%	144	119	36	68
D3-N-MeFOSAA (surr.)	1	%	127	115	51	108
Perfluoroalkyl sulfonic acids (PFSAs)	I					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036853	M22- Ap0036854	M22- Ap0036855	M22- Ap0036856
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)	•					
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	97	86	31	92
18O2-PFHxS (surr.)	1	%	91	61	22	61
13C8-PFOS (surr.)	1	%	82	82	27	88
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	71	63	24	77
13C2-6:2 FTSA (surr.)	1	%	59	98	50	154
13C2-8:2 FTSA (surr.)	1	%	52	62	35	81
13C2-10:2 FTSA (surr.)	1	%	54	58	34	68
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX_IB_202204 17_15_56_SS_ Duplicate_EUF		SX_IB_202204 18_00_05_SS_ Primary_EUF	SX_IB_202204 18_04_01_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036857	M22- Ap0036858	M22- Ap0036859	M22- Ap0036860
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.4	5.3	5.3	5.4
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01

Olivert Overville ID			SX_IB_202204	SX_IB_202204	SX_IB_202204	SX_IB_202204
Client Sample ID			17_15_56_SS_ Duplicate_EUF	17_20_03_SS_ Primary EUF	18_00_05_SS_ Primary_EUF	18_04_01_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036857	M22- Ap0036858	M22- Ap0036859	M22- Ap0036860
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		1				
Perfluorododecanoic acid (PFDoDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	83	81	89	90
13C5-PFPeA (surr.)	1	%	78	92	95	98
13C5-PFHxA (surr.)	1	%	89	86	80	87
13C4-PFHpA (surr.)	1	%	90	85	92	96
13C8-PFOA (surr.)	1	%	84	74	81	85
13C5-PFNA (surr.)	1	%	88	78	86	89
13C6-PFDA (surr.)	1	%	81	77	92	95
13C2-PFUnDA (surr.)	1	%	76	71	88	78
13C2-PFDoDA (surr.)	1	%	65	65	88	71
13C2-PFTeDA (surr.)	1	%	58	61	95	62
Perfluoroalkyl sulfonamido substances		•				
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	83	84	103	97
D3-N-MeFOSA (surr.)	1	%	74	89	125	86
D5-N-EtFOSA (surr.)	1	%	75	102	138	89
D7-N-MeFOSE (surr.)	1	%	64	71	79	74
D9-N-EtFOSE (surr.)	1	%	66	71	83	75
D5-N-EtFOSAA (surr.)	1	%	140	86	139	116
D3-N-MeFOSAA (surr.)	1	%	141	111	135	116
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	89	94	89	95
18O2-PFHxS (surr.)	1	%	72	62	63	78
13C8-PFOS (surr.)	1	%	78	74	90	89

Client Sample ID			SX_IB_202204 17_15_56_SS_	SX_IB_202204 17_20_03_SS_	SX_IB_202204 18_00_05_SS_	SX_IB_202204 18_04_01_SS_
			Duplicate_EUF	-	Primary_EUF	Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0			
Eurofins Sample No.			M22- Ap0036857	M22- Ap0036858	M22- Ap0036859	M22- Ap0036860
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	65	59	73	70
13C2-6:2 FTSA (surr.)	1	%	70	84	122	75
13C2-8:2 FTSA (surr.)	1	%	62	60	71	65
13C2-10:2 FTSA (surr.)	1	%	55	42	77	70
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

			ı	1	1	1
Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036861	M22- Ap0036862	M22- Ap0036863	M22- Ap0036864
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.4	5.5	5.3	5.3
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	85	89	84	82
13C5-PFPeA (surr.)	1	%	90	98	100	86
13C5-PFHxA (surr.)	1	%	78	94	88	84

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036861	M22- Ap0036862	M22- Ap0036863	M22- Ap0036864
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
13C4-PFHpA (surr.)	1	%	86	94	90	88
13C8-PFOA (surr.)	1	%	75	87	76	81
13C5-PFNA (surr.)	1	%	81	92	88	87
13C6-PFDA (surr.)	1	%	81	87	79	83
13C2-PFUnDA (surr.)	1	%	74	85	75	75
13C2-PFDoDA (surr.)	1	%	57	62	69	66
13C2-PFTeDA (surr.)	1	%	52	53	66	69
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) $^{\rm N11}$	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	85	99	87	87
D3-N-MeFOSA (surr.)	1	%	72	108	117	111
D5-N-EtFOSA (surr.)	1	%	76	112	131	112
D7-N-MeFOSE (surr.)	1	%	70	80	76	72
D9-N-EtFOSE (surr.)	1	%	69	78	76	73
D5-N-EtFOSAA (surr.)	1	%	74	146	95	98
D3-N-MeFOSAA (surr.)	1	%	110	136	89	127
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoronexanesulfonic acid (PFHxS)**** Perfluoroneptanesulfonic acid (PFHxS)*** Perfluoronexanesulfonic acid (PFHxS)***	0.01	ug/L	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Perfluorooctanesulfonic acid (PFHpS)*** Perfluorooctanesulfonic acid (PFOS)**1	0.01	ug/L ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	wg/L	88	99	96	91
1802-PFHxS (surr.)	1	%	64	84	64	73
13C8-PFOS (surr.)	1	%	73	85	91	77
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		,,,				
1H 1H 2H 2H-perfluorohexanesulfonic acid (4·2						
FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
FTSA) ^{N11} `	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	67	66	61	63
13C2-6:2 FTSA (surr.)	1	%	99	76	130	71

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036861	M22- Ap0036862	M22- Ap0036863	M22- Ap0036864
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
13C2-8:2 FTSA (surr.)	1	%	57	62	61	56
13C2-10:2 FTSA (surr.)	1	%	61	67	55	62
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF	-	SX_IB_202204 19_00_03_SS_ Primary_EUF	SX_IB_202204 19_03_57_SS_ Primary_EUF
Sample Matrix			AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0	AUS Leachate - pH 5.0
Eurofins Sample No.			M22- Ap0036865	M22- Ap0036866	M22- Ap0036867	M22- Ap0036868
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	5.0	5.0	5.0	5.0
pH (off)	0.1	pH Units	5.2	5.0	5.1	5.1
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	89	83	83	88
13C5-PFPeA (surr.)	1	%	89	77	83	83
13C5-PFHxA (surr.)	1	%	89	88	90	90
13C4-PFHpA (surr.)	1	%	91	86	91	91
13C8-PFOA (surr.)	1	%	81	78	81	83
13C5-PFNA (surr.)	1	%	87	79	78	90
13C6-PFDA (surr.)	1	%	88	83	75	93
13C2-PFUnDA (surr.)	1	%	78	79	74	86
13C2-PFDoDA (surr.)	1	%	73	63	64	76
13C2-PFTeDA (surr.)	1	%	70	65	57	71

Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF AUS Leachate	SX_IB_202204 18_19_59_SS_ Primary_EUF AUS Leachate	SX_IB_202204 19_00_03_SS_ Primary_EUF AUS Leachate	SX_IB_202204 19_03_57_SS_ Primary_EUF AUS Leachate
Sample Matrix			- pH 5.0	- pH 5.0	- pH 5.0	- pH 5.0
Eurofins Sample No.			M22- Ap0036865	M22- Ap0036866	M22- Ap0036867	M22- Ap0036868
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit			•	
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-	0.00	ug/L	10.00	1 0.00	7 0.00	7 0.00
MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-	0.05	//	.0.05	.005	.005	.005
MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	91	85 84	86 74	97 89
D3-N-MeFOSA (surr.)	1	%	116	82	84	97
D5-N-EtFOSA (surr.) D7-N-MeFOSE (surr.)	1	%	75	72	71	72
D9-N-EtFOSE (surr.)	1	%	80	71	68	81
D5-N-EtFOSAA (surr.)	1	%	95	70	100	180
D3-N-MeFOSAA (surr.)	1	%	130	103	123	150
Perfluoroalkyl sulfonic acids (PFSAs)	ı	/0	130	103	123	130
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	95	90	96	94
18O2-PFHxS (surr.)	1	%	74	76	68	56
13C8-PFOS (surr.)	1	%	79	77	76	90
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		,,,	, , ,			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	65	61	64	70
13C2-6:2 FTSA (surr.)	1	%	73	63	68	138
13C2-8:2 FTSA (surr.)	1	%	61	54	65	75
13C2-10:2 FTSA (surr.)	1	%	76	64	60	77
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID Sample Matrix Eurofins Sample No.			SX_20220416 _08_36_SS_Tri plicate_EUF AUS Leachate - Reagent Water M22- Ap0036869	SX_20220416 _08_44_SS_Pri mary_EUF AUS Leachate - Reagent Water M22- Ap0036870	SX_IB_202204 16_12_10_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036871	SX_IB_202204 16_16_18_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036872
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure	l					
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	11	11	9.6	11
Perfluoroalkyl carboxylic acids (PFCAs)		111111111111111111111111111111111111111				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.03	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	78	87	76	81
13C5-PFPeA (surr.)	1	%	86	91	76	83
13C5-PFHxA (surr.)	1	%	64	63	63	65
13C4-PFHpA (surr.)	1	%	85	92	77	86
13C8-PFOA (surr.)	1	%	81	80	62	75
13C5-PFNA (surr.)	1	%	83	84	70	77
13C6-PFDA (surr.)	1	%	83	79	74	74
13C2-PFUnDA (surr.)	1	%	72	69	71	64
13C2-PFDoDA (surr.)	1	%	66	68	66	61
13C2-PFTeDA (surr.)	1	%	82	77	84	65
Perfluoroalkyl sulfonamido substances		,,,	02		0.	
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-	0.00	ug/L	\ 0.00	\ 0.00	\ 0.00	\ \ 0.03
MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	88	94	81	88
D3-N-MeFOSA (surr.)	1	%	101	125	106	105
D5-N-EtFOSA (surr.)	1	%	109	131	109	117
D7-N-MeFOSE (surr.)	1	%	69	76	60	68
D9-N-EtFOSE (surr.)	1	%	71	73	60	68
D5-N-EtFOSAA (surr.)	1	%	104	74	137	90
D3-N-MeFOSAA (surr.)	1	%	88	75	135	104

Client Sample ID			SX_20220416 _08_36_SS_Tri plicate_EUF AUS Leachate	SX20220416 _08_44_SS_Pri mary_EUF AUS Leachate	SX_IB_202204 16_12_10_SS_ Primary_EUF AUS Leachate	SX_IB_202204 16_16_18_SS_ Primary_EUF AUS Leachate
Sample Matrix			- Reagent Water	- Reagent Water	- Reagent Water	- Reagent Water
Eurofins Sample No.			M22- Ap0036869	M22- Ap0036870	M22- Ap0036871	M22- Ap0036872
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)		•				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	74	68	81	71
18O2-PFHxS (surr.)	1	%	64	62	51	69
13C8-PFOS (surr.)	1	%	85	82	82	83
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	65	68	62	57
13C2-6:2 FTSA (surr.)	1	%	112	146	106	119
13C2-8:2 FTSA (surr.)	1	%	64	69	52	55
13C2-10:2 FTSA (surr.)	1	%	57	56	72	56
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID				SX_IB_202204 16_20_02_SS_ Primary_EUF	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036873	M22- Ap0036874	M22- Ap0036875	M22- Ap0036876
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	12	11	11	10.0

			SX IB 202204	SX IB 202204	SX IB 202204	SX IB 20220
Client Sample ID			16_16_22_SS_	16_20_02_SS_	17_00_01_SS_	17_03_57_SS
			Duplicate_EUF	-	Primary_EUF	Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036873	M22- Ap0036874	M22- Ap0036875	M22- Ap0036876
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit			•	
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	79	85	76	82
13C5-PFPeA (surr.)	1	%	85	99	88	87
13C5-PFHxA (surr.)	1	%	87	60	69	82
13C4-PFHpA (surr.)	1	%	87	101	82	78
13C8-PFOA (surr.)	1	%	84	90	72	69
13C5-PFNA (surr.)	1	%	82	98	82	64
13C6-PFDA (surr.)	1	%	76	100	75	64
13C2-PFUnDA (surr.)	1	%	62	89	67	67
13C2-PFDoDA (surr.)	1	%	50	80	59	59
13C2-PFTeDA (surr.)	1	%	42	86	64	52
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	88	104	87	74
D3-N-MeFOSA (surr.)	1	%	57	132	101	91
D5-N-EtFOSA (surr.)	1	%	59	133	92	91
D7-N-MeFOSE (surr.)	1	%	57	78	69	57
D9-N-EtFOSE (surr.)	1	%	54	72	61	60
D5-N-EtFOSAA (surr.)	1	%	79	63	71	113
D3-N-MeFOSAA (surr.)	1	%	74	115	85	102
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01

			SX_IB_202204	SX_IB_202204	SX_IB_202204	SX_IB_202204
Client Sample ID			16_16_22_SS_ Duplicate_EUF	16_20_02_SS_ Primary_EUF	17_00_01_SS_ Primary_EUF	17_03_57_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036873	M22- Ap0036874	M22- Ap0036875	M22- Ap0036876
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	80	68	85	97
18O2-PFHxS (surr.)	1	%	79	73	78	63
13C8-PFOS (surr.)	1	%	77	94	80	72
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	53	72	56	62
13C2-6:2 FTSA (surr.)	1	%	61	148	72	76
13C2-8:2 FTSA (surr.)	1	%	56	67	59	48
13C2-10:2 FTSA (surr.)	1	%	45	64	45	63
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036877	M22- Ap0036878	M22- Ap0036879	M22- Ap0036880
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	10	9.7	9.4	9.5
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01

Client Sample ID Sample Matrix			SX_IB_202204 17_08_05_SS_ Primary_EUF AUS Leachate - Reagent Water	SX_IB_202204 17_08_10_SS_ Triplicate_EUF AUS Leachate - Reagent Water	SX_IB_202204 17_12_28_SS_ Primary_EUF AUS Leachate - Reagent Water	SX_IB_202204 17_15_56_SS_ Primary_EUF AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036877	M22- Ap0036878	M22- Ap0036879	M22- Ap0036880
•			1 -	1 -	· -	•
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	83	79	79	83
13C5-PFPeA (surr.)	1	%	80	88	88	84
13C5-PFHxA (surr.)	1	%	86	71	89	63
13C4-PFHpA (surr.)	1	%	96	83	84	75
13C8-PFOA (surr.)	1	%	85	77	71	74
13C5-PFNA (surr.)	1	%	86	76	69	84
13C6-PFDA (surr.)	1	%	91	81	70	90
13C2-PFUnDA (surr.)	1	%	89	77	68	88
13C2-PFDoDA (surr.)	1	%	81	82	67	80
13C2-PFTeDA (surr.)	1	%	66	113	71	96
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	91	83	77	88
D3-N-MeFOSA (surr.)	1	%	122	87	80	111
D5-N-EtFOSA (surr.)	1	%	128	95	86	112
D7-N-MeFOSE (surr.)	1	%	78	66	68	75
D9-N-EtFOSE (surr.)	1	%	74	69	65	70
D5-N-EtFOSAA (surr.)	1	%	115	144	140	162
D3-N-MeFOSAA (surr.)	1	%	129	116	134	118
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	103	81	97	80
18O2-PFHxS (surr.)	1	%	100	65	57	50
13C8-PFOS (surr.)	1	%	92	81	73	91

					1
		SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
		AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
		M22- Ap0036877	M22- Ap0036878	M22- Ap0036879	M22- Ap0036880
		Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
LOR	Unit				
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1	%	67	64	60	64
1	%	57	94	92	121
1	%	64	55	55	73
1	%	71	67	67	73
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1
	0.01 0.05 0.01 1 1 1 1 0.01 0.01 0.01 0.01 0.01	0.01 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 1 % 1 % 1 % 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L	17_08_05_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036877 Apr 17, 2022 LOR Unit 0.01 ug/L < 0.01 0.05 ug/L < 0.01 1 % 67 1 % 57 1 % 64 1 % 71 0.01 ug/L < 0.01 0.01 cos	17_08_05_SS_Primary_EUF	17_08_05_SS_Primary_EUF

Client Sample ID Sample Matrix Eurofins Sample No.			SX_IB_202204 17_15_56_SS_ Duplicate_EUF AUS Leachate - Reagent Water M22- Ap0036881	SX_IB_202204 17_20_03_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036882	SX_IB_202204 18_00_05_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036883	SX_IB_202204 18_04_01_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036884
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure	·					
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	9.7	9.5	9.5	9.6
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	79	81	66	72
13C5-PFPeA (surr.)	1	%	82	90	73	82

Report Number: 880891-L

Client Semale ID			SX_IB_202204	SX_IB_202204	SX_IB_202204	SX_IB_202204
Client Sample ID			17_15_56_SS_ Duplicate EUF	17_20_03_SS_ Primary EUF	18_00_05_SS_ Primary_EUF	18_04_01_SS_ Primary EUF
			AUS Leachate	AUS Leachate	AUS Leachate	AUS Leachate
Sample Matrix			- Reagent Water	- Reagent Water	- Reagent Water	- Reagent Water
Eurofins Sample No.			M22- Ap0036881	M22- Ap0036882	M22- Ap0036883	M22- Ap0036884
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)	•	•				
13C5-PFHxA (surr.)	1	%	69	85	54	63
13C4-PFHpA (surr.)	1	%	91	89	74	79
13C8-PFOA (surr.)	1	%	83	72	71	77
13C5-PFNA (surr.)	1	%	91	77	73	83
13C6-PFDA (surr.)	1	%	88	84	76	95
13C2-PFUnDA (surr.)	1	%	91	76	55	63
13C2-PFDoDA (surr.)	1	%	84	75	37	41
13C2-PFTeDA (surr.)	1	%	125	83	121	100
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	90	86	67	76
D3-N-MeFOSA (surr.)	1	%	104	100	70	76
D5-N-EtFOSA (surr.)	1	%	101	102	66	66
D7-N-MeFOSE (surr.)	1	%	75	70	42	41
D9-N-EtFOSE (surr.)	1	%	70	69	42	43
D5-N-EtFOSAA (surr.)	1	%	182	142	18	24
D3-N-MeFOSAA (surr.)	1	%	147	118	29	34
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	85	95	59	82
18O2-PFHxS (surr.)	1	%	76	70	49	69
13C8-PFOS (surr.)	1	%	91	81	80	75
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Г	T				-
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01

Client Sample ID			SX_IB_202204 17_15_56_SS_ Duplicate_EUF		SX_IB_202204 18_00_05_SS_ Primary_EUF	SX_IB_202204 18_04_01_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036881	M22- Ap0036882	M22- Ap0036883	M22- Ap0036884
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
13C2-4:2 FTSA (surr.)	1	%	65	64	43	46
13C2-6:2 FTSA (surr.)	1	%	93	80	121	108
13C2-8:2 FTSA (surr.)	1	%	62	54	68	65
13C2-10:2 FTSA (surr.)	1	%	75	58	45	40
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF		SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water M22-	AUS Leachate - Reagent Water M22-	AUS Leachate - Reagent Water M22-	AUS Leachate - Reagent Water M22-
Eurofins Sample No.			Ap0036885	Ap0036886	Ap0036887	Ap0036888
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	9.7	9.8	9.4	11
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA)N11	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	80	74	74	74
13C5-PFPeA (surr.)	1	%	97	73	85	80
13C5-PFHxA (surr.)	1	%	76	70	75	72
13C4-PFHpA (surr.)	1	%	94	87	88	88
13C8-PFOA (surr.)	1	%	82	85	80	78
13C5-PFNA (surr.)	1	%	92	86	85	88
13C6-PFDA (surr.)	1	%	105	96	85	89
13C2-PFUnDA (surr.)	1	%	71	60	65	60
13C2-PFDoDA (surr.)	1	%	46	42	40	34
13C2-PFTeDA (surr.)	1	%	100	152	93	83

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF AUS Leachate - Reagent	SX_IB_202204 18_08_09_SS_ Primary_EUF AUS Leachate - Reagent	SX_IB_202204 18_11_57_SS_ Primary_EUF AUS Leachate - Reagent	SX_IB_202204 18_16_08_SS_ Primary_EUF AUS Leachate - Reagent
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M22- Ap0036885	M22- Ap0036886	M22- Ap0036887	M22- Ap0036888
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	91	78	77	83
D3-N-MeFOSA (surr.)	11	%	78	87	45	110
D5-N-EtFOSA (surr.)	11	%	74	73	41	125
D7-N-MeFOSE (surr.)	1	%	58	43	44	41
D9-N-EtFOSE (surr.)	1	%	57	40	48	37
D5-N-EtFOSAA (surr.)	1	%	29	27	24	22
D3-N-MeFOSAA (surr.)	1	%	33	34	30	23
Perfluoroalkyl sulfonic acids (PFSAs)		Ι				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01 0.01	ug/L ug/L	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	% %	95	80	83	79
18O2-PFHxS (surr.)	 1	%	78	74	59	76
13C8-PFOS (surr.)	1	%	91	84	81	85
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	51	51	49	50
13C2-6:2 FTSA (surr.)	1	%	132	111	137	102
13C2-8:2 FTSA (surr.)	1	%	78	70	70	71
13C2-10:2 FTSA (surr.)	11	%	52	35	44	35
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
	0.04	1/1	0 01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* Sum of WA DWER PFAS (n=10)*	0.01 0.05	ug/L ug/L	< 0.01 < 0.05	< 0.05	< 0.01	< 0.01

Report Number: 880891-L

Client Sample ID Sample Matrix Eurofins Sample No.			SX_IB_202204 18_16_09_SS_ Duplicate_EUF AUS Leachate - Reagent Water M22- Ap0036889	SX_IB_202204 18_19_59_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036890	SX_IB_202204 19_00_03_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036891	SX_IB_202204 19_03_57_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036892
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	N/A	N/A	N/A	N/A
pH (Leachate fluid)	0.1	pH Units	6.3	6.3	6.3	6.3
pH (off)	0.1	pH Units	11	9.5	9.7	9.5
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	72	77	72	76
13C5-PFPeA (surr.)	1	%	77	92	89	83
13C5-PFHxA (surr.)	1	%	69	86	86	70
13C4-PFHpA (surr.)	1	%	85	94	88	87
13C8-PFOA (surr.)	1	%	77	86	79	82
13C5-PFNA (surr.)	1	%	83	92	85	89
13C6-PFDA (surr.)	1	%	84	104	80	101
13C2-PFUnDA (surr.)	1	%	62	63	57	72
13C2-PFDoDA (surr.)	1	%	43	38	38	53
13C2-PFTeDA (surr.)	1	%	105	125	98	139
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	78	85	82	83
D3-N-MeFOSA (surr.)	1	%	67	54	52	79
D5-N-EtFOSA (surr.)	1	%	72	50	40	77
D7-N-MeFOSE (surr.)	1	%	41	42	42	62
D9-N-EtFOSE (surr.)	1	%	44	38	43	62
D5-N-EtFOSAA (surr.)	1	%	20	33	27	36
D3-N-MeFOSAA (surr.)	1	%	31	37	29	41

Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF		SX_IB_202204 19_00_03_SS_ Primary_EUF	SX_IB_202204 19_03_57_SS_ Primary_EUF
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			M22- Ap0036889	M22- Ap0036890	M22- Ap0036891	M22- Ap0036892
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	80	93	89	80
18O2-PFHxS (surr.)	1	%	81	84	79	57
13C8-PFOS (surr.)	1	%	82	97	83	89
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	47	50	45	52
13C2-6:2 FTSA (surr.)	1	%	88	93	64	145
13C2-8:2 FTSA (surr.)	1	%	71	75	69	91
13C2-10:2 FTSA (surr.)	1	%	46	45	43	62
PFASs Summations						
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	< 0.1	< 0.1

Report Number: 880891-L

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
AUS Leaching Procedure			
pH (initial)	Melbourne	Apr 20, 2022	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
pH (Leachate fluid)	Melbourne	Apr 20, 2022	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
pH (off)	Melbourne	Apr 20, 2022	0 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
PFASs Summations	Melbourne	Apr 19, 2022	
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Report Number: 880891-L

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail								IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261 :	Site # 18217						
Bris	bane Laborator	y - NATA # 1261	1 Site # 20794	4					
	field Laboratory			<u> </u>					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	,	-	1	_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		Soil	M22- Ap0036819		х	х	х
2	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036820		х	х	х
3	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036821		х	х	х
4	4 SX_IB_202204 Apr 16, 2022 Soil M22- 16_16_18_SS _Primary_EUF Apr 16, 2022 Soil M22-							x	х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #: Phone:

880891 08 8338 1009

Fax:

179 Magowar Road

Sydney

Received:

Apr 19, 2022 3:30 PM Apr 21, 2022

NZBN: 9429046024954

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sar	nple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	Х	Х	Х	Х				
Sydı	ney Laboratory	- NATA # 1261 S	Site # 18217						
Bris	bane Laboratory	/ - NATA # 1261	Site # 20794	ı					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	e # 2370						
Exte	rnal Laboratory								
5	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		Soil	M22- Ap0036823		x	x	x
6	SX_IB_202204 16_16_49_SR _Rinsate_EUF	Apr 16, 2022		Water	M22- Ap0036824			х	
7	SX_IB_202204 16_16_50_SB _Blank_EUF	M22- Ap0036825			х				
8	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036826		х	х	х
9	SX_IB_202204	Apr 17, 2022		Soil	M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Perth

Due:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
	oourne Laborato			4		Х	Х	X	Х
	ney Laboratory								
	bane Laboratory field Laboratory								
	h Laboratory - N								
	rnal Laboratory		20.0						
9	SX_IB_202204 17_00_01_SS _Primary_EUF	I		Soil	M22- Ap0036827				
10	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036828		х	Х	х
11	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036829		х	х	х
12	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		Soil	M22- Ap0036830		х	х	х
13	SX_IB_202204	Apr 17, 2022		Soil	M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261 :	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	17_12_28_SS _Primary_EUF				Ap0036831				
14	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036832		х	х	х
15	SX_IB_202204 17_15_56_SS _Duplicate_EU F	' '		Soil	M22- Ap0036833		х	х	х
16	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036834		Х	Х	х
17	SX_IB_202204 18_00_05_SS	Apr 18, 2022		Soil	M22- Ap0036835		х	х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: Phone:

880891 08 8338 1009

Fax:

179 Magowar Road

Received:

46-48 Banksia Road

Welshpool WA 6106

Perth

Apr 19, 2022 3:30 PM Apr 21, 2022

NZBN: 9429046024954

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	Х	Х	Х	Х				
	ney Laboratory								
	bane Laboratory								
	field Laboratory			<u> </u>					
	h Laboratory - N		te # 2370						
Exte	rnal Laboratory			1					
	18_00_05_SS _Primary_EUF				Ap0036835				
18	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036836		х	х	Х
19	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036837		х	x	х
20	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036838		х	х	х
21	SX_IB_202204 18_11_57_SS	Apr 18, 2022		Soil	M22- Ap0036839		Х	Х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #: Phone:

880891 08 8338 1009

Fax:

179 Magowar Road

Due: **Priority:**

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Apr 21, 2022 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project)

Apr 19, 2022 3:30 PM

	Sample Detail							Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite	
Melk	ourne Laborato	ory - NATA # 12	.61 Site # 125	54			Х	Х	Х	Х	
Syd	ney Laboratory	- NATA # 1261	Site # 18217								
Bris	bane Laborator	y - NATA # 126 ⁻	1 Site # 2079	4							
May	field Laboratory	- NATA # 1261	Site # 25079)							
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370								
Exte	rnal Laboratory		1								
	_Primary_EUF										
22	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap00	36840		х	х	х	
23	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		Soil	M22- Ap00	36841		х	x	х	
24	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap00	36842		х	х	Х	
25	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap00	36843		х	х	х	

Melbourne

ABN: 50 005 085 521

6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Apr 19, 2022 3:30 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Agon Environmental Pty Ltd - VIC

> 3/224 Glen Osmond Road Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Received: Due:

Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydi	ney Laboratory	- NATA # 1261	Site # 18217						
	bane Laboratory								
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory			1					
26	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036844		х	х	х
27	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036845	Х		Х	
28	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036846	Х		х	
29	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036847	Х		х	
30	SX_IB_202204 16_16_18_SS	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036848	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Company Name:

3/224 Glen Osmond Road

Fullarton SA 5063

Project Name: Project ID: JC0927

Agon Environmental Pty Ltd - VIC

20220419042301-Eurofin-21

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Sydney

179 Magowar Road

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Primary_EUF								
31	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036849	Х		Х	
32	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036850	Х		х	
33	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036851	Х		Х	
34	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036852	X		х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 3 Dav

Priority: Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
	ney Laboratory								
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
_	field Laboratory								
	h Laboratory - N		te # 2370						
	rnal Laboratory		Г	Г	T				
35	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036853	х		х	
36	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036854	х		Х	
37	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036855	Х		Х	
38	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036856	Х		Х	
39	SX_IB_202204	Apr 17, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

Phone: Fax:

179 Magowar Road

08 8338 1009

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ⁻	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T		1	1				
	17_15_56_SS _Duplicate_EU F			- pH 5.0	Ap0036857				
40	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036858	х		х	
41	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036859	х		х	
42	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036860	х		х	
43	SX_IB_202204 18_08_08_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036861	Х		х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

Sydney

179 Magowar Road

880891 08 8338 1009

Phone: Fax:

Received:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ⁻	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T		1	1				
	18_08_08_SS _Triplicate_EU F			- pH 5.0	Ap0036861				
44	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036862	х		х	
45	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036863	х		х	
46	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036864	х		х	
47	SX_IB_202204 18_16_09_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036865	х		х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Eurofins Environment Testing Australia Pty Ltd

Sydney

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory								
	_Duplicate_EU F								
48	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036866	х		х	
49	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036867	х		х	
50	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036868	х		х	
51	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036869	х		х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ⁻	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T			1				
52	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036870	х		х	
53	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036871	х		х	
54	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036872	х		х	
55	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036873	х		х	
56	SX_IB_202204	Apr 16, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954 Auckland

35 O'Rorke Road

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #: 880891

08 8338 1009

Phone: Fax:

179 Magowar Road

Sydney

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory				1				
	16_20_02_SS _Primary_EUF			- Reagent Water	Ap0036874				
57	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036875	х		х	
58	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036876	х		х	
59	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036877	х		х	
60	SX_IB_202204 17_08_10_SS _Triplicate_EU	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036878	х		х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	l					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory		T	1	1				
	_Triplicate_EU F			Water					
61	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036879	х		х	
62	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036880	Х		x	
63	SX_IB_202204 17_15_56_SS _Duplicate_EU F	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036881	х		х	
64	SX_IB_202204 17_20_03_SS	Apr 17, 2022		AUS Leachate - Reagent	M22- Ap0036882	Х		х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

email: EnviroSales@eurofins.com

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ⁻	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T		1	1				
	_Primary_EUF			Water					
65	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036883	х		х	
66	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036884	Х		х	
67	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036885	х		х	
68	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036886	х		х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory			,					
69	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036887	X		Х	
70	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036888	X		х	
71	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036889	X		х	
72	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036890	Х		Х	
73	SX_IB_202204	Apr 19, 2022		AUS Leachate	M22-	Χ		Х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road

Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Address:

Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891

08 8338 1009

Phone: Fax:

179 Magowar Road

Received:

46-48 Banksia Road

Welshpool WA 6106

Perth

Apr 19, 2022 3:30 PM

NZBN: 9429046024954

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melbourne Lak	orato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydney Labora	atory ·	- NATA # 1261 S	Site # 18217						
Brisbane Labo	ratory	/ - NATA # 1261	Site # 20794	ļ					
Mayfield Labor	ratory	- NATA # 1261	Site # 25079						
Perth Laborato	ory - N	IATA # 2377 Sit	e # 2370						
External Labor	ratory								
19_00_03 _Primary_				- Reagent Water	Ap0036891				
74 SX_IB_202204 Apr 19, 2022 Apr 19, 2022 Apr 19_03_57_SS Primary_EUF Apr 2022 Apr 2036892 Apr 2036892						Х		Х	
Test Counts							24	74	24

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre

ppm: parts per million **ppb:** parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 880891-L

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank	<u> </u>	1 0.0 .	9.01	1 455	
Perfluoroalkyl sulfonamido substances		Т		T	
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	+
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
	ug/L	< 0.03	0.03	Fass	+
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank				1	
Perfluoroalkyl sulfonic acids (PFSAs)				T	1
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)		< 0.01	0.01	Pass	+
	ug/L				
Perfluoroctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	+
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank		Т		T	1
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				+	+
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	-
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	-
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	1
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery				<u> </u>	ļ
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	90	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	115	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	98	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	87	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	94	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	104	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	98	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	106	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	104	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	132	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	90	50-150	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery				,					
Perfluoroalkyl sulfonamido substa	nces								
Perfluorooctane sulfonamide (FOSA	A)		%	90			50-150	Pass	
N-methylperfluoro-1-octane sulfonar	mide (N-MeFOSA)		%	114			50-150	Pass	
N-ethylperfluoro-1-octane sulfonamie	de (N-EtFOSA)		%	125			50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	-	%	112			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	104			50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC	OSAA)	%	105			50-150	Pass	
N-methyl-perfluorooctanesulfonamid	doacetic acid (N-Me	FOSAA)	%	91			50-150	Pass	
LCS - % Recovery									
Perfluoroalkyl sulfonic acids (PFS)	As)								
Perfluorobutanesulfonic acid (PFBS))		%	92			50-150	Pass	
Perfluorononanesulfonic acid (PFNS	S)		%	118			50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	rS)		%	102			50-150	Pass	
Perfluoropentanesulfonic acid (PFPe			%	100			50-150	Pass	
Perfluorohexanesulfonic acid (PFHx			%	99			50-150	Pass	
Perfluoroheptanesulfonic acid (PFH)			%	103			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS))		%	106			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS			%	98			50-150	Pass	
LCS - % Recovery	,								
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)								
1H.1H.2H.2H-perfluorohexanesulfon			%	109			50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	89			50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon			%	86			50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul		SA)	%	89			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (PF	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid	,								
(PFUnDA) Perfluorododecanoic acid	M22-Ap0036857	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFDoDA)	M22-Ap0036857	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid	M22-Ap0036857	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFTeDA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				I	1				
Perfluoroalkyl sulfonamido substa	nces	1		Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	

Dunlicate									
Duplicate Perfluereally autonomide autore				Dog::lt 4	Dog::lk C	DDD			
Perfluoroalkyl sulfonamido substa	inces		1	Result 1	Result 2	RPD		+ -	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036857	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036857	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0036868	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036868 M22-Ap0036868	CP CP	ug/L ug/L	< 0.01	< 0.01	<1 <1	30%	Pass Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Report Number: 880891-L

Dunlicato									
Duplicate				D 11.4	D 11.0	DDD			
Perfluoroalkyl sulfonamido substa Perfluorooctane sulfonamide	inces			Result 1	Result 2	RPD			
(FOSA) N-methylperfluoro-1-octane	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
sulfonamide (N-MeFOSA)	M22-Ap0036868	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036868	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				ı					
Perfluoroalkyl sulfonic acids (PFS	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate			<u> </u>						
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2		0.0	4		0.04	_	000/		
FTSA)	M22-Ap0036868	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036868	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H-	·								
perfluorodecanesulfonic acid (8:2 FTSA)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036868	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	FCAs)		ı	Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0036879	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036879	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				T	1				
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				ī	1				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1	Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036879	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036879	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFUnDA) Perfluorododecanoic acid	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
(PFDoDA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036890	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Report Number: 880891-L

Duplicate									
Perfluoroalkyl sulfonamido substances				Result 1	Result 2	RPD			
Perfluorooctane sulfonamide		0.0					000/	D	
(FOSA) N-methylperfluoro-1-octane	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
sulfonamide (N-MeFOSA)	M22-Ap0036890	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036890	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036890	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised by:

Catherine Wilson Analytical Services Manager Emily Rosenberg Senior Analyst (NSW) Alex Petridis Senior Analyst (NSW) Joseph Edouard Senior Analyst (VIC)

Glenn Jackson

General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Agon Lab Reports (Spoil Project)

Report 880891-S

Project name 20220419042301-Eurofin-21

Project ID JC0927
Received Date Apr 19, 2022

						1
Client Sample ID			SX20220416 _08_36_SS_Tri plicate_EUF	SX20220416 _08_44_SS_Pri mary_EUF	SX_IB_202204 16_12_10_SS_ Primary_EUF	SX_IB_202204 16_16_18_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036819	M22- Ap0036820	M22- Ap0036821	M22- Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	L	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics						
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX20220416 08 36 SS Tri	SX20220416 08_44_SS_Pri	SX_IB_202204	SX_IB_202204 16 16 18 SS
onen cumple is			plicate_EUF	mary_EUF	Primary_EUF	Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036819	M22- Ap0036820	M22- Ap0036821	M22- Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , ,
Volatile Organics	LOIK	Onit				
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.0
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vilonga Total*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH* Vic EPA IWRG 621 CHC (Total)*	0.5 0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5		< 0.5		< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	mg/kg %	< 0.5 81	< 0.5 78	< 0.5 78	< 0.5 86
Toluene-d8 (surr.)	1	%	91	83	87	104
Polycyclic Aromatic Hydrocarbons		1 /0	31	0.5	07	104
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka	- 0 F	< 0.5	- 0 F	< 0.5
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg	< 0.5	0.6	< 0.5	0.6
Benzo(a)pyrene TEQ (medium bound) * Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX20220416 _08_36_SS_Tri plicate_EUF	SX20220416 _08_44_SS_Pri mary_EUF	SX_IB_202204 16_12_10_SS_ Primary_EUF	SX_IB_202204 16_16_18_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036819	Ap0036820	Ap0036821	Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	<u> </u>	·				
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	64	62	76	70
p-Terphenyl-d14 (surr.)	1	%	77	69	80	76
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	105	84	67	93
Tetrachloro-m-xylene (surr.)	1	%	124	89	93	116

	1	1		1	1	1
Client Sample ID			SX20220416 _08_36_SS_Tri plicate_EUF	SX20220416 _08_44_SS_Pri mary_EUF	SX_IB_202204 16_12_10_SS_ Primary_EUF	SX_IB_202204 16_16_18_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036819	Ap0036820	Ap0036821	Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	<u>'</u>					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	105	84	67	93
Tetrachloro-m-xylene (surr.)	1	%	124	89	93	116
Phenols (Halogenated)	•	•				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	60	41	98	31
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
	ı					
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	< 100	< 100	< 100	< 100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	12	12	8.5	12
% Moisture	1	%	40	40	36	35
Heavy Metals	I	T				
Arsenic	2	mg/kg	57	27	24	23
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	140	130	120
Copper	5	mg/kg	60	68	66	50
Lead	5	mg/kg	8.1	5.9	< 5	5.5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SX20220416 _08_36_SS_Tri plicate_EUF	SX20220416 _08_44_SS_Pri mary_EUF	SX_IB_202204 16_12_10_SS_ Primary_EUF Soil	SX_IB_202204 16_16_18_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	M22-	Soil M22-
Eurofins Sample No.			Ap0036819	Ap0036820	Ap0036821	Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	150	180	190	130
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	120	130	120	100
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	96	97	99	97
13C5-PFPeA (surr.)	1	%	109	103	97	103
13C5-PFHxA (surr.)	1	%	85	84	84	86
13C4-PFHpA (surr.)	1	%	83	80	83	87
13C8-PFOA (surr.)	1	%	68	70	89	73
13C5-PFNA (surr.)	1	%	75	58	91	70
13C6-PFDA (surr.)	1	%	100	71	112	93
13C2-PFUnDA (surr.)	1	%	101	110	108	92
13C2-PFDoDA (surr.)	1	%	84	89	84	81
13C2-PFTeDA (surr.)	1	%	66	81	100	76
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	97	100	107	86
D3-N-MeFOSA (surr.)	1	%	139	112	121	127
D5-N-EtFOSA (surr.)	1	%	129	139	141	120
D7-N-MeFOSE (surr.)	1	%	79	68	87	75
D9-N-EtFOSE (surr.)	1	%	84	81	96	80
D5-N-EtFOSAA (surr.)	1	%	103	96	95	83
D3-N-MeFOSAA (surr.)	1	%	69	89	99	70

Client Sample ID Sample Matrix Eurofins Sample No.			SX_20220416 _08_36_SS_Tri plicate_EUF Soil M22- Ap0036819	SX _20220416 _08_44_SS_Pri mary_EUF Soil M22- Ap0036820	SX_IB_202204 16_12_10_SS_ Primary_EUF Soil M22- Ap0036821	SX_IB_202204 16_16_18_SS_ Primary_EUF Soil M22- Ap0036822
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	64	60	65	65
18O2-PFHxS (surr.)	1	%	82	82	96	87
13C8-PFOS (surr.)	1	%	84	90	105	83
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	68	67	73	73
13C2-6:2 FTSA (surr.)	1	%	82	73	76	77
13C2-8:2 FTSA (surr.)	1	%	112	101	133	139
13C2-10:2 FTSA (surr.)	1	%	60	75	69	70
PFASs Summations	1					
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF		SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036823	M22- Ap0036826	M22- Ap0036827	M22- Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	SX_IB_202204 16_20_02_SS_ Primary_EUF	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036823	M22- Ap0036826	M22- Ap0036827	M22- Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics	100	mg/kg	V 100	V 100	V 100	100
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics	0.5	mg/kg	V 0.5	V 0.5	V 0.5	V 0.5
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	SX_IB_202204 16_20_02_SS_ Primary_EUF	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036823	M22- Ap0036826	M22- Ap0036827	M22- Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,	11,0110, 2022	745. 11, 2022	7.0-11, 2022
Volatile Organics	LOIC	Offic				
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Methylene Chloride	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
o-Xylene	0.3	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.1	mg/kg	3.8	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.1	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH*	0.5	mg/kg	3.8	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	73	67	74	88
Toluene-d8 (surr.)	1	%	80	73	81	101
Polycyclic Aromatic Hydrocarbons		70	00	7.0	0.	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	58	97	64	66
p-Terphenyl-d14 (surr.)	1	%	96	120	59	77
Organochlorine Pesticides	•	•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	_	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036823	Ap0036826	Ap0036827	Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	102	57	75	85
Tetrachloro-m-xylene (surr.)	1	%	95	91	83	90
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	102	57	75	85
Tetrachloro-m-xylene (surr.)	1	%	95	91	83	90
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	SX_IB_202204 16_20_02_SS_ Primary_EUF	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036823	Ap0036826	Ap0036827	Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	39	90	57	65
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Chromium (hexavalent)	1	mg/kg	< 1	< 1	1.3	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	< 100	< 100	< 100	< 100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		11	11	9.4
% Moisture	1	%	31	35	34	30
Heavy Metals						
Arsenic	2	mg/kg	20	24	29	30
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	76	130	130	140
Copper	5	mg/kg	38	54	57	65
Lead	5	mg/kg	5.7	6.6	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	90	160	160	210
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	91	110	110	130
Perfluoroalkyl carboxylic acids (PFCAs)		D	-	-	_	
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA)N11	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorontennic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11} Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA)*** Perfluorodecanoic acid (PFDA)**1	5 5	ug/kg	< 5 < 5	< 5	< 5 < 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5 < 5	< 5	< 5 < 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg		< 5	< 5 < 5	< 5
Perfluorotridecanoic acid (PFDoDA) ^{N15}	5	ug/kg	< 5	< 5	< 5 < 5	< 5
Perfluorotetradecanoic acid (PFTdA) ^{N11}	5	ug/kg ug/kg	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5
13C4-PFBA (surr.)	1	ug/kg %	97	96	95	101
13C4-PFBA (surr.)	1	%	106	100	95	97
13C5-PFPeA (surr.)	1	%	87	84	81	88

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	1	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036823	Ap0036826	Ap0036827	Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		•				
13C4-PFHpA (surr.)	1	%	86	88	79	82
13C8-PFOA (surr.)	1	%	82	81	92	90
13C5-PFNA (surr.)	1	%	86	76	69	60
13C6-PFDA (surr.)	1	%	103	103	73	63
13C2-PFUnDA (surr.)	1	%	99	111	101	101
13C2-PFDoDA (surr.)	1	%	80	89	85	91
13C2-PFTeDA (surr.)	1	%	77	109	69	77
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{M1}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	97	97	106	100
D3-N-MeFOSA (surr.)	1	%	139	127	111	73
D5-N-EtFOSA (surr.)	1	%	136	147	125	125
D7-N-MeFOSE (surr.)	1	%	82	87	75	66
D9-N-EtFOSE (surr.)	1	%	89	103	81	73
D5-N-EtFOSAA (surr.)	1	%	106	134	94	133
D3-N-MeFOSAA (surr.)	1	%	67	83	99	112
Perfluoroalkyl sulfonic acids (PFSAs)	_		_	_	_	_
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5 5	ug/kg ug/kg	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	70	58	68	76
1802-PFHxS (surr.)	1	%	57	96	105	79
13C8-PFOS (surr.)	1	%	99	99	92	93
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				-		
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2						
FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2	5	ug/kg	< 5	< 5	< 5	< 5
FTSA) ^{N11} 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2	10	ug/kg	< 10	< 10	< 10	< 10
FTSA) ^{N11} 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2	5	ug/kg	< 5	< 5	< 5	< 5
FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	73	74	68	75
13C2-6:2 FTSA (surr.)	1	%	88	72	67	87

Client Sample ID			SX_IB_202204 16_16_22_SS_ Duplicate_EUF	SX_IB_202204 16_20_02_SS_ Primary_EUF	SX_IB_202204 17_00_01_SS_ Primary_EUF	SX_IB_202204 17_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036823	M22- Ap0036826	M22- Ap0036827	M22- Ap0036828
Date Sampled			Apr 16, 2022	Apr 16, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
13C2-8:2 FTSA (surr.)	1	%	127	110	86	99
13C2-10:2 FTSA (surr.)	1	%	51	110	82	115
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID Sample Matrix			SX_IB_202204 17_08_05_SS_ Primary_EUF Soil M22-	SX_IB_202204 17_08_10_SS_ Triplicate_EUF Soil M22-	SX_IB_202204 17_12_28_SS_ Primary_EUF Soil M22-	SX_IB_202204 17_15_56_SS_ Primary_EUF Soil M22-
Eurofins Sample No.			Ap0036829	Ap0036830	Ap0036831	Ap0036832
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics						
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036829	Ap0036830	Ap0036831	Ap0036832
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit	. ,			
Volatile Organics	LOIK	- Oille				
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vilonea Total*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH* Vic EPA IWRG 621 CHC (Total)*	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	// // // // // // // // // // // // //	81	66	60	82
Toluene-d8 (surr.)	1	%	89	76	67	102

Client Sample ID Sample Matrix			SX_IB_202204 17_08_05_SS_ Primary_EUF Soil	SX_IB_202204 17_08_10_SS_ Triplicate_EUF Soil	SX_IB_202204 17_12_28_SS_ Primary_EUF Soil	SX_IB_202204 17_15_56_SS_ Primary_EUF Soil
Eurofins Sample No.			M22- Ap0036829	M22- Ap0036830	M22- Ap0036831	M22- Ap0036832
•			i -	•	•	•
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene Fluoranthene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	66	82	53	65
p-Terphenyl-d14 (surr.)	1	%	76	108	58	73
Organochlorine Pesticides	'					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldele and District (Tarable	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)"						
Aldrin and Dieldrin (Total)* DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

			SX IB 202204	SX IB 202204	SX IB 202204	SX IB 202204
Client Sample ID			17_08_05_SS_ Primary_EUF	17_08_10_SS_ Triplicate_EUF	17_12_28_SS_ Primary_EUF	17_15_56_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036829	M22- Ap0036830	M22- Ap0036831	M22- Ap0036832
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>					
Dibutylchlorendate (surr.)	1	%	82	112	87	92
Tetrachloro-m-xylene (surr.)	1	%	114	79	100	95
Polychlorinated Biphenyls	, ,	1				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	82	112	87	92
Tetrachloro-m-xylene (surr.)	1	%	114	79	100	95
Phenois (Halogenated)	I	1				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenois (non-Halogenated)		199				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	56	32	45	56
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Chromium (hexavalent)	1	mg/kg	< 1	< 1	1.2	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	680	420	540	520
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	10	9.0	8.4	8.4
% Moisture	1	%	35	30	28	31

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			Soil M22-	Soil M22-	Soil M22-	Soil M22-
Eurofins Sample No.			Ap0036829	Ap0036830	Ap0036831	Ap0036832
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	18	38	28	27
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	120	130	140	140
Copper	5	mg/kg	42	63	70	66
Lead	5	mg/kg	< 5	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	150	190	210	210
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	81	130	130	130
Perfluoroalkyl carboxylic acids (PFCAs)		T ,,	_	_	_	_
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11} Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFNA) ^{M1}	5 5	ug/kg	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	111	101	104	103
13C5-PFPeA (surr.)	1	%	108	92	105	93
13C5-PFHxA (surr.)	1	%	94	87	92	84
13C4-PFHpA (surr.)	1	%	93	85	87	83
13C8-PFOA (surr.)	1	%	100	90	93	66
13C5-PFNA (surr.)	1	%	53	53	55	85
13C6-PFDA (surr.)	1	%	85	72	75	104
13C2-PFUnDA (surr.)	1	%	129	108	134	122
13C2-PFDoDA (surr.)	1	%	122	82	90	89
13C2-PFTeDA (surr.)	1	%	98	91	88	88
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11} N-methylperfluoro-1-octane sulfonamide (N-	5	ug/kg	< 5	< 5	< 5	< 5
MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	123	113	98	97
D3-N-MeFOSA (surr.)	1	%	136	143	116	114

Client Sample ID			SX_IB_202204 17_08_05_SS_ Primary_EUF	SX_IB_202204 17_08_10_SS_ Triplicate_EUF	SX_IB_202204 17_12_28_SS_ Primary_EUF	SX_IB_202204 17_15_56_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036829	M22- Ap0036830	M22- Ap0036831	M22- Ap0036832
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 17, 2022	Apr 17, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances	1					
D5-N-EtFOSA (surr.)	1	%	147	134	143	138
D7-N-MeFOSE (surr.)	1	%	97	70	83	80
D9-N-EtFOSE (surr.)	1	%	107	89	92	88
D5-N-EtFOSAA (surr.)	1	%	122	131	116	98
D3-N-MeFOSAA (surr.)	1	%	143	101	132	109
Perfluoroalkyl sulfonic acids (PFSAs)	<u>'</u>	•				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS)N11	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	85	70	70	69
18O2-PFHxS (surr.)	1	%	114	90	109	96
13C8-PFOS (surr.)	1	%	76	86	81	99
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	•					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	77	73	75	78
13C2-6:2 FTSA (surr.)	1	%	81	80	70	69
13C2-8:2 FTSA (surr.)	1	%	77	71	74	98
13C2-10:2 FTSA (surr.)	1	%	99	89	103	112
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			SX_IB_202204 17_15_56_SS_ Duplicate EUF	SX_IB_202204 17_20_03_SS_ Primary_EUF	SX_IB_202204 18_00_05_SS_ Primary_EUF	SX_IB_202204 18_04_01_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036833	M22- Ap0036834	M22- Ap0036835	M22- Ap0036836
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit	745. 17, 2022	740. 11, 2022	7451 10, 2022	7.45. 10, 2022
Total Recoverable Hydrocarbons	LOIX	Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20		< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics	100	ilig/kg	V 100	< 100	V 100	V 100
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics	0.5	ilig/kg	< 0.5	₹ 0.5	< 0.5	V 0.3
	0.5		. O F	. O F	. O F	. O F
1.1-Dichloroethane	0.5 0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene 1.1-Dichloroethene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
1.1.1-Dichloroethene 1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2Thermoroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Diofinoetriarie 1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.1	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Date Reported: Apr 22, 2022

Environment Testing

		1	T	1	1	1
Client Sample ID			SX_IB_202204 17_15_56_SS_ Duplicate_EUF	SX_IB_202204 17_20_03_SS_ Primary_EUF	SX_IB_202204 18_00_05_SS_ Primary_EUF	SX_IB_202204 18_04_01_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036833	M22- Ap0036834	M22- Ap0036835	M22- Ap0036836
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Volatile Organics	<u> </u>					
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	83	79	79	73
Toluene-d8 (surr.)	1	%	92	89	89	80
Polycyclic Aromatic Hydrocarbons		T "				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Actions	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benza(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5 < 0.5
Benzo(g.n.i)peryiene Benzo(k)fluoranthene	0.5	mg/kg mg/kg	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Page 19 of 74

		1		<u> </u>	1	
Client Sample ID			SX_IB_202204 17_15_56_SS_ Duplicate_EUF	SX_IB_202204 17_20_03_SS_ Primary_EUF	SX_IB_202204 18_00_05_SS_ Primary_EUF	SX_IB_202204 18_04_01_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036833	M22- Ap0036834	M22- Ap0036835	M22- Ap0036836
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit	7.4, 2022	140. 11, 2022	745. 10, 2022	7.6. 10, 2022
Polycyclic Aromatic Hydrocarbons	LOR	Offic				
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	67	64	62	78
p-Terphenyl-d14 (surr.)	1	%	79	71	79	141
Organochlorine Pesticides	ı	/0	79	/ 1	79	141
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.1	< 0.15	< 0.1	< 0.1
4.4'-DDE	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	74	76	71	85
Tetrachloro-m-xylene (surr.)	1	%	103	108	85	104
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	74	76	71	85
Tetrachloro-m-xylene (surr.)	1	%	103	108	85	104
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1

			SX IB 202204	SX_IB_202204	SX IB 202204	SX_IB_202204
Client Sample ID			17_15_56_SS_ Duplicate_EUF	17_20_03_SS_	18_00_05_SS_ Primary_EUF	18_04_01_SS_ Primary EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036833	M22- Ap0036834	M22- Ap0036835	M22- Ap0036836
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit	, , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Phenols (Halogenated)	LOIN	Offic				
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)		199				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	50	47	59	63
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	470	560	500	490
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.0	8.7	8.6	9.0
% Moisture	1	%	31	30	30	32
Heavy Metals						
Arsenic	2	mg/kg	27	32	33	120
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	130	150	140	140
Copper	5	mg/kg	54	75	74	58
Lead	5	mg/kg	< 5	< 5	< 5	5.6
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	160	230	210	180
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	100	140	140	130
Perfluoroalkyl carboxylic acids (PFCAs)	ı					
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5

Client Sample ID			SX_IB_202204 17_15_56_SS_	SX_IB_202204 17_20_03_SS_	SX_IB_202204 18_00_05_SS_	SX_IB_202204 18_04_01_SS_
Sample Matrix			Duplicate_EUF Soil	Primary_EUF Soil	Primary_EUF Soil	Primary_EUF Soil
Eurofins Sample No.			M22- Ap0036833	M22- Ap0036834	M22- Ap0036835	M22- Ap0036836
Date Sampled			Apr 17, 2022	Apr 17, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	98	98	95	104
13C5-PFPeA (surr.)	1	%	92	95	90	98
13C5-PFHxA (surr.)	1	%	84	83	81	92
13C4-PFHpA (surr.)	1	%	83	85	77	88
13C8-PFOA (surr.)	1	%	80	82	72	89
13C5-PFNA (surr.)	1	%	64	66	70	58
13C6-PFDA (surr.)	1	%	78	69	70	89
13C2-PFUnDA (surr.)	1	%	110	85	116	119
13C2-PFDoDA (surr.)	1	%	95	102	88	100
13C2-PFTeDA (surr.)	1	%	82	77	78	95
Perfluoroalkyl sulfonamido substances		'				
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	97	100	102	112
D3-N-MeFOSA (surr.)	1	%	110	114	105	118
D5-N-EtFOSA (surr.)	1	%	129	138	129	141
D7-N-MeFOSE (surr.)	1	%	76	74	73	90
D9-N-EtFOSE (surr.)	1	%	84	73	88	96
D5-N-EtFOSAA (surr.)	1	%	125	124	134	120
D3-N-MeFOSAA (surr.)	1	%	131	108	117	148
Perfluoroalkyl sulfonic acids (PFSAs)		1				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	73	70	71	73
18O2-PFHxS (surr.)	1	%	118	96	81	89
13C8-PFOS (surr.)	1	%	81	76	88	83

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SX_IB_202204 17_15_56_SS_ Duplicate_EUF Soil M22- Ap0036833 Apr 17, 2022		SX_IB_202204 18_00_05_SS_ Primary_EUF Soil M22- Ap0036835 Apr 18, 2022	SX_IB_202204 18_04_01_SS_ Primary_EUF Soil M22- Ap0036836 Apr 18, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	67	69	68	76
13C2-6:2 FTSA (surr.)	1	%	66	72	72	81
13C2-8:2 FTSA (surr.)	1	%	86	88	90	79
13C2-10:2 FTSA (surr.)	1	%	100	106	98	112
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

		1				
Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036837	M22- Ap0036838	M22- Ap0036839	M22- Ap0036840
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics						
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			SX_IB_202204 18_08_08_SS_ Triplicate_EUF Soil M22-	SX_IB_202204 18_08_09_SS_ Primary_EUF Soil M22-	SX_IB_202204 18_11_57_SS_ Primary_EUF Soil M22-	SX_IB_202204 18_16_08_SS_ Primary_EUF Soil M22-
Eurofins Sample No.			Ap0036837	Ap0036838	Ap0036839	Ap0036840
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Volatile Organics						
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene Bromobenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromochloromethane	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Bromodichloromethane	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
lodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036837	M22- Ap0036838	M22- Ap0036839	M22- Ap0036840
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit				
Volatile Organics						
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	83	75	65	69
Toluene-d8 (surr.)	1	%	101	83	72	76
Polycyclic Aromatic Hydrocarbons		,,,		- 55		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (incaram bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	63	57	80	52
p-Terphenyl-d14 (surr.)	1	%	70	100	95	66
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-НСН	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

		SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
		M22-	M22-	M22-	Soil M22-
		· .	•	•	Ap0036840
		Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
LOR	Unit				
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
1	%	69	83	90	88
1	%	100	86	113	93
	•				
0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
0.1		< 0.1	< 0.1	< 0.1	< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					88
					93
	1				
0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
					< 0.5
					< 1
					< 1
					< 0.5
					< 1
					< 1
					< 10
					< 1
•	i iiig/iig	1			
20	ma/ka	z 20	z 20	- 20	< 20
					< 5
					< 1
					< 0.5
					< 5
					< 0.2
					< 0.2
					< 0.4
					< 5
					< 20
1	mg/kg %	< 0.5 58	< 0.5 73	< 0.5 58	< 0.5 32
1 1	1 %	. ວຽ	1 /3	1 58	1 32
	0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1	0.05 mg/kg 0.1 mg/kg 0.1 mg/kg 1 % 1 % 1 mg/kg 0.1 mg/kg 1 mg/kg 0.5 mg/kg 1 mg/kg 0.5 mg/kg	18_08_08_SS_Triplicate_EUF Soil M22-Ap0036837 Apr 18, 2022 LOR	18.08.08.SS	18

Client Sample ID			SX_IB_202204 18_08_08_SS_ Triplicate_EUF	SX_IB_202204 18_08_09_SS_ Primary_EUF	SX_IB_202204 18_11_57_SS_ Primary_EUF	SX_IB_202204 18_16_08_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036837	M22- Ap0036838	M22- Ap0036839	M22- Ap0036840
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit	•			
Teagriculation	LOIK	OTHE				
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	460	530	450	500
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.0	8.7	8.8	10
% Moisture	1	%	29	32	31	35
Heavy Metals						
Arsenic	2	mg/kg	33	52	20	26
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	150	130	120	120
Copper	5	mg/kg	69	55	69	56
Lead	5	mg/kg	< 5	5.3	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	200	170	180	160
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	130	110	140	110
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA)N11	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA)N15	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	97	106	104	99
13C5-PFPeA (surr.)	1	%	98	99	97	97
13C5-PFHxA (surr.)	1	%	83	92	90	86
13C4-PFHpA (surr.)	1	%	78	87	91	89
13C8-PFOA (surr.)	1	%	69	100	81	82
13C5-PFNA (surr.)	1	%	76	113	56	85
13C6-PFDA (surr.)	1	%	67	85	67	85
13C2-PFUnDA (surr.)	1	%	113	109	120	97
13C2-PFDoDA (surr.)	1	%	90	90	91	84
13C2-PFTeDA (surr.)	1	%	78	82	80	75
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)N11	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5

Client Sample ID Sample Matrix			SX_IB_202204 18_08_08_SS_ Triplicate_EUF Soil	SX_IB_202204 18_08_09_SS_ Primary_EUF Soil	SX_IB_202204 18_11_57_SS_ Primary_EUF Soil	SX_IB_202204 18_16_08_SS_ Primary_EUF Soil
Eurofins Sample No.			M22- Ap0036837	M22- Ap0036838	M22- Ap0036839	M22- Ap0036840
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 18, 2022	Apr 18, 2022
Test/Reference	LOR	Unit	7.6. 10, 2022	, , , , , , , , , , , , , , , , , , , ,	7.6. 10, 2022	7.0. 10, 2022
Perfluoroalkyl sulfonamido substances	LON	Offic				
•		<u> </u>				
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	94	115	108	120
D3-N-MeFOSA (surr.)	1	%	113	118	137	133
D5-N-EtFOSA (surr.)	1	%	120	130	130	125
D7-N-MeFOSE (surr.)	1	%	66	85	79	85
D9-N-EtFOSE (surr.)	1	%	78	88	106	81
D5-N-EtFOSAA (surr.)	1	%	115	125	123	121
D3-N-MeFOSAA (surr.)	1	%	94	92	134	96
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	63	76	70	81
18O2-PFHxS (surr.)	1	%	93	120	101	122
13C8-PFOS (surr.)	1	%	70	111	78	64
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		•				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	70	75	76	73
13C2-6:2 FTSA (surr.)	1	%	62	82	77	73
13C2-8:2 FTSA (surr.)	1	%	91	117	90	117
13C2-10:2 FTSA (surr.)	1	%	114	67	106	85
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			SX_IB_202204 18_16_09_SS_	SX_IB_202204 18_19_59_SS_	SX_IB_202204 19_00_03_SS_	SX_IB_202204 19_03_57_SS_
Sample Matrix			Duplicate_EUF Soil		Primary_EUF Soil	Primary_EUF Soil
Eurofins Sample No.			M22- Ap0036841	M22- Ap0036842	M22- Ap0036843	M22- Ap0036844
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
•	LOD	1.1:-	Apr 10, 2022	Apr 10, 2022	Apr 13, 2022	Apr 13, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	20		. 20	. 20	. 20	. 20
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Volatile Organics						
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Г		1		1	1	
Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF	SX_IB_202204 18_19_59_SS_ Primary_EUF	SX_IB_202204 19_00_03_SS_ Primary_EUF	SX_IB_202204 19_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036841	M22- Ap0036842	M22- Ap0036843	M22- Ap0036844
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit	7.6. 10, 2022	11,0110, 2022	7.6. 10, 2022	745. 10, 2022
Volatile Organics	LOIK	Offic				
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Total MAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	78	72	75	78
Toluene-d8 (surr.)	1	%	88	80	81	91
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene P'h a changaigh a changaigh	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
renenaniniene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SX_IB_202204 18_16_09_SS_	SX_IB_202204 18_19_59_SS_	SX_IB_202204 19_00_03_SS_	SX_IB_202204 19_03_57_SS_
Sample Matrix			Duplicate_EUF Soil	Primary_EUF Soil	Primary_EUF Soil	Primary_EUF Soil
Eurofins Sample No.			M22- Ap0036841	M22- Ap0036842	M22- Ap0036843	M22- Ap0036844
			Apr 18, 2022		•	•
Date Sampled			Apr 16, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T				
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	65	96	60	61
p-Terphenyl-d14 (surr.)	1	%	68	92	54	68
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-НСН	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	69	94	52	69
Tetrachloro-m-xylene (surr.)	1	%	93	123	65	88
Polychlorinated Biphenyls	T	<u> </u>				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	69	94	52	69
Tetrachloro-m-xylene (surr.)	1	%	93	123	65	88
Phenols (Halogenated)	<u> </u>	T				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID Sample Matrix			SX_IB_202204 18_16_09_SS_ Duplicate_EUF Soil M22-	SX_IB_202204 18_19_59_SS_ Primary_EUF Soil M22-	SX_IB_202204 19_00_03_SS_ Primary_EUF Soil M22-	SX_IB_202204 19_03_57_SS_ Primary_EUF Soil M22-
Eurofins Sample No.			Ap0036841	Ap0036842	Ap0036843	Ap0036844
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
Phenols (Halogenated)						
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	64	55	140	54
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
Cyanide (total)	5	mg/kg	< 5	< 5	< 5	< 5
Fluoride (Total)	100	mg/kg	450	550	540	490
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	10	8.7	8.9	8.7
% Moisture	1	%	35	29	30	29
Heavy Metals						
Arsenic	2	mg/kg	41	31	32	20
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	170	140	140	140
Copper	5	mg/kg	84	66	73	75
Lead	5	mg/kg	6.0	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	270	210	220	200
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	2	mg/kg	< 2	< 2	< 2	< 2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc Porfluoroalkyl carboxylic acids (PECAs)	5	mg/kg	180	120	140	140
Perfluoroalkyl carboxylic acids (PFCAs)		//				
Perfluorobutanoic acid (PFBA)N11	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11} Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoronexanoic acid (PFHxA) ^{N11}	5 5	ug/kg	< 5 < 5	< 5	< 5 < 5	< 5 < 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg ug/kg	< 5 < 5	< 5 < 5	< 5 < 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg ug/kg	< 5	< 5	< 5	< 5

Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF	SX_IB_202204 18_19_59_SS_ Primary_EUF	SX_IB_202204 19_00_03_SS_ Primary_EUF	SX_IB_202204 19_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036841	M22- Ap0036842	M22- Ap0036843	M22- Ap0036844
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	96	106	103	97
13C5-PFPeA (surr.)	1	%	95	107	113	97
13C5-PFHxA (surr.)	1	%	84	92	89	79
13C4-PFHpA (surr.)	1	%	80	93	92	82
13C8-PFOA (surr.)	1	%	79	96	86	58
13C5-PFNA (surr.)	1	%	82	53	57	42
13C6-PFDA (surr.)	1	%	91	92	82	66
13C2-PFUnDA (surr.)	1	%	105	126	113	117
13C2-PFDoDA (surr.)	1	%	104	86	82	105
13C2-PFTeDA (surr.)	1	%	68	76	82	69
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	97	115	118	102
D3-N-MeFOSA (surr.)	1	%	123	147	123	137
D5-N-EtFOSA (surr.)	1	%	121	116	136	126
D7-N-MeFOSE (surr.)	1	%	67	82	94	64
D9-N-EtFOSE (surr.)	1	%	78	96	90	79
D5-N-EtFOSAA (surr.)	1	%	117	140	126	148
D3-N-MeFOSAA (surr.)	1	%	92	137	141	124
Perfluoroalkyl sulfonic acids (PFSAs)		1				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	69	84	76	63
18O2-PFHxS (surr.)	1	%	93	103	85	94
13C8-PFOS (surr.)	1	%	68	89	74	69

			OV ID 000004	OV ID 000004	OV ID 000004	OV ID COCCO
Client Sample ID			SX_IB_202204 18_16_09_SS_ Duplicate_EUF	SX_IB_202204 18_19_59_SS_ Primary_EUF	SX_IB_202204 19_00_03_SS_ Primary_EUF	SX_IB_202204 19_03_57_SS_ Primary_EUF
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M22- Ap0036841	M22- Ap0036842	M22- Ap0036843	M22- Ap0036844
Date Sampled			Apr 18, 2022	Apr 18, 2022	Apr 19, 2022	Apr 19, 2022
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	66	74	75	70
13C2-6:2 FTSA (surr.)	1	%	68	77	79	74
13C2-8:2 FTSA (surr.)	1	%	93	93	88	61
13C2-10:2 FTSA (surr.)	1	%	75	107	134	115
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
IWRG 621 WGTP Suite			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Melbourne	Apr 20, 2022	7 Days
- Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS			
Volatile Organics	Melbourne	Apr 20, 2022	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices (USEPA 8260)			
Polycyclic Aromatic Hydrocarbons	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Polychlorinated Biphenyls	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
Phenols (Halogenated)	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Chromium (hexavalent)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection			
Cyanide (total)	Melbourne	Apr 20, 2022	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
Fluoride (Total)	Melbourne	Apr 21, 2022	28 Days
- Method: LTM-INO-4150 Determination of Total Fluoride PART A - CIC			
- Method: LTM-INO-4150 Determination of Total Fluoride PART B – ISE			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Apr 20, 2022	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals IWRG 621 : Metals M12	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Apr 19, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Melbourne	Apr 20, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
PFASs Summations	Melbourne	Apr 19, 2022	
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton SA 5063

20220419042301-Eurofin-21

Project Name: Project ID:

JC0927

Order No.:

Report #: Phone:

179 Magowar Road

Phone: +61 2 9900 8400

880891 08 8338 1009

Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

Eurofins Analytical Services Manager: Michael Cassidy

Sample Detail					AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite	
Melbourne Laboratory - NATA # 1261 Site # 1254						Χ	Х	Х	Х
Sydney Laboratory - NATA # 1261 Site # 18217									
Brisbane Laboratory - NATA # 1261 Site # 20794 Mayfield Laboratory - NATA # 1261 Site # 25079									
Perth Laboratory - NATA # 2377 Site # 2370									
External Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		Soil	M22- Ap0036819		х	Х	х
2	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036820		Х	Х	х
3	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036821		х	х	х
4	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036822		Х	Х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone:

179 Magowar Road

Fax:

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	X	Х	Х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217						
	bane Laboratory							1	
	field Laboratory							-	
	h Laboratory - N		te # 2370						
	rnal Laboratory			Г					
5	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		Soil	M22- Ap0036823		x	Х	х
6	SX_IB_202204 16_16_49_SR _Rinsate_EUF	Apr 16, 2022		Water	M22- Ap0036824			x	
7	SX_IB_202204 16_16_50_SB _Blank_EUF	Apr 16, 2022		Water	M22- Ap0036825			x	
8	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036826		x	x	х
9	SX_IB_202204	Apr 17, 2022		Soil	M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Due: **Priority:**

Apr 21, 2022 3 Dav

Apr 19, 2022 3:30 PM

Contact Name: Agon Lab Reports (Spoil Project)

		Sai	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
								s (PFASs)	
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
_	ey Laboratory -								
	oane Laboratory	<i>'</i>							
	ield Laboratory								
	n Laboratory - N		e # 2370						
9	rnal Laboratory SX_IB_202204 17_00_01_SS _Primary_EUF			Soil	M22- Ap0036827				
10	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036828		Х	Х	х
11	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036829		Х	х	х
12	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		Soil	M22- Ap0036830		х	х	х
13	SX_IB_202204	Apr 17, 2022		Soil	M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891

08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	17_12_28_SS _Primary_EUF				Ap0036831				
14	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036832		х	х	х
15	SX_IB_202204 17_15_56_SS _Duplicate_EU F	Apr 17, 2022		Soil	M22- Ap0036833		х	х	х
16	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036834		х	х	х
17	SX_IB_202204 18_00_05_SS	Apr 18, 2022		Soil	M22- Ap0036835		х	х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

> > Apr 21, 2022

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Due: **Priority:**

Contact Name:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

3 Dav Agon Lab Reports (Spoil Project)

Apr 19, 2022 3:30 PM

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	18_00_05_SS _Primary_EUF				Ap0036835				
18	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036836		х	х	х
19	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036837		х	х	х
20	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036838		х	х	х
21	SX_IB_202204 18_11_57_SS	Apr 18, 2022		Soil	M22- Ap0036839		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	bourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laborator	y - NATA # 126	1 Site # 20794	4					
May	field Laboratory	[,] - NATA # 1261	Site # 25079)					
	h Laboratory - N		te # 2370						
Exte	rnal Laboratory	, T	_	_					
	_Primary_EUF								
22	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036840		х	х	х
23	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036841		х	х	х
24	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036842		х	Х	х
25	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036843		х	х	х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Phone: +61 2 9900 8400

Report #: Phone:

880891 08 8338 1009

Fax:

179 Magowar Road

Sydney

Received:

Perth

Apr 19, 2022 3:30 PM Apr 21, 2022

NZBN: 9429046024954

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
	ney Laboratory								
Bris	bane Laboratory	y - NATA # 126 [,]	1 Site # 2079	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory								
26	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036844		х	х	х
27	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036845	Х		Х	
28	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036846	х		х	
29	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036847	Х		х	
30	SX_IB_202204 16_16_18_SS	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036848	Х		Х	

Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 35 O'Rorke Road

Auckland

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891

08 8338 1009

Phone: Fax:

Sydney

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydi	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory				1				
	_Primary_EUF								
31	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036849	х		х	
32	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036850	Х		Х	
33	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036851	Х		Х	
34	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036852	х		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Sydney

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory								
35	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036853	Х		х	
36	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036854	Х		x	
37	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036855	Х		Х	
38	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036856	Х		Х	
39	SX_IB_202204	Apr 17, 2022		AUS Leachate	M22-	Χ		Х	

Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

Sydney

179 Magowar Road

880891 08 8338 1009

Phone: Fax:

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Apr 19, 2022 3:30 PM Apr 21, 2022

NZBN: 9429046024954

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydi	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	Site # 20794	ļ					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	17_15_56_SS _Duplicate_EU F			- pH 5.0	Ap0036857				
40	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036858	Х		х	
41	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036859	Х		х	
42	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036860	X		х	
43	SX_IB_202204 18_08_08_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036861	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

179 Magowar Road

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	18_08_08_SS _Triplicate_EU F			- pH 5.0	Ap0036861				
44	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036862	х		х	
45	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036863	х		х	
46	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036864	х		Х	
47	SX_IB_202204 18_16_09_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036865	Х		Х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory		,						
	_Duplicate_EU F								
48	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036866	х		х	
49	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036867	Х		Х	
50	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036868	х		Х	
51	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036869	Х		Х	

Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

Phone:

08 8338 1009

Fax:

Sydney

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
52	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036870	х		х	
53	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036871	х		Х	
54	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036872	Х		х	
55	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036873	х		х	
56	SX_IB_202204	Apr 16, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Fax:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone:

Received:

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261 :	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	1 Site # 20794	l .					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	16_20_02_SS _Primary_EUF			- Reagent Water	Ap0036874				
57	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036875	Х		х	
58	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036876	X		Х	
59	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036877	X		х	
60	SX_IB_202204 17_08_10_SS _Triplicate_EU	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036878	X		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891

Phone:

08 8338 1009

Fax:

Sydney

179 Magowar Road

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	, T	Г		ı				
	_Triplicate_EU F			Water					
61	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036879	х		х	
62	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036880	Х		Х	
63	SX_IB_202204 17_15_56_SS _Duplicate_EU F	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036881	Х		х	
64	SX_IB_202204 17_20_03_SS	Apr 17, 2022		AUS Leachate - Reagent	M22- Ap0036882	Х		Х	

ABN: 50 005 085 521 Melbourne

6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton SA 5063

Project Name: 20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

Received:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Due:

Apr 19, 2022 3:30 PM Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Primary_EUF			Water					
65	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036883	Х		Х	
66	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036884	Х		Х	
67	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036885	Х		Х	
68	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036886	X		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Company Name: Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory								
Brisbane Laboratory - NATA # 1261 Site # 20794									
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory			,					
69	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036887	Х		х	
70	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036888	Х		Х	
71	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036889	X		х	
72	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036890	Х		Х	
73	SX_IB_202204	Apr 19, 2022		AUS Leachate	M22-	Χ		Х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Χ	Х	Х	Х
Sydn	ey Laboratory	- NATA # 1261 S	Site # 18217						
Brisk	pane Laboratory	/ - NATA # 1261	Site # 20794						
Mayf	ield Laboratory	- NATA # 1261	Site # 25079						
Perth	Laboratory - N	IATA # 2377 Sit	e # 2370						
External Laboratory									
	19_00_03_SS _Primary_EUF			- Reagent Water	Ap0036891				
74	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - Reagent Water	M22- Ap0036892	Х		Х	
Test	Counts					48	24	74	24

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Volatile Organics					
Hexachlorobutadiene	mg/kg	< 0.5	0.5	Pass	
Method Blank	1 5 5	•			
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5	0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene			0.5	Pass	
	mg/kg	< 0.5			
2-Butanone (MEK)	mg/kg	< 0.5	0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 0.5	0.5	Pass	
4-Chlorotoluene	mg/kg	< 0.5	0.5	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5	0.5	Pass	
Allyl chloride	mg/kg	< 0.5	0.5	Pass	
Benzene	mg/kg	< 0.1	0.1	Pass	
Bromobenzene	mg/kg	< 0.5	0.5	Pass	
Bromochloromethane	mg/kg	< 0.5	0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5	0.5	Pass	
Bromoform	mg/kg	< 0.5	0.5	Pass	
Bromomethane	mg/kg	< 0.5	0.5	Pass	
Carbon disulfide	mg/kg	< 0.5	0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5	0.5	Pass	
Chlorobenzene	mg/kg	< 0.5	0.5	Pass	
Chloroethane	mg/kg	< 0.5	0.5	Pass	
Chloroform	mg/kg	< 0.5	0.5	Pass	
Chloromethane	mg/kg	< 0.5	0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dibromochloromethane	mg/kg	< 0.5	0.5	Pass	
Dibromomethane	mg/kg	< 0.5	0.5	Pass	
Dichlorodifluoromethane	mg/kg	< 0.5	0.5	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
lodomethane	mg/kg	< 0.5	0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Styrene	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		1 0.0	1 0.0	1 400	
Polycyclic Aromatic Hydrocarbons			T I		
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
` "					
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank			T		
Organochlorine Pesticides				_	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank				1	
Phenois (Halogenated)				T	
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1	1	Pass	
2.4.6-Trichlorophenol	mg/kg	<1	1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1	1	Pass	
Pentachlorophenol	mg/kg	<1	1	Pass	
Tetrachlorophenols - Total		< 10	10	Pass	
Method Blank	mg/kg	< 10	10	Fd55	
				Τ	
Phenois (non-Halogenated)		. 20	20	Dana	
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2-Nitrophenol	mg/kg	<1	1.0	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
4-Nitrophenol	mg/kg	< 5	5	Pass	
Dinoseb	mg/kg	< 20	20	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank				Τ_	
Chromium (hexavalent)	mg/kg	< 1	1	Pass	
Cyanide (total)	mg/kg	< 5	5	Pass	
Fluoride (Total)	mg/kg	< 100	100	Pass	
Method Blank				1	
Heavy Metals				1	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Molybdenum	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 2	2	Pass	
Tin	mg/kg	< 10	10	Pass	

Method Blank	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroalityl carboxylic acids (PFCAs)	Zinc	mg/kg	< 5	5	Pass	
Perfluorobutanola acid (PFPA)	Method Blank					
Perfluoropentanoic acid (PFPA)	Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluoroheptanoic acid (PFHA)	Perfluorobutanoic acid (PFBA)	ug/kg	< 5	5	Pass	
Perfluoronctanoic acid (PFDA)	Perfluoropentanoic acid (PFPeA)	ug/kg	< 5	5	Pass	
Perfluorocotanoic acid (PFOA)	Perfluorohexanoic acid (PFHxA)	ug/kg	< 5	5	Pass	
Perfluoronanancia acid (PFNA)	Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5	5	Pass	
Perfluorodecanoic acid (PFDA)	Perfluorooctanoic acid (PFOA)	ug/kg	< 5	5	Pass	
Perfluoroundecanoic acid (PFUnDA)	Perfluorononanoic acid (PFNA)	ug/kg	< 5	5	Pass	
Perfluorododecanoic acid (PFDDA)	Perfluorodecanoic acid (PFDA)	ug/kg	< 5	5	Pass	
Perfluorotridecanoic acid (PFTcDA)	` '	ug/kg	< 5		Pass	
Perfluorotetradecanoic acid (PFTeDA)	` '	ug/kg			Pass	
Method Blank Perfluoroalkyl sulfonamido substances Perfluorocalky sulfonamido substances Perfluorocalky sulfonamido (PCSA) Ug/kg	Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		Pass	
Perfluoroalkyl sulfonamido substances		ug/kg	< 5	5	Pass	
Perfluorooctane sulfonamide (FOSA) ug/kg < 5 5 Pass			1 1			
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ug/kg < 5 5 Pass	•					
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	·		1			
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ug/kg < 5	, ,		1			
MéFOSE	, , ,	ug/kg	< 5	5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ug/kg < 10 10 Pass		ug/kg	< 5	5	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ug/kg < 10	2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5	5	Pass	
Method Blank Perfluoroalkyl sulfonic acids (PFSAs) ug/kg < 5	N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10	10	Pass	
Perfluoroalkyl sulfonic acids (PFSAs)	N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10	10	Pass	
Perfluorobulanesulfonic acid (PFBS)	Method Blank					
Perfluorononanesulfonic acid (PFNS)	Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluoropropanesulfonic acid (PFPS)	Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5	5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5	5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5	5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5	5	Pass	
Perfluorooctanesulfonic acid (PFOS)	Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5	5	Pass	
Perfluorodecanesulfonic acid (PFDS)	Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5	5	Pass	
Method Blank n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) ug/kg < 5 Pass 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5	Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5	5	Pass	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) ug/kg < 5 Pass 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5	Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5			1			
1H.1H.2H.2H-perfluorocotanesulfonic acid (6:2 FTSA) ug/kg < 10	n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ug/kg < 5	, , ,	ug/kg	< 5	5	Pass	
TH.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ug/kg < 5 5 Pass	·		< 10		Pass	
LCS - % Recovery Total Recoverable Hydrocarbons	·		< 5		Pass	
Total Recoverable Hydrocarbons % 112 70-130 Pass TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass		ug/kg	< 5	5	Pass	
TRH C6-C9 % 112 70-130 Pass TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass	•		1			
TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1-Dichloroethane % 74 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass						
Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass						
TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass						
TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics Image: Control of the con	•					
LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass			1			
Volatile Organics 74 70-130 Pass 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass		%	116	70-130	Pass	
1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass	•					
1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass	9	0.1		70.400		
1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass			t			
1.2-Dichloroethane % 112 70-130 Pass			1 1			
			1			
Delizerie 70 00 / 10-130 Pass						
Ethylbenzene % 85 70-130 Pass			1			

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes	%	87	70-130	Pass	
Toluene	%	99	70-130	Pass	
Trichloroethene	%	74	70-130	Pass	
Xylenes - Total*	%	88	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	90	70-130	Pass	
Acenaphthylene	%	99	70-130	Pass	
Anthracene	%	91	70-130	Pass	
Benz(a)anthracene	%	102	70-130	Pass	
Benzo(a)pyrene	%	97	70-130	Pass	
Benzo(b&j)fluoranthene	%	103	70-130	Pass	
Benzo(g.h.i)perylene	%	88	70-130	Pass	
Benzo(k)fluoranthene	%	104	70-130	Pass	
Chrysene	%	98	70-130	Pass	
Dibenz(a.h)anthracene	%	97	70-130	Pass	
Fluoranthene	%	89	70-130	Pass	
Fluorene	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	92	70-130	Pass	
Naphthalene	%	83	70-130	Pass	
Phenanthrene	%	83	70-130	Pass	
Pyrene	%	92	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	98	70-130	Pass	
4.4'-DDD	%	109	70-130	Pass	
4.4'-DDE	%	100	70-130	Pass	
4.4'-DDT	%	95	70-130	Pass	
a-HCH	%	91	70-130	Pass	
Aldrin	%	100	70-130	Pass	
b-HCH	%	79	70-130	Pass	
d-HCH	%	77	70-130	Pass	
Dieldrin	%	99	70-130	Pass	
Endosulfan I	%	108	70-130	Pass	
Endosulfan II	%	92	70-130	Pass	
Endosulfan sulphate	%	104	70-130	Pass	
Endrin	%	108	70-130	Pass	
Endrin aldehyde	%	85	70-130	Pass	
Endrin ketone	%	93	70-130	Pass	
g-HCH (Lindane)	%	93	70-130	Pass	
Heptachlor	%	110	70-130	Pass	
Heptachlor epoxide	%	78	70-130	Pass	
Hexachlorobenzene	%	99	70-130	Pass	
Methoxychlor	%	92	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	129	70-130	Pass	
LCS - % Recovery		,			
Phenols (Halogenated)	T				
2-Chlorophenol	%	79	25-140	Pass	
2.4-Dichlorophenol	%	84	25-140	Pass	
2.4.5-Trichlorophenol	%	98	25-140	Pass	
2.4.6-Trichlorophenol	%	56	25-140	Pass	
2.6-Dichlorophenol	%	74	25-140	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4-Chloro-3-methylphenol	%	83	25-140	Pass	
Pentachlorophenol	%	99	25-140	Pass	
Tetrachlorophenols - Total	%	73	25-140	Pass	
LCS - % Recovery					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	%	59	25-140	Pass	
2-Methyl-4.6-dinitrophenol	%	67	25-140	Pass	
2-Nitrophenol	%	89	25-140	Pass	
2.4-Dimethylphenol	%	80	25-140	Pass	
2.4-Dinitrophenol	%	39	25-140	Pass	
2-Methylphenol (o-Cresol)	%	66	25-140	Pass	
3&4-Methylphenol (m&p-Cresol)	%	94	25-140	Pass	
4-Nitrophenol	%	81	25-140	Pass	
Dinoseb	%	75	25-140	Pass	
Phenol	%	83	25-140	Pass	
LCS - % Recovery					
Chromium (hexavalent)	%	88	70-130	Pass	
Cyanide (total)	%	102	70-130	Pass	
Fluoride (Total)	%	75	70-130	Pass	
LCS - % Recovery	,,,		10.00	1 466	
Heavy Metals		Т			
Arsenic	%	113	80-120	Pass	
Cadmium	%	97	80-120	Pass	
Chromium	%	112	80-120	Pass	
Copper	%	111	80-120	Pass	
Lead	%	115	80-120	Pass	
Mercury	%	101	80-120	Pass	
Molybdenum	%	113	80-120	Pass	
Nickel	%	106	80-120	Pass	
		111			
Selenium	%	100	80-120	Pass	
Silver	%		80-120	Pass	
Tin	%	114	80-120	Pass	
Zinc	%	111	80-120	Pass	
LCS - % Recovery		Т			
Perfluoroalkyl carboxylic acids (PFCAs)	0/	-		-	
Perfluorobutanoic acid (PFBA)	%	94	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	104	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	96	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	95	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	109	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	108	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	102	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	106	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	112	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	98	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	97	50-150	Pass	
LCS - % Recovery Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	%	106	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	115	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-MerOSA) N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	114	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-					
MeFOSE)	%	101	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	%	101	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	101	50-150	Pass	

Test			Units	Result 1	Acce		ass mits	Qualifying Code
N-methyl-perfluorooctanesulfonamic	doacetic acid (N-Me	eFOSAA)	%	128	50-	-150 P	ass	
LCS - % Recovery								
Perfluoroalkyl sulfonic acids (PFS	As)							
Perfluorobutanesulfonic acid (PFBS)		%	89	50-	-150 P	ass	
Perfluorononanesulfonic acid (PFNS	3)		%	149	50-	-150 P	ass	
Perfluoropropanesulfonic acid (PFP	rS)		%	122	50-	-150 P	ass	
Perfluoropentanesulfonic acid (PFP	eS)		%	120	50-	-150 P	ass	
Perfluorohexanesulfonic acid (PFH)	(S)		%	118	50-	-150 P	ass	
Perfluoroheptanesulfonic acid (PFH	pS)		%	82	50-	-150 P	ass	
Perfluorooctanesulfonic acid (PFOS	5)		%	131	50-	-150 P	ass	
Perfluorodecanesulfonic acid (PFDS	S)		%	130	50-	-150 P	ass	
LCS - % Recovery						·		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesulfo	nic acid (4:2 FTSA)		%	103	50-	-150 P	ass	
1H.1H.2H.2H-perfluorooctanesulfor	ic acid (6:2 FTSA)		%	111	50-	-150 P	ass	
1H.1H.2H.2H-perfluorodecanesulfo	nic acid (8:2 FTSA)		%	86	50-	-150 P	ass	
1H.1H.2H.2H-perfluorododecanesu	· · · · · · · · · · · · · · · · · · ·		%	127	50-	-150 P	ass	
•	,	QA		Result 1			ass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			mits	Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbon	S			Result 1				
Acenaphthene	M22-Ap0031241	NCP	%	101	70-	-130 P	ass	
Acenaphthylene	M22-Ap0031241	NCP	%	127	70-	-130 P	ass	
Anthracene	M22-Ap0031241	NCP	%	125	70-	-130 P	ass	
Dibenz(a.h)anthracene	M22-Ap0031241	NCP	%	124	70-	-130 P	ass	
Fluorene	M22-Ap0031241	NCP	%	117	70-	-130 P	ass	
Naphthalene	M22-Ap0031241	NCP	%	105	70-	-130 P	ass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Endrin aldehyde	M22-Ap0030337	NCP	%	123	70-	-130 P	ass	
Hexachlorobenzene	M22-Ap0031223	NCP	%	88	70-	-130 P	ass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1016	M22-Ap0031213	NCP	%	74	70-	-130 P	ass	
Aroclor-1260	M22-Ap0031213	NCP	%	112	70-	-130 P	ass	
Spike - % Recovery								
Phenols (Halogenated)				Result 1				
2-Chlorophenol	M22-Ap0031241	NCP	%	86	30-	-130 P	ass	
2.4-Dichlorophenol	M22-Ap0031241	NCP	%	89	30-	-130 P	ass	
2.4.5-Trichlorophenol	M22-Ap0031241	NCP	%	115	30-	-130 P	ass	
2.4.6-Trichlorophenol	M22-Ap0031241	NCP	%	82	30-	-130 P	ass	
2.6-Dichlorophenol	M22-Ap0031241	NCP	%	76	30-	-130 P	ass	
4-Chloro-3-methylphenol	M22-Ap0031241	NCP	%	87	30-	-130 P	ass	
Pentachlorophenol	M22-Ap0031241	NCP	%	84	30-	-130 P	ass	
Tetrachlorophenols - Total	M22-Ap0031241	NCP	%	78	30-	-130 P	ass	
Spike - % Recovery								
Phenols (non-Halogenated)				Result 1				
2-Cyclohexyl-4.6-dinitrophenol	M22-Ap0031241	NCP	%	72	30-	-130 P	ass	
2-Methyl-4.6-dinitrophenol	M22-Ap0031241	NCP	%	63			ass	
2-Nitrophenol	M22-Ap0031241	NCP	%	96			ass	
2.4-Dimethylphenol	M22-Ap0031241	NCP	%	101			ass	
2.4-Dinitrophenol	M22-Ap0031241	NCP	%	53			ass	
				1	 			
2-Methylphenol (o-Cresol)	M22-Ap0031241	NCP	%	75	30-	-130 P	ass	1
2-Methylphenol (o-Cresol) 3&4-Methylphenol (m&p-Cresol)	M22-Ap0031241 M22-Ap0031241	NCP NCP	% %	75 108			ass ass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dinoseb	M22-Ap0031241	NCP	%	83	30-130	Pass	
Phenol	M22-Ap0031241	NCP	%	83	30-130	Pass	
Spike - % Recovery							
				Result 1			
Chromium (hexavalent)	M22-Ap0034367	NCP	%	90	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	M22-Ap0036820	CP	%	122	70-130	Pass	
Naphthalene	M22-Ap0036820	CP	%	119	70-130	Pass	
TRH C6-C10	M22-Ap0036820	CP	%	120	70-130	Pass	
Spike - % Recovery				<u> </u>			
Volatile Organics				Result 1			
1.1-Dichloroethene	M22-Ap0036820	CP	%	80	70-130	Pass	
1.1.1-Trichloroethane	M22-Ap0036820	CP	%	75	70-130	Pass	
1.2-Dichlorobenzene	M22-Ap0036820	CP	%	118	70-130	Pass	
1.2-Dichloroethane	M22-Ap0036820	CP	%	115	70-130	Pass	
Benzene	M22-Ap0036820	CP	%	96	70-130	Pass	
Ethylbenzene	M22-Ap0036820	CP	%	97	70-130	Pass	
m&p-Xylenes	M22-Ap0036820	CP	%	102	70-130	Pass	
o-Xylene	M22-Ap0036820	CP	%	104	70-130	Pass	
Toluene	M22-Ap0036820	CP	%	108	70-130	Pass	
Trichloroethene	M22-Ap0036820	CP	%	77	70-130	Pass	
Xylenes - Total*	M22-Ap0036820	CP	%	102	70-130	Pass	
Spike - % Recovery							
				Result 1			
Fluoride (Total)	M22-Ap0036827	CP	%	72	70-130	Pass	
Spike - % Recovery						,	
				Result 1			
Fluoride (Total)	M22-Ap0036830	CP	%	72	70-130	Pass	
Spike - % Recovery						1	
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1			
Perfluorobutanoic acid (PFBA)	M22-Ap0036831	CP	%	93	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036831	CP	%	104	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036831	CP	%	100	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036831	CP	%	90	50-150	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036831	CP	%	101	50-150	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036831	CP	%	118	50-150	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036831	CP	%	119	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036831	СР	%	102	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0036831	СР	%	104	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036831	CP	%	110	50-150	Pass	
Perfluorotetradecanoic acid	W22 Ap0030031	Oi	/0	110	30-130	1 433	
(PFTeDA)	M22-Ap0036831	CP	%	96	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	M22-Ap0036831	СР	%	107	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M22-Ap0036831	СР	%	130	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036831	СР	%	99	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036831	СР	%	105	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036831	СР	%	100	50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036831	СР	%	66	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036831	СР	%	126	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036831	СР	%	93	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036831	СР	%	145	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036831	СР	%	139	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036831	СР	%	95	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036831	СР	%	93	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036831	СР	%	130	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036831	СР	%	94	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036831	СР	%	140	50-150	Pass	
Spike - % Recovery				T		Γ	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	1		Result 1			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036831	СР	%	104	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036831	СР	%	87	50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2	W22 / \$000001	0.	70	0.	33 100	1 400	
FTSA)	M22-Ap0036831	CP	%	98	50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036831	СР	%	88	50-150	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M22-Ap0036832	СР	%	91	70-130	Pass	
4.4'-DDD	M22-Ap0036832	CP	%	96	70-130	Pass	
4.4'-DDE	M22-Ap0036832	CP	%	92	70-130	Pass	
4.4'-DDT	M22-Ap0036832	СР	%	94	70-130	Pass	
a-HCH	M22-Ap0036832	СР	%	88	70-130	Pass	
Aldrin	M22-Ap0036832	CP	%	80	70-130	Pass	
b-HCH	M22-Ap0036832	CP	%	113	70-130	Pass	
d-HCH	M22-Ap0036832	CP	%	85	70-130	Pass	
Dieldrin	M22-Ap0036832	CP	%	84	70-130	Pass	
Endosulfan I	M22-Ap0036832	CP	%	90	70-130	Pass	
Endosulfan II	M22-Ap0036832	CP	%	92	70-130	Pass	
Endosulfan sulphate	M22-Ap0036832	CP	%	99	70-130	Pass	
Endrin	M22-Ap0036832	CP	%	95	70-130	Pass	
Endrin ketone	M22-Ap0036832	CP	%	118	70-130	Pass	
g-HCH (Lindane)	M22-Ap0036832	CP	%	82	70-130	Pass	
Heptachlor	M22-Ap0036832	CP	%	106	70-130	Pass	
Heptachlor epoxide	M22-Ap0036832	CP	<u> </u>	91	70-130	Pass	
Methoxychlor		CP	<u>%</u> %	102			
IVIGUIOXYGIIIOI	M22-Ap0036832		70	102	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals				Result 1					
Arsenic	M22-Ap0036842	СР	%	107			75-125	Pass	
Cadmium	M22-Ap0036842	СР	%	81			75-125	Pass	
Chromium	M22-Ap0036842	СР	%	106			75-125	Pass	
Copper	M22-Ap0036842	СР	%	119			75-125	Pass	
Lead	M22-Ap0036842	СР	%	100			75-125	Pass	
Mercury	M22-Ap0036842	СР	%	95			75-125	Pass	
Molybdenum	M22-Ap0036842	CP	%	108			75-125	Pass	
Nickel	M22-Ap0036842	CP	%	118			75-125	Pass	
Selenium	M22-Ap0036842	CP	%	92			75-125	Pass	
Silver	M22-Ap0036842	CP	%	83			75-125	Pass	
Tin	M22-Ap0036842	CP	%	106			75-125	Pass	
Zinc	M22-Ap0036842	CP	%	125			75-125	Pass	
ZIIIC	WIZZ-AP003664Z		70	123					Ouglifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				l	I I			Γ	
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD		<u> </u>	
TRH C6-C9	M22-Ap0036819	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M22-Ap0036819	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M22-Ap0036819	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M22-Ap0036819	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M22-Ap0036819	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M22-Ap0036819	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M22-Ap0036819	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M22-Ap0036819	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Hexachlorobutadiene	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trichlorobenzene	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	M22-Ap0036819	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	M22-Ap0036819	CP				<1			
•	· ·		mg/kg	< 0.5	< 0.5		30%	Pass	
1.3-Dichlorobenzene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzene	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Bromobenzene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	I

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Bromochloromethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	M22-Ap0036819	CP		< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	M22-Ap0036819	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	· ·		mg/kg					1 1	
Chloroethane	M22-Ap0036819 M22-Ap0036819	CP CP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Chloroform	M22-Ap0036819	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	M22-Ap0036819	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	· ·		mg/kg					 	
cis-1.2-Dichloroethene	M22-Ap0036819	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	M22-Ap0036819	<u>CP</u>	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	M22-Ap0036819	<u>CP</u>	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	M22-Ap0036819	CP_	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	M22-Ap0036819	CP_	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
lodomethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	M22-Ap0036819	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methylene Chloride	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
o-Xylene	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Styrene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
trans-1.2-Dichloroethene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes - Total*	M22-Ap0036819	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				T	<u> </u>		I	T	
Polycyclic Aromatic Hydrocarbo			1	Result 1	Result 2	RPD			
Acenaphthene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
		СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Chlordanes - Total	M22-Ap0036819	UF_	mg/kg	1 0.1	, 0				
Chlordanes - Total 4.4'-DDD	M22-Ap0036819 M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
				1					

Duplicate									
				Daguit 4	Danut 0	DDD	I		
Organochlorine Pesticides	Mag A = 0000010	0.0		Result 1	Result 2	RPD	000/		
a-HCH	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M22-Ap0036819	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls			1	Result 1	Result 2	RPD			
Aroclor-1016	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M22-Ap0036819	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	M22-Ap0036819	СР	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	M22-Ap0036819	СР	mg/kg	< 1	< 1	<1	30%	Pass	
4-Chloro-3-methylphenol	M22-Ap0036819	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	M22-Ap0036819	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	M22-Ap0036819	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate				•					
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	M22-Ap0036819	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	M22-Ap0036819	СР	mg/kg	< 5	< 5	<1	30%	Pass	
2-Nitrophenol	M22-Ap0036819	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	M22-Ap0036819	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	M22-Ap0036819	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M22-Ap0036819	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	M22-Ap0036819	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	M22-Ap0036819	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	M22-Ap0036819	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	1 11122 1 10000019	<u> </u>	i iiig/kg				0070	1 433	
Duplicate				Result 1	Result 2	RPD			
Cyanide (total)	M22-Ap0010607	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
% Moisture	M22-Ap0010607	CP	mg/kg %	40	41	1.0	30%	Pass	
	IVIZZ-MPUUSUO 19	UP .	/0	40	41	1.0	J 30 /0	1 000	
Duplicate				Pocult 4	Popult 2	DDD			
Chromium (havavalant)	M22 A=0020004	CD	m = //	Result 1	Result 2	RPD	2007	Post	
Chromium (hexavalent)	M22-Ap0036821	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Dunlingto									
Duplicate				Result 1	Result 2	RPD			
Chromium (hexavalent)	M22-Ap0036826	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Fluoride (Total)	M22-Ap0036826	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	WZZ-AP00300Z0	OI .	l llig/kg	_ < 100	<u> </u>		30 70	1 033	
Duplicate				Result 1	Result 2	RPD			
Fluoride (Total)	M22-Ap0036829	CP	mg/kg	680	500	30	30%	Pass	
Duplicate	WIZZ / NPOCOCOZO	<u> </u>	i iig/itg		000	00	0070	1 433	
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
• • •	M22-Ap0036830	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036830	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid									
(PFDoDA)	M22-Ap0036830	CP CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid	M22-Ap0036830	CP	ug/kg	< 5	< 5	<1	30%	Pass	
(PFTeDA)	M22-Ap0036830	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				I	ı				
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036830	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036830	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate	, ,,,,,,,,,								
Perfluoroalkyl sulfonic acids (PFSA	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid	:				, ,			1	

Dunlingto									
Duplicate				D 11.4	D # 0	DDD	l		
n:2 Fluorotelomer sulfonic acids (n:2 FISAS)		1	Result 1	Result 2	RPD		+ -	
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036830	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0036830	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M22-Ap0036831	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M22-Ap0036831	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M22-Ap0036831	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M22-Ap0036831	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	M22-Ap0036831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M22-Ap0036831	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M22-Ap0036831	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M22-Ap0036831	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M22-Ap0036831	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Hexachlorobutadiene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trichlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzene	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Bromobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromochloromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Dunlingto									
Duplicate				D 11.4	D 4.0	DDD			
Volatile Organics	1400 4 22222			Result 1	Result 2	RPD	0657		
Carbon Tetrachloride	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Iodomethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
m&p-Xylenes	M22-Ap0036831	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methylene Chloride	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
o-Xylene	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Styrene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
trans-1.2-Dichloroethene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	i
trans-1.3-Dichloropropene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	M22-Ap0036831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes - Total*	M22-Ap0036831	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbor	ns			Result 1	Result 2	RPD			
Acenaphthene	M22-Ap0036831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M22-Ap0036831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	WZZ-Ap0030031	Ci	i iiig/kg	\ 0.5	V 0.5		30 //	1 033	
Organochlorine Pesticides				Popult 1	Popult 2	DDD	T		
Chlordanes - Total	M22-Ap0036831	CP	ma/ka	Result 1 < 0.1	Result 2 < 0.1	RPD	30%	Pass	
	,		mg/kg	1	1	<1			
4.4'-DDD	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan I	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M22-Ap0036831	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	10122 7 100000001	<u> </u>	ı mg/kg		V 0.0		0070	1 433	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	WZZ-AP0030031	Ci	I IIIg/kg	<u> </u>	<u> </u>		30 70	1 033	
Phenois (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	M22-Ap0036831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	M22-Ap0036831	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	M22-Ap0036831	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	M22-Ap0036831	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	M22-Ap0036831	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	M22-Ap0036831	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate	WZZ AP0030031	Oi	i iig/kg	<u> </u>	<u> </u>		3070	1 433	
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	M22-Ap0036831	СР	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	M22-Ap0036831	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Nitrophenol	M22-Ap0036831	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	M22-Ap0036831	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	M22-Ap0036831	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M22-Ap0036831	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
4-Nitrophenol	M22-Ap0036831	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	M22-Ap0036831	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	M22-Ap0036831	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	WIZZ AP0000001	OI .	i iiig/kg		\ 0.0		J J J J J	1 000	
Duphoate				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as				INCOURT	INCOUIL Z	INI-D			
rec.)	M22-Ap0036831	CP	pH Units	8.4	8.4	pass	30%	Pass	
% Moisture	M22-Ap0036831	CP	%	28	28	2.0	30%	Pass	

Duplicate					ı				
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M22-Ap0036831	CP	mg/kg	28	23	21	30%	Pass	
Cadmium	M22-Ap0036831	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M22-Ap0036831	CP	mg/kg	140	110	21	30%	Pass	
Copper	M22-Ap0036831	CP	mg/kg	70	56	23	30%	Pass	
Lead	M22-Ap0036831	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M22-Ap0036831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M22-Ap0036831	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M22-Ap0036831	CP	mg/kg	210	160	26	30%	Pass	
Selenium	M22-Ap0036831	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M22-Ap0036831	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Tin	M22-Ap0036831	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M22-Ap0036831	CP	mg/kg	130	100	23	30%	Pass	
Duplicate					I				
	1			Result 1	Result 2	RPD			
Fluoride (Total)	M22-Ap0036840	CP	mg/kg	500	520	3.0	30%	Pass	
Duplicate					ı				
Perfluoroalkyl carboxylic acids (Pl	FCAs)		1	Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				•			_		
Perfluoroalkyl sulfonamido substa	inces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide	M22 A=0026840	CD		. 5	. 5	-1	200/	Door	
(FOSA) N-methylperfluoro-1-octane	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
sulfonamide (N-MeFOSA) N-ethylperfluoro-1-octane	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
sulfonamide (N-EtFOSA)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036840	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036840	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid		СР							
(PFPrS) Perfluoropentanesulfonic acid	M22-Ap0036840		ug/kg	< 5	< 5	<1	30%	Pass	
(PFPeS)	M22-Ap0036840	CP	ug/kg	< 5	< 5	<1	30%	Pass	

Perfluorobaxyl sulfonic acids (PFSAs)	Dunlicate									
Perfluorobreamesulfonic acid M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass	Duplicate Particular and a said (DES	A a \			Dogult 4	Dog::lt C	DDD			
PFHKS M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pass Perfluoroleptanesulfonic acid (PFHS) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pass Pass Perfluorocanesulfonic acid (PFOS) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pa	•	AS)		1	Result 1	Result 2	KPD			
Perfugno M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass	(PFHxS)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
(PFOS) M22-Ap0036840 CP ug/kg < 5 < 1 30% Pass Perfluorodecanesulfonic acids (n.2 FTSAs) Result 1 Result 2 RPD Cupurodecanesulfonic acids (n.2 FTSAs) N.2 Fuorodecanesulfonic acid (4:2 Perfluorodecanesulfonic acid (4:2 PTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass TH.11-L2H2-H2H2-H2H2-H2H2-H2H2-H2H2-H2H2-H2	(PFHpS)	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
(PFDS) M22-Ap0036840 CP ug/kg <5 <5 <1 030% Pass		M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Result 1		M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
H.1H 2H 2H- Perfutoroctanesulfonic acid (4:2 FTSA)	Duplicate									
Definition cacid (4:2 FTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass	n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD			
H. H. J.	perfluorohexanesulfonic acid (4:2	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
FTSA M22-Ap0036840	1H.1H.2H.2H-	,		3. 3	-					
Defluorodecanesulfonic acid (8:2 FTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass	FTSA)	M22-Ap0036840	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Defluorododecanesulfonic acid M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass	perfluorodecanesulfonic acid (8:2	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Result 1 Result 2 RPD	perfluorododecanesulfonic acid	M22-Ap0036840	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Result 1 Result 2 RPD Result 2 RPD Result 3 Result 3 Result 4 Result 5 Result 5 Result 6 Result 6 Result 6 Result 7 Result 8 Result 8 Result 9 Result 9			<u> </u>				31		1 000	
% Moisture M22-Ap0036841 CP % 35 35 2.0 30% Pass Duplicate Result 1 Result 1 Result 1 Result 1 Result 1 Result 2 RPD Chromite Arsenic M22-Ap0036841 CP mg/kg 41 41 41 30% Pass Cadmium M22-Ap0036841 CP mg/kg 40.4 <1					Result 1	Result 2	RPD			
Duplicate Heavy Metals Result Result Result Result At At At At At At At	% Moisture	M22-Ap0036841	CP	%				30%	Pass	
Heavy Metals	Duplicate						-			
Cadmium M22-Ap0036841 CP mg/kg < 0.4 < 0.4 < 1 30% Pass Chromium M22-Ap0036841 CP mg/kg 170 160 4.0 30% Pass Copper M22-Ap0036841 CP mg/kg 84 88 5.0 30% Pass Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass Mercury M22-Ap0036841 CP mg/kg < 0.1	Heavy Metals				Result 1	Result 2	RPD			
Chromium	Arsenic	M22-Ap0036841	СР	mg/kg	41	41	<1	30%	Pass	
Copper M22-Ap0036841 CP mg/kg 84 88 5.0 30% Pass Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass Mercury M22-Ap0036841 CP mg/kg < 0.1	Cadmium	M22-Ap0036841	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass	Chromium	M22-Ap0036841	CP	mg/kg	170	160	4.0	30%	Pass	
Mercury M22-Ap0036841 CP mg/kg < 0.1 < 1 30% Pass Molybdenum M22-Ap0036841 CP mg/kg < 5	Copper	M22-Ap0036841	CP	mg/kg	84	88	5.0	30%	Pass	
Molybdenum M22-Ap0036841 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036841 CP mg/kg 270 230 16 30% Pass Selenium M22-Ap0036841 CP mg/kg < 2	Lead	M22-Ap0036841	CP	mg/kg	6.0	6.0	1.0	30%	Pass	
Nickel M22-Ap0036841 CP mg/kg 270 230 16 30% Pass	Mercury	M22-Ap0036841	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Selenium M22-Ap0036841 CP mg/kg <2 <2 <1 30% Pass	Molybdenum	M22-Ap0036841	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Silver M22-Ap0036841 CP mg/kg < 2 < 2 < 1 30% Pass Tin M22-Ap0036841 CP mg/kg < 10	Nickel	M22-Ap0036841	CP	mg/kg	270	230	16	30%	Pass	
Tin M22-Ap0036841 CP mg/kg < 10 < 1 30% Pass Zinc M22-Ap0036841 CP mg/kg 180 180 2.0 30% Pass Duplicate Result 1 Result 2 RPD RPD Duplicate Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1	Selenium	M22-Ap0036841	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Duplicate	Silver	M22-Ap0036841	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Publicate Result 1 Result 2 RPD	Tin	M22-Ap0036841	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Result 1 Result 2 RPD	Zinc	M22-Ap0036841	CP	mg/kg	180	180	2.0	30%	Pass	
PH (1:5 Aqueous extract at 25°C as rec.) M22-Ap0036842 CP pH Units 8.7 8.7 pass 30% Pass	Duplicate				Posult 1	Posult 2	DDD			
Duplicate Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1			СР	pH Units				30%	Pass	
Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 30% Pass Cadmium M22-Ap0036842 CP mg/kg < 0.4 < 1 30% Pass Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Mercury M22-Ap0036842 CP mg/kg < 0.1 < 0.1 < 1 30% Pass Molybdenum M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30% Pass Selenium M22-Ap0036842 CP mg/kg										
Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 30% Pass Cadmium M22-Ap0036842 CP mg/kg < 0.4	•				Result 1	Result 2	RPD			
Cadmium M22-Ap0036842 CP mg/kg < 0.4 < 0.4 < 1 30% Pass Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5	-	M22-Ap0036842	СР	mg/kg				30%	Pass	
Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5	Cadmium		СР			< 0.4	<1	30%	Pass	
Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5			СР		140	140	3.0	30%	Pass	
Lead M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Mercury M22-Ap0036842 CP mg/kg < 0.1	Copper		СР		66	65	1.0	30%	Pass	
Mercury M22-Ap0036842 CP mg/kg < 0.1 < 1 30% Pass Molybdenum M22-Ap0036842 CP mg/kg < 5			СР		< 5	1		30%		
Molybdenum M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30% Pass Selenium M22-Ap0036842 CP mg/kg < 2	Mercury		СР			1		30%		
Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30% Pass Selenium M22-Ap0036842 CP mg/kg <2	Molybdenum		СР					30%		
Selenium M22-Ap0036842 CP mg/kg < 2 < 2 < 1 30% Pass	Nickel		СР				1.0	30%	Pass	
	Selenium		СР		< 2	< 2	<1	30%	Pass	
	Silver		СР		< 2	< 2		30%	Pass	
Tin M22-Ap0036842 CP mg/kg < 10 < 10 <1 30% Pass	Tin		СР		< 10	< 10	<1	30%	Pass	
Zinc M22-Ap0036842 CP mg/kg 120 120 <1 30% Pass			СР	1		1		30%		

-									
Duplicate							Ī		
Perfluoroalkyl carboxylic acids (PI			l "	Result 1	Result 2	RPD	200/		
Perfluorobutanoic acid (PFBA)	M22-Ap0036844	CP CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)	M22-Ap0036844 M22-Ap0036844	CP CP	ug/kg ug/kg	< 5 < 5	< 5 < 5	<1 <1	30% 30%	Pass Pass	
Perfluoroneptanoic acid (PFHpA)	M22-Ap0036844	CP CP	ug/kg ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0036844	CP	ug/kg ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0036844	CP	ug/kg ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0036844	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0036844	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0036844	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	inces		_	Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M22-Ap0036844	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M22-Ap0036844	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)		T	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate	a-2 FTC 4 -\			Desili 4	Descrit o	DDD			
n:2 Fluorotelomer sulfonic acids (I 1H.1H.2H.2H-	11:2 F I SAS)			Result 1	Result 2	RPD			
perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0036844	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0036844	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2	M22-Ap0036844	СР			< 5	<1	30%	Pass	
FTSA) 1H.1H.2H.2H- perfluorododecanesulfonic acid	1VIZZ-APUU30044	<u> </u>	ug/kg	< 5	< υ	<u> </u>	30%	r'ass	
(10:2 FTSA)	M22-Ap0036844	CP	ug/kg	< 5	< 5	<1	30%	Pass	

Report Number: 880891-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised by:

N11

N15

Catherine Wilson Analytical Services Manager Scott Beddoes Senior Analyst (NSW) Joseph Edouard Senior Analyst (VIC) Harry Bacalis Senior Analyst (NSW) Mary Makarios Senior Analyst (NSW) Caitlin Breeze Senior Analyst (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 880891-S

Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Agon Lab Reports (Spoil Project)

Report 880891-W

Project name 20220419042301-Eurofin-21

Project ID JC0927
Received Date Apr 19, 2022

Client Sample ID			SX_IB_202204 16_16_49_SR_ Rinsate_EUF	SX_IB_202204 16_16_50_SB_ Blank_EUF
Sample Matrix			Water	Water
Eurofins Sample No.			M22- Ap0036824	M22- Ap0036825
Date Sampled			Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs)				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	96	96
13C5-PFPeA (surr.)	1	%	109	114
13C5-PFHxA (surr.)	1	%	85	86
13C4-PFHpA (surr.)	1	%	85	86
13C8-PFOA (surr.)	1	%	87	89
13C5-PFNA (surr.)	1	%	83	82
13C6-PFDA (surr.)	1	%	82	83
13C2-PFUnDA (surr.)	1	%	62	64
13C2-PFDoDA (surr.)	1	%	44	42
13C2-PFTeDA (surr.)	1	%	13	16
Perfluoroalkyl sulfonamido substances		_		
Perfluorooctane sulfonamide (FOSA)N11	0.05	ug/L	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	86	84

Client Sample ID Sample Matrix			SX_IB_202204 16_16_49_SR_ Rinsate_EUF Water M22-	SX_IB_202204 16_16_50_SB_ Blank_EUF Water M22-
Eurofins Sample No.			Ap0036824	Ap0036825
Date Sampled			Apr 16, 2022	Apr 16, 2022
Test/Reference	LOR	Unit		
Perfluoroalkyl sulfonamido substances				
D3-N-MeFOSA (surr.)	1	%	95	62
D5-N-EtFOSA (surr.)	1	%	90	59
D7-N-MeFOSE (surr.)	1	%	79	69
D9-N-EtFOSE (surr.)	1	%	65	56
D5-N-EtFOSAA (surr.)	1	%	34	27
D3-N-MeFOSAA (surr.)	1	%	29	32
Perfluoroalkyl sulfonic acids (PFSAs)				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	84	85
18O2-PFHxS (surr.)	1	%	89	87
13C8-PFOS (surr.)	1	%	96	88
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	33	32
13C2-6:2 FTSA (surr.)	1	%	52	52
13C2-8:2 FTSA (surr.)	1	%	67	60
13C2-10:2 FTSA (surr.)	1	%	54	59
PFASs Summations				
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Melbourne	Apr 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Melbourne	Apr 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Melbourne	Apr 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Melbourne	Apr 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
PFASs Summations	Melbourne	Apr 19, 2022	
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Report Number: 880891-W

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Company Name: Agon Environmental Pty Ltd - VIC

> 3/224 Glen Osmond Road Fullarton

SA 5063

Project Name: 20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite				
Melb	ourne Laborato		Х	Х	Х	Х			
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079	<u> </u>					
Pert	h Laboratory - N	IATA # 2377 Sit	e # 2370						
Exte	rnal Laboratory			1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		Soil	M22- Ap0036819		Х	х	х
2	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036820		х	х	х
3	SX_IB_202204 16_12_10_SS _Primary_EUF	M22- Ap0036821		х	х	х			
4	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		Soil	M22- Ap0036822		х	х	х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Sydney

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail lelbourne Laboratory - NATA # 1261 Site # 1254 lydney Laboratory - NATA # 1261 Site # 18217								Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato		Х	Х	Х	Х				
Sydi	ney Laboratory									
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1						
May	field Laboratory	- NATA # 1261	Site # 25079							
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory									
5	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		Soil		M22- Ap0036823		х	Х	х
6	SX_IB_202204 16_16_49_SR _Rinsate_EUF	Apr 16, 2022		Water		M22- Ap0036824			Х	
7	SX_IB_202204 16_16_50_SB _Blank_EUF	M22- Ap0036825			Х					
8	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		Soil		M22- Ap0036826		х	Х	х
9	SX_IB_202204	Apr 17, 2022		Soil		M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.:

Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail				AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato		Х	Х	Х	Х				
Syd	ney Laboratory	- NATA # 1261	Site # 18217							
Bris	bane Laboratory	y - NATA # 126 ⁻	1 Site # 2079	4						
May	field Laboratory	[,] - NATA # 1261	Site # 25079	1						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370							
Exte	rnal Laboratory	, T	r	1						
9	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		Soil		M22- Ap0036827				
10	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		Soil		M22- Ap0036828		х	х	х
11	SX_IB_202204 Apr 17, 2022 Soil M22- 17_08_05_SSPrimary_EUF								х	х
12	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		Soil		M22- Ap0036830		х	х	х
13	SX_IB_202204	Apr 17, 2022		Soil		M22-		Х	Х	Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address:

email: EnviroSales@eurofins.com

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail Slample Detail elbourne Laboratory - NATA # 1261 Site # 1254 ydney Laboratory - NATA # 1261 Site # 18217								IWRG 621 WGTP Suite
Mell	oourne Laborato	Х	Х	Х	Х				
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 [,]	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	ı					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T	T	1					
	17_12_28_SS _Primary_EUF				Ap0036831				
14	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036832		х	х	х
15	SX_IB_202204 17_15_56_SS _Duplicate_EU F		х	х	x				
16	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		Soil	M22- Ap0036834		Х	х	х
17	SX_IB_202204 18_00_05_SS	Apr 18, 2022		Soil	M22- Ap0036835		X	Х	х

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

> 3/224 Glen Osmond Road Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

08 8338 1009

880891

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Phone: +61 2 9900 8400

46-48 Banksia Road

Welshpool WA 6106

Perth

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail Jelbourne Laboratory - NATA # 1261 Site # 1254								IWRG 621 WGTP Suite
Melk	ourne Laborato		Х	Х	Х	Х			
Sydi	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	4					
May	field Laboratory	- NATA # 1261	Site # 25079)					
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory				<u>, </u>				
	18_00_05_SS _Primary_EUF				Ap0036835				
18	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036836		х	х	х
19	SX_IB_202204 18_08_08_SS _Triplicate_EU F	M22- Ap0036837		х	х	х			
20	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036838		х	х	х
21	SX_IB_202204 18_11_57_SS	Apr 18, 2022		Soil	M22- Ap0036839		х	Х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450

IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

Address:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								IWRG 621 WGTP Suite
Melb	ourne Laborato		Х	Х	Х	Х			
	ney Laboratory								
Bris	bane Laboratory	y - NATA # 126 [,]	1 Site # 20794						
	field Laboratory								
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	·	r	_					
	_Primary_EUF								
22	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		Soil	M22- Ap0036840		х	х	Х
23	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		Soil	M22- Ap0036841		х	х	Х
24	SX_IB_202204 18_19_59_SS _Primary_EUF		х	Х	х				
25	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036843		х	Х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891

Phone: Fax:

179 Magowar Road

Due: 08 8338 1009

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

Apr 21, 2022

Apr 19, 2022 3:30 PM

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laborator	y - NATA # 126 [,]	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	,							
26	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		Soil	M22- Ap0036844		х	х	х
27	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036845	х		х	
28	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036846	Х		х	
29	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036847	х		х	
30	SX_IB_202204 16_16_18_SS	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036848	Х		х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217						
Brisl	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	ļ					
May	ield Laboratory	- NATA # 1261	Site # 25079						
Pertl	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Primary_EUF								
31	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036849	Х		х	
32	SX_IB_202204 16_20_02_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - pH 5.0	M22- Ap0036850	Х		Х	
33	SX_IB_202204 17_00_01_SS _Primary_EUF	M22- Ap0036851	Х		х				
34	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036852	Х		Х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Due:

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

> 3/224 Glen Osmond Road Fullarton

SA 5063

Project Name: 20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Eurofins Environment Testing Australia Pty Ltd

Sydney

Priority:

Apr 21, 2022 **Contact Name:** Agon Lab Reports (Spoil Project)

3 Dav

Apr 19, 2022 3:30 PM

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	/ - NATA # 126	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory		,						
35	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036853	х		х	
36	SX_IB_202204 17_08_10_SS _Triplicate_EU F	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036854	х		x	
37	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036855	Х		Х	
38	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036856	х		х	
39	SX_IB_202204	Apr 17, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891

Fax:

179 Magowar Road

Sydney

08 8338 1009

Phone:

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laborator	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	,							
	17_15_56_SS _Duplicate_EU F			- pH 5.0	Ap0036857				
40	SX_IB_202204 17_20_03_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - pH 5.0	M22- Ap0036858	х		х	
41	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036859	х		х	
42	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036860	х		х	
43	SX_IB_202204 18_08_08_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036861	Х		х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address:

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: Phone:

880891 08 8338 1009

Fax:

Received: Due:

Apr 19, 2022 3:30 PM Apr 21, 2022

NZBN: 9429046024954

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
	ney Laboratory								
	bane Laboratory								
	field Laboratory								
	h Laboratory - N		te # 2370						
Exte	rnal Laboratory	, 			I				
	18_08_08_SS _Triplicate_EU F			- pH 5.0	Ap0036861				
44	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036862	х		Х	
45	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036863	х		Х	
46	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036864	х		х	
47	SX_IB_202204 18_16_09_SS	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036865	Х		Х	

Melbourne 6 Monterey Road

ABN: 50 005 085 521

Phone: +61 3 8564 5000

NATA # 1261 Site # 1254

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.:

Report #: 880891 08 8338 1009

Phone: Fax:

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	Laboratory - NATA # 1261 Site # 1254 poratory - NATA # 1261 Site # 18217				Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 1261	1 Site # 20794	ļ.					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory								
	_Duplicate_EU								
48	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - pH 5.0	M22- Ap0036866	X		Х	
49	SX_IB_202204 19_00_03_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036867	X		х	
50	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - pH 5.0	M22- Ap0036868	X		х	
51	SX2022041 6_08_36_SS_ Triplicate_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036869	X		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com **Company Name:**

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

Sydney

179 Magowar Road

Received:

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Apr 19, 2022 3:30 PM Apr 21, 2022

Due: **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory								
52	SX2022041 6_08_44_SS_ Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036870	Х		х	
53	SX_IB_202204 16_12_10_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036871	X		х	
54	SX_IB_202204 16_16_18_SS _Primary_EUF	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036872	X		х	
55	SX_IB_202204 16_16_22_SS _Duplicate_EU F	Apr 16, 2022		AUS Leachate - Reagent Water	M22- Ap0036873	Х		х	
56	SX_IB_202204	Apr 16, 2022		AUS Leachate	M22-	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Sydney

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory	, T		,					
	16_20_02_SS _Primary_EUF			- Reagent Water	Ap0036874				
57	SX_IB_202204 17_00_01_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036875	Х		Х	
58	SX_IB_202204 17_03_57_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036876	Х		Х	
59	SX_IB_202204 17_08_05_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036877	х		Х	
60	SX_IB_202204 17_08_10_SS _Triplicate_EU	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036878	Х		Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022 **Priority:** 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

						AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroa	IWRG 621 WGTP Suite
		Sa	mple Detail			edure		Per- and Polyfluoroalkyl Substances (PFASs)	uite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydr	ney Laboratory	- NATA # 1261 :	Site # 18217						
	bane Laboratory	<i>'</i>							
	ield Laboratory								
	h Laboratory - N		te # 2370						
Exte	rnal Laboratory				ı				
	_Triplicate_EU			Water					
61	SX_IB_202204 17_12_28_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036879	Х		х	
62	SX_IB_202204 17_15_56_SS _Primary_EUF	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036880	х		Х	
63	SX_IB_202204 17_15_56_SS _Duplicate_EU F	Apr 17, 2022		AUS Leachate - Reagent Water	M22- Ap0036881	X		X	
64	SX_IB_202204 17_20_03_SS	Apr 17, 2022		AUS Leachate - Reagent	M22- Ap0036882	Х		Х	

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton SA 5063

20220419042301-Eurofin-21

Project Name: Project ID:

Address:

JC0927

Order No.: Report #:

880891

08 8338 1009

Phone: Fax:

Eurofins Environment Testing Australia Pty Ltd

Received: Apr 19, 2022 3:30 PM

Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laborator	y - NATA # 126 ⁻	1 Site # 20794	4					
May	field Laboratory	- NATA # 1261	Site # 25079	1					
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370						
Exte	rnal Laboratory	, T		1					\sqcup
	_Primary_EUF			Water					
65	SX_IB_202204 18_00_05_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036883	Х		Х	
66	SX_IB_202204 18_04_01_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036884	Х		х	
67	SX_IB_202204 18_08_08_SS _Triplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036885	Х		х	
68	SX_IB_202204 18_08_09_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036886	x		х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Apr 19, 2022 3:30 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Agon Environmental Pty Ltd - VIC

3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

Address:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

880891 08 8338 1009

Phone: Fax:

Due:

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

Apr 21, 2022

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х	Х	Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217						
Bris	bane Laboratory	/ - NATA # 126′	Site # 20794	l .					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory			1					
69	SX_IB_202204 18_11_57_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036887	Х		Х	
70	SX_IB_202204 18_16_08_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036888	Х		Х	
71	SX_IB_202204 18_16_09_SS _Duplicate_EU F	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036889	Х		Х	
72	SX_IB_202204 18_19_59_SS _Primary_EUF	Apr 18, 2022		AUS Leachate - Reagent Water	M22- Ap0036890	Х		Х	
73	SX_IB_202204	Apr 19, 2022		AUS Leachate	M22-	Χ		Х	

Melbourne

6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Agon Environmental Pty Ltd - VIC

Address: 3/224 Glen Osmond Road

Fullarton

SA 5063

Project Name:

20220419042301-Eurofin-21

Project ID:

JC0927

Order No.: Report #:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

880891 08 8338 1009

Phone: Fax:

179 Magowar Road

Perth

46-48 Banksia Road

Welshpool WA 6106

Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022

Priority: 3 Dav

Contact Name: Agon Lab Reports (Spoil Project)

NZBN: 9429046024954

		Sa	mple Detail			AUS Leaching Procedure	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)	IWRG 621 WGTP Suite
Melb	ourne Laborato	ry - NATA # 12	61 Site # 125	4		Χ	Х	Х	Х
Sydn	ey Laboratory -	NATA # 1261 S	Site # 18217						
Brisk	ane Laboratory	/ - NATA # 1261	Site # 20794						
Mayf	ield Laboratory	- NATA # 1261	Site # 25079						
Perth	Laboratory - N	IATA # 2377 Sit	e # 2370						
Exte	rnal Laboratory								
	19_00_03_SS _Primary_EUF			- Reagent Water	Ap0036891				
74	SX_IB_202204 19_03_57_SS _Primary_EUF	Apr 19, 2022		AUS Leachate - Reagent Water	M22- Ap0036892	Х		X	
Test	Counts					48	24	74	24

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank	<u>~</u> g/	10.01	0.0.	1 400	
Perfluoroalkyl sulfonamido substances		T			
Perfluoroctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-	ug/L	< 0.03	0.03	F 455	
MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank			, , , , , ,	1 335	
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)		< 0.01	0.01	Pass	
Method Blank	ug/L	< 0.01	0.01	Fass	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	/1	0.04	0.01	D	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery		T		l	
Perfluoroalkyl carboxylic acids (PFCAs)				-	
Perfluorobutanoic acid (PFBA)	%	94	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	121	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	95	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	88	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	89	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	92	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	93	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	105	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	105	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	88	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	105	50-150	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery				,					
Perfluoroalkyl sulfonamido substa	nces								
Perfluorooctane sulfonamide (FOSA	A)		%	98			50-150	Pass	
N-methylperfluoro-1-octane sulfonar	mide (N-MeFOSA)		%	112			50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	110			50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	-	%	114			50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	100			50-150	Pass	
N-ethyl-perfluorooctanesulfonamido	acetic acid (N-EtFC	SAA)	%	80			50-150	Pass	
N-methyl-perfluorooctanesulfonamic	doacetic acid (N-Me	FOSAA)	%	99			50-150	Pass	
LCS - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)								
Perfluorobutanesulfonic acid (PFBS)		%	93			50-150	Pass	
Perfluorononanesulfonic acid (PFNS	S)		%	91			50-150	Pass	
Perfluoropropanesulfonic acid (PFP	rS)		%	103			50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	104			50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	S)		%	102			50-150	Pass	
Perfluoroheptanesulfonic acid (PFH	pS)		%	99			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)		%	119			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	8)		%	81			50-150	Pass	
LCS - % Recovery									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)								
1H.1H.2H.2H-perfluorohexanesulfor	nic acid (4:2 FTSA)		%	103			50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfon	ic acid (6:2 FTSA)		%	133			50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	101			50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul	fonic acid (10:2 FT	SA)	%	86			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M22-Ap0029943	NCP	ug/L	1.1	1.1	1.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M22-Ap0029943	NCP	ug/L	2.6	2.8	9.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M22-Ap0029943	NCP	ug/L	4.3	4.4	3.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M22-Ap0029943	NCP	ug/L	2.5	2.6	4.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	M22-Ap0029943	NCP	ug/L	4.0	3.7	9.0	30%	Pass	
Perfluorononanoic acid (PFNA)	M22-Ap0029943	NCP	ug/L	0.82	0.74	10	30%	Pass	
Perfluorodecanoic acid (PFDA)	M22-Ap0029943	NCP	ug/L	0.20	0.16	20	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate			-	•					
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Report Number: 880891-W

Duplicate									
Perfluoroalkyl sulfonic acids (PFS	SAs)	Result 1	Result 2	RPD					
Perfluoroheptanesulfonic acid (PFHpS)	M22-Ap0029943 NCP			< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (Result 1	Result 2	RPD						
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M22-Ap0029943	NCP	ug/L	11	11	3.0	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M22-Ap0029943	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Report Number: 880891-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised by:

Catherine Wilson Analytical Services Manager Joseph Edouard Senior Analyst (VIC)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

011,	AIN OF CUSTODY DOCUME	NIAI			GE	HA	-		EC ED Dist	_										
i		IAI			ES - EP Risk William O'Haire - Agon															
	: Agon Evironmental			\mathcal{H}	V		_	PLER:	LR - EP Risk	_										ALS
ADDRESS / OFFICE: Melbourne								ILE 1:	+61 400 826 907 (Craig Trimbur)											
PROJECT MANAGER (PM): Craig Trimbur PROJECT ID: JC0927						_	L REPORT TO:	+61 490 411 004 (David Lawson)										Australian Laboratory Services Pty		
							EMA	L REPORT TO:		Labi	eports	. S]@	gagonen	viro.co m	m.au otherh	<u>agor</u> ublabi	nenvir results	onmenta s1@wgtp	@esdat.com.au .com.au	
_	0220419041350-ALS-21 TS REQUIRED (Date): 3 days			P.O. NO.:	O.: ME-150-19 WGTF		_													
TREGOE:	TO TAL QUITED (Date), 5 days			GOOTEN	O.: ME-130-19 WG IF		$\overline{}$		different to report)								onenvi	ro.com.a	u agonenvironm	ental@esdat.c
7 AC	COMMENTS / SPECIAL HANDLING					DIPOSAL:	ANA	Tala REGUIRED	Including Sul 1ES (No	2	Suite	nust be	listed to at	od to attract suite prices)				No	otes:	
	Application of the Section of the Se						1			Suite (Lab	lended									
	DE SERVICE DE LA COMPANION DE					<u>.</u>	l le		so suit	endec	S - Exter									
SAMPLE INFORMATION (note: S = Suii, W=Water)					CONTAINER INF	AINER INFORMATION		plus Cr	S 28 Extend	PFAS - Extended mine pH)	E									
ALSID	SAMPLE ID	MATRIX	DATE	Time	Type / Code	Total bottles	Spail	<u>7</u>	PFAS	ASLP J	집									
7	SX20220416_08_31_SS_Primary_ALS	S	16-04-22	08:31	Bucket		х	· x	· x	×	x	一		1						
2	SX20220416_08_34_SS_Duplicate_ALS	S	16-04-22	08:34	Bucket		х	×	х	х	х	7								
3	SX_IB_20220416_09_36_SR_Rinsate_ALS	S	16-04-22	09:36	Bottle	1			x		\sqcap			\top	1	 		 		
4	SX_IB_20220416_09_38_SB_Blank_ALS	s	16-04-22	09:38	Bottle	1		<u> </u>	×	\top					1	1	_			
5	SX_IB_20220416_12_04_SS_Primary_ALS	S	16-04-22	12:04	Bucket		×	х	×	×	х			+	+	1	1			
6	SX_IB_20220416_16_12_SS_Primary_ALS	s	16-04-22	16:12	Bucket		x	×	×	×	x		_	+		1	 	\vdash	 	
7	SX_IB_20220416_16_24_SS_Triplicate_ALS	s	16-04-22	16:24	Bucket		×	×	х	×	x			+-	+	 	1			
8	SX_IB_20220416_20_06_SS_Primary_ALS	S	16-04-22	20:06	Bucket		x	x	×	×	x	-	+	-			 			
य	SX_IB_20220416_23_55_SS_Primary_ALS	s	16-04-22	23:55	Bucket		х	х	x	×	x			+	+	1	 	-		_
10		S	17-04-22	04:02	Bucket		х	Х	X	х	х			T						
11	\$X_IB_20220417_08_07_SS_Primary_ALS	S	17-04-22	08:07	Bucket	<u> </u>	Х	×	х	X	×						<u> </u>			
<u> 12.</u>	SX_IB_20220417_08_10_SS_Duplicate_ALS	S	17-04-22	08:10	Bucket	ļ	Х	х	x	X	×									
13	SX_IB_20220417_12_29_SS_Primary_ALS	S	17-04-22	12:29	Bucket		x	х	×	х	х						<u> </u>			
14	SX_I8_20220417_15_57_SS_Triplicate_ALS	S	17-04-22	15:57	Bucket		х	х	х	х	х								-	
15	SX_i8_20220417_15_58_SS_Primary_ALS	S	17-04-22	15:58	Bucket		х	×	×	х	х				1					
16	SX_IB_20220418_00_02_SS_Primary_ALS	S	18-04-22	0:02	Bucket		x	х	x	х	х]				
13	SX_IB_20220418_03_59_SS_Primary_ALS	s	18-04-22	3:59	Bucket		x	х	x	х	х									
18		\$	18-04-22	8:07	Bucket		х	х	×	х	×									
19	SX_IB_20220418_08_07_SS_Duplicate_ALS	S	18-04-22	8:07	Bucket		х	×	х	х	х									
20	SX_IB_20220418_11_58_SS_Primary_ALS	s	18-04-22	11:58	Bucket		х	х	х	х	х	\neg								
21	SX_IB_20220418_16_07_SS_Primary_ALS	S	18-04-22	16:07	Bucket		х	х	х	×	х									
22	SX_IB_20220418_16_10_SS_Triplicate_ALS	S	18-04-22	16:10	Bucket		х	х	х .	х	×							T:		_ _ Env
ુ ક	SX_IB_20220418_20_01_SS_Primary_ALS	S	18-04-22	20:01	Bucket		х	х	х	×	х	T		1	1					_ Mel
ζ	SX_IB_20220419_00_01_SS_Primary_ALS	S	19-04-22	0:01	Bucket		х	х	x	. ×	×	\dashv		T	1	T		\vdash		- iviGi
35	SX_IB_20220419_03_59_SS_Primary_ALS	S	19-04-22	3:59	Bucket		х	х	х	х	х	\dashv		T		†				E
												\Box		T						_
		QUISHED I	BY:							RE	CEIVED	BY							METHOD (
Name:					Date:		Nam	e: Shain	e Rismed	een					: (9			Co	on' Note No:	
Of: Name:					Time: Date:		Of: Nam	ALS							: 14	: 45				
				- 1	Date.									Date				1	ansport Co:	

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC. SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; V = VOA Vial HCl Preserved; VS = VOA Vial Sulphuric Preserved Plastic; F = Formaldehyde Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle, SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle, ASS = Plastic Bad for Acid Sulphate Soils, B = Unpreserved Bag.

Catrier: Courie

!: |4/ ዛ °C Seal: Y

C/note: Temp:

Environmental Division Melbourne Work Order Reference EM2206998

Lelephone : + 61-3-8549 9600

CERTIFICATE OF ANALYSIS

Work Order : EM2206998

: AGON ENVIRONMENTAL PTY LTD

Contact : DAVID LAWSON

Address : D1.1 63-85 TURNER STREET

PORT MELBOURNE 3207

Telephone

Client

Project : JC0927

Order number

C-O-C number 20220419041350-ALS-21

Sampler ES-EP Risk, LR- EP Risk, William O'Haire- Agon

Site · 20220419041350-ALS-21

: EN/150/19 -WGTP -Bulk Sample Quote Quote number

No. of samples received : 48 No. of samples analysed : 48 Page : 1 of 65

> Laboratory : Environmental Division Melbourne

Contact : Josh Alexander

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 19-Apr-2022 14:45

Date Analysis Commenced : 20-Apr-2022

Issue Date : 26-Apr-2022 10:06

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC Xing Lin Senior Organic Chemist Melbourne Inorganics, Springvale, VIC Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP074-UT: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074-WF: Where reported, Sum of trichlorobenzenes is the sum of the reported concentrations of 1,2,3-Trichlorobenzene and 1,2,4-Trichlorobenzene, and 1,3,5-Trichlorobenzene at or above the LOR.
- EG005T: EM2206998 #12, #16 and #20 has been diluted prior to cadmium analysis due to sample matrix. LOR values have been raised accordingly.
- EP231X: Poor matrix spike recovery for sample EM2206998-031 due to sample matrix interference.
- EG005-T: EM2206998 #24 Poor spike recovery for Nickel due to sample matrix. Confirmed by re-digestion and re-analysis.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.
- EN60: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3.
- EN60-DI: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3.

Page : 3 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 4 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 5 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 6 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 7 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 8 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 9 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 10 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 11 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 12 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Analytical Results

13C8-PFOA

98.8

101

%

101

0.02

Page : 13 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 14 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 15 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 16 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 17 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 18 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 19 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 20 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 21 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Analytical Results

sulfonamide (EtFOSA)

Page : 22 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	SX_IB_20220418_20_ 01_SS_Primary_ALS	SX_IB_20220419_00_ 01_SS_Primary_ALS	SX_IB_20220419_03_ 59_SS_Primary_ALS	
		Sampling date / time		18-Apr-2022 20:01	19-Apr-2022 00:01	19-Apr-2022 00:00	
Compound	CAS Number	LOR	Unit	EM2206998-046	EM2206998-047	EM2206998-048	
				Result	Result	Result	
EP231C: Perfluoroalkyl Sulfonamid	es - Continued						
N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoethanol (MeFOSE)							
N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoethanol (EtFOSE)							
N-Methyl perfluorooctane	2355-31-9	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoacetic acid							
(MeFOSAA)							
N-Ethyl perfluorooctane	2991-50-6	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoacetic acid							
(EtFOSAA)							
P231D: (n:2) Fluorotelomer Sulfor	nic Acids						
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	μg/L	<0.05	<0.05	<0.05	
(4:2 FTS)							
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	μg/L	<0.05	<0.05	<0.05	
(6:2 FTS)							
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	μg/L	<0.05	<0.05	<0.05	
(8:2 FTS)							
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	μg/L	<0.05	<0.05	<0.05	
(10:2 FTS)							
P231P: PFAS Sums							
Sum of PFAS		0.10	μg/L	<0.10	<0.10	<0.10	
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.01	μg/L	<0.01	<0.01	<0.01	
	1						
Sum of PFAS (WA DER List)		0.05	μg/L	<0.05	<0.05	<0.05	
EP231S: PFAS Surrogate							
13C4-PFOS		0.02	%	97.9	90.2	92.7	
13C8-PFOA		0.02	%	101	101	103	

Page : 23 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 24 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 25 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 26 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 27 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 28 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 29 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 30 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 31 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 32 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 33 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 34 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 35 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 36 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 37 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 38 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 39 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 40 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 41 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 42 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 43 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 44 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 45 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 46 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 47 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 48 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 49 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 50 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 51 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 52 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 53 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 54 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 55 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 56 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 57 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 58 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 59 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 60 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 61 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 62 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 63 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 64 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Page : 65 of 65 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Surrogate Control Limits

Sub-Matrix: ASLP LEACHATE		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		65	140
13C8-PFOA		71	133
ub-Matrix: DI WATER LEACHATE		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		65	140
13C8-PFOA		71	133
Sub-Matrix: SOIL		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	41	122
EP074S: VOC Surrogates (Ultra-Tra	ce)		
1.2-Dichloroethane-D4	17060-07-0	59	119
Toluene-D8	2037-26-5	55	117
4-Bromofluorobenzene	460-00-4	59	123
EP075S: Acid Extractable Surrogate	es (Waste Classification)		
Phenol-d6	13127-88-3	63	134
2-Chlorophenol-D4	93951-73-6	60	125
2.4.6-Tribromophenol	118-79-6	54	129
EP075T: Base/Neutral Extractable S	urrogates (Waste Classifica	ation)	
Nitrobenzene-D5	4165-60-0	63	131
1.2-Dichlorobenzene-D4	2199-69-1	61	124
2-Fluorobiphenyl	321-60-8	69	131
Anthracene-d10	1719-06-8	70	133
4-Terphenyl-d14	1718-51-0	59	141
EP231S: PFAS Surrogate			
13C4-PFOS		68	136
13C8-PFOA		69	133
Sub-Matrix: WATER		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		65	140
13C8-PFOA		71	133

QUALITY CONTROL REPORT

: 1 of 55

· 26-Apr-2022

: EM2206998 Work Order Page

Client : AGON ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne

Contact : DAVID LAWSON Contact : Josh Alexander

Address Address : D1.1 63-85 TURNER STREET : 4 Westall Rd Springvale VIC Australia 3171

PORT MELBOURNE 3207

Telephone Telephone : +61-3-8549 9600 Project : JC0927 Date Samples Received : 19-Apr-2022

Order number **Date Analysis Commenced** : 20-Apr-2022

C-O-C number 20220419041350-ALS-21 Issue Date

Sampler : ES-EP Risk, LR- EP Risk, William O'Haire- Agon Site : 20220419041350-ALS-21

Quote number : EN/150/19 -WGTP -Bulk Sample Quote

No. of samples received : 48 No. of samples analysed : 48

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG005(ED093)T: To	tal Metals by ICP-AES (QC L	.ot: 4293364)									
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	91	101	10.9	0% - 20%		
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	113	128	12.3	0% - 20%		
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	20	23	10.9	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	37	46	20.0	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Tin	7440-31-5	5	mg/kg	<10	<10	0.0	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	75	79	4.8	0% - 50%		
EM2206998-012	SX_IB_20220417_08_10_S S_Duplicate_ALS	EG005T: Cadmium	7440-43-9	1	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	113	111	1.6	0% - 20%		
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	195	170	13.7	0% - 20%		
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	26	21	19.0	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	62	58	5.8	0% - 50%		
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Tin	7440-31-5	5	mg/kg	<10	<10	0.0	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	92	83	9.8	0% - 50%		

Page : 3 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG005(ED093)T: Tot	al Metals by ICP-AES (QC L	ot: 4293367)								
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EG005T: Chromium	7440-47-3	2	mg/kg	85	94	9.1	0% - 50%	
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EG005T: Cadmium	7440-43-9	1	mg/kg	1	<1	0.0	No Limit	
	_ /_	EG005T: Molybdenum	7439-98-7	2	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	169	146	14.4	0% - 20%	
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	20	19	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	61	55	9.8	0% - 50%	
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Tin	7440-31-5	5	mg/kg	<10	<10	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	91	90	1.6	0% - 50%	
EA001: pH in soil us	ing 0.01M CaCl extract (QC	Lot: 4293418)								
EM2206998-001	SX20220416_08_31_SS Primary ALS	EA001: pH (CaCl2)		0.1	pH Unit	11.0	11.1	1.1	0% - 20%	
EM2206998-012	SX_IB_20220417_08_10_S S Duplicate ALS	EA001: pH (CaCl2)		0.1	pH Unit	7.8	7.7	0.0	0% - 20%	
EA001: pH in soil us	ing 0.01M CaCl extract (QC	Lat: 4293419)								
EM2206998-023	SX_IB_20220418_20_01_S	EA001: pH (CaCl2)		0.1	pH Unit	8.8	8.8	0.0	0% - 20%	
	S_Primary_ALS									
	ntent (Dried @ 105-110°C) (C	QC Lot: 4293517)								
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EA055: Moisture Content		0.1	%	34.7	36.9	5.9	0% - 20%	
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EA055: Moisture Content		0.1	%	30.3	31.8	5.0	0% - 20%	
EA055: Moisture Co	ntent (Dried @ 105-110°C) (C	QC Lot: 4293518)								
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EA055: Moisture Content		0.1	%	30.6	33.3	8.5	0% - 20%	
EG035T: Total Reco	verable Mercury by FIMS (Q	C Lot: 4293365)								
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EM2206998-012	SX_IB_20220417_08_10_S	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
FORSET E 4 I B	S_Duplicate_ALS	00.1 (4.4000000)								
	verable Mercury by FIMS (Q		7400 57 5				2.1	0.0	N. 1. 1	
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EG048: Hexavalent (Chromium (Alkaline Digest)	(QC Lot: 4293431)								
EM2206998-001	SX20220416_08_31_SS Primary ALS	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	0.0	No Limit	

Page : 4 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG048: Hexavalent	Chromium (Alkaline Digest)	(QC Lot: 4293431) - continued								
EM2206998-012	SX_IB_20220417_08_10_S S_Duplicate_ALS	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	0.0	No Limit	
EG048: Hexavalent	Chromium (Alkaline Digest)	(QC Lot: 4293432)								
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	0.0	No Limit	
EK026SF: Total CN	by Segmented Flow Analyse	er (QC Lot: 4293594)								
EM2206959-018	Anonymous	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<5	<5	0.0	No Limit	
EM2206998-011	SX_IB_20220417_08_07_S S_Primary_ALS	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<5	<5	0.0	No Limit	
EK026SF: Total CN	by Segmented Flow Analyse	er (QC Lot: 4293595)								
EM2206998-022	SX_IB_20220418_16_10_S S_Triplicate_ALS	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<5	<5	0.0	No Limit	
EK040T: Fluoride T	otal (QC Lot: 4293424)									
EM2206998-001	SX20220416_08_31_SS Primary ALS	EK040T: Fluoride	16984-48-8	40	mg/kg	160	140	15.2	No Limit	
EM2206998-012	SX_IB_20220417_08_10_S S Duplicate ALS	EK040T: Fluoride	16984-48-8	40	mg/kg	150	180	20.6	No Limit	
EK040T: Fluoride T	otal (QC Lot: 4293425)									
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EK040T: Fluoride	16984-48-8	40	mg/kg	180	170	0.0	No Limit	
EP066: Polychlorin	ated Biphenyls (PCB) (QC Lo	ot: 4293316)								
EM2206998-001	SX20220416_08_31_SS Primary_ALS	EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EP066: Polychlorina	ated Biphenyls (PCB) (QC Lo	ot: 4293319)								
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EP074A: Monocycli	c Aromatic Hydrocarbons (C	QC Lot: 4293292)								
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
	_	EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP074-UT: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	

Page : 5 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074A: Monocyclic	c Aromatic Hydrocarbons(C	QC Lot: 4293292) - continued							
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP074A: Monocyclic	c Aromatic Hydrocarbons(C	QC Lot: 4293294)							
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP074H: Naphthalei	ne (QC Lot: 4293292)								
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP074H: Naphthale	ne (QC Lot: 4293294)								
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP074I: Volatile Hale	ogenated Compounds (QC I	Lot: 4293292)							
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
	_	EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit

Page : 6 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074I: Volatile Halo	genated Compounds (QC I	_ot: 4293292) - continued							
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.5	<0.5	0.0	No Limit
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.5	<0.5	0.0	No Limit
EP074I: Volatile Halo	genated Compounds (QC L	ot: 4293294)							
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
I .	EF			•	3 3				1

Page : 7 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074I: Volatile Hal	ogenated Compounds (QC L	_ot: 4293294) - continued							
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.50	<0.50	0.0	No Limit
		EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.5	<0.5	0.0	No Limit
EP075A: Phenolic C	ompounds (Halogenated)(C	QC Lot: 4293314)							
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9 0-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<1.0	<1.0	0.0	No Limit
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9 0-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<1.0	<1.0	0.0	No Limit
EP075A: Phenolic C	ompounds (Halogenated) (C	QC Lot: 4293317)							
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
	,	EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.50	<0.50	0.0	No Limit
		EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<1.00	<1.00	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<1.00	<1.00	0.0	No Limit

Page : 8 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

ub-Matrix: SOIL									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
P075A: Phenolic C	Compounds (Halogenated)(C	QC Lot: 4293317) - continued							
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9 0-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	_ /_	EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<1.0	<1.0	0.0	No Limit
P075A: Phenolic C	Compounds (Non-halogenate	d) (QC Lot: 4293314)							
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP075-EM: Phenol	108-95-2	1	mg/kg	<1	<1	0.0	No Limit
	_Filliary_ALG	EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<20	<20	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<20	<20	0.0	No Limit
EM2206998-013	SX_IB_20220417_12_29_S S Primary ALS	EP075-EM: Phenol	108-95-2	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<20	<20	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<20	<20	0.0	No Limit
P075A: Phenolic C	Compounds (Non-halogenate	d) (QC Lot: 4293317)							
M2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP075-EM: Phenol	108-95-2	1	mg/kg	<1	<1	0.0	No Limit
	_ ,_	EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<20	<20	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<20	<20	0.0	No Limit

Page : 9 of 55
Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075B: Polynuclea	ar Aromatic Hydrocarbons(G	QC Lot: 4293314) - continued							
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2 207-08-9	1	mg/kg	<1.0	<1.0	0.0	No Limit
EM2206998-013	12206998-013 SX_IB_20220417_12_29_S S_Primary_ALS	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	-	EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2 207-08-9	1	mg/kg	<1.0	<1.0	0.0	No Limit
EP075B: Polynuclea	ar Aromatic Hydrocarbons (0	QC Lot: 4293317)							
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 10 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	f		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP075B: Polynuclea	r Aromatic Hydrocarbons (0	QC Lot: 4293317) - continued								
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2 207-08-9	1	mg/kg	<1.0	<1.0	0.0	No Limit	
EP075I: Organochlor	rine Pesticides (QC Lot: 429	3314)								
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit	
		EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit	
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit	

Page : 11 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
P075I: Organochlo	rine Pesticides (QC Lot: 429	93314) - continued							
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
P075I: Organochlo	rine Pesticides (QC Lot: 429	93317)							
M2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page : 12 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4293292) - continued										
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: C6 - C9 Fraction		10	mg/kg	<20	<20	0.0	No Limit			
EM2206998-013	SX_IB_20220417_12_29_S S Primary ALS	EP074-UT: C6 - C9 Fraction		10	mg/kg	<20	<20	0.0	No Limit			
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4293294)										
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP074-UT: C6 - C9 Fraction		10	mg/kg	<20	<20	0.0	No Limit			
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4293315)										
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
	_ /_	EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit			
		EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit			
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit			
		EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit			
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4293320)										
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit			
		EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit			
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4293292)										
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP074-UT: C6 - C10 Fraction	C6_C10	10	mg/kg	<20	<20	0.0	No Limit			
		EP074-UT: C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<20	<20	0.0	No Limit			
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP074-UT: C6 - C10 Fraction	C6_C10	10	mg/kg	<20	<20	0.0	No Limit			
		EP074-UT: C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<20	<20	0.0	No Limit			
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4293294)										
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP074-UT: C6 - C10 Fraction	C6_C10	10	mg/kg	<20	<20	0.0	No Limit			
	_ ·-	EP074-UT: C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<20	<20	0.0	No Limit			
EP080/071: Total Re	coverable Hydrocarb <u>ons - N</u>	EPM 2013 Fractions (QC Lot: 4293315)										
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit			
		EP071-EM: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit			

Page : 13 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4293315) - continued									
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit		
EM2206998-013	SX_IB_20220417_12_29_S S_Primary_ALS	EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071-EM: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071-EM: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
		EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4293320)									
EM2206998-023	SX_IB_20220418_20_01_S S Primary ALS	EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
	_	EP071-EM: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071-EM: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
		EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit		
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC Lot:	4294640)									
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
EM2206998-012	SX_IB_20220417_08_10_S S_Duplicate_ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC Lot:	4294641)									
EM2206998-022	SX_IB_20220418_16_10_S S Triplicate ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4294640)									
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit		
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit		

Page : 14 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL	Matrix: SOIL					Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4294640) - continued							
EM2206998-001	SX20220416_08_31_SS Primary ALS	EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<5 μg/kg	<0.005	0.0	No Limit
EM2206998-012	SX_IB_20220417_08_10_S S_Duplicate_ALS	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
	- ' -	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<5.0 µg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<5 μg/kg	<0.005	0.0	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4294641)							
EM2206998-022	SX_IB_20220418_16_10_S S_Triplicate_ALS	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
	5 p	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<5 μg/kg	<0.005	0.0	No Limit
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lot:								1
EM2206998-001	SX20220416_08_31_SS _Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit

Page : 15 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report			
aboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%	
P231C: Perfluoroa	lkyl Sulfonamides (QC Lot:	4294640) - continued								
M2206998-001	SX20220416_08_31_SS _Primary_ALS	EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<10.0 µg/kg	<0.0100	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
M2206998-012	SX_IB_20220417_08_10_S S Duplicate ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
P231C: Perfluoroa	Ikyl Sulfonamides (QC Lot:	4294641)								
M2206998-022	SX_IB_20220418_16_10_S S Triplicate ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
	5 p dats	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit	

Page : 16 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231D: (n:2) Fluo	rotelomer Sulfonic Acids(Q	C Lot: 4294640) - continued							
EM2206998-001	SX20220416_08_31_SS Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
EM2206998-012	SX_IB_20220417_08_10_S S_Duplicate_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<10.0 µg/kg	<0.0100	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
EP231D: (n:2) Fluo	rotelomer Sulfonic Acids (Q	C Lot: 4294641)							
EM2206998-022	SX_IB_20220418_16_10_S S Triplicate ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4294640)								
EM2206998-001	SX20220416_08_31_SS Primary ALS	EP231X: Sum of PFAS		0.0002	mg/kg	<50.0 μg/kg	<0.0500	0.0	No Limit
	_ ,_	EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.0002	mg/kg	<10.0 µg/kg	<0.0100	0.0	No Limit
EM2206998-012	SX_IB_20220417_08_10_S S Duplicate ALS	EP231X: Sum of PFAS		0.0002	mg/kg	<50.0 μg/kg	<0.0500	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.0002	mg/kg	<10.0 µg/kg	<0.0100	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4294641)								
EM2206998-022	SX_IB_20220418_16_10_S S Triplicate ALS	EP231X: Sum of PFAS		0.0002	mg/kg	<50.0 μg/kg	<0.0500	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.0002	mg/kg	<5.0 μg/kg	<0.0050	0.0	No Limit

Page : 17 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231P: PFAS Sums	s (QC Lot: 4294641) - contir	nued							
EM2206998-022	SX_IB_20220418_16_10_S S Triplicate ALS	EP231X: Sum of PFAS (WA DER List)		0.0002	mg/kg	<10.0 μg/kg	<0.0100	0.0	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231A: Perfluoroal	Ikyl Sulfonic Acids (QC Lot:								
EM2206432-001	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	0.18	0.20	12.1	0% - 50%
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.19	0.17	6.6	0% - 50%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	0.06	0.08	28.7	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	0.04	0.04	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EM2206603-005	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	0.07	0.08	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.14	0.13	11.2	0% - 50%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231A: Perfluoroal	Ikyl Sulfonic Acids (QC Lot:	4297210)							
EM2206730-001	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EM2206998-005	SX_IB_20220416_12_04_S S Primary ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231A: Perfluoroal	Ikyl Sulfonic Acids (QC Lot:	4297276)							
EM2206998-033	SX_IB_20220417_04_02_S S_Primary_ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit

Page : 18 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC Lot:	4297276) - continued							
EM2206998-038	SX_IB_20220417_15_58_S S_Primary_ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC Lot:	4297326)							
EM2206730-005	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC Lot:	4298480)							
EM2206998-016	SX_IB_20220418_00_02_S S_Primary_ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
	1 2	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC Lot:	4298483)							
EM2206998-026	SX20220416_08_31_SS _Primary_ALS	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L				, ,				1
EM2206432-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.49	0.46	6.3	0% - 20%
00 102 001		EP231X: Perlluoropentanoic acid (PFPA)	2706-90-3	0.02	μg/L	0.34	0.31	7.3	0% - 50%

Page : 19 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4294552) - continued							
EM2206432-001	Anonymous	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	0.28	0.26	7.8	0% - 50%
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	0.19	0.19	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EM2206603-005	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4297210)							
EM2206730-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EM2206998-005	SX_IB_20220416_12_04_S S Primary ALS	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
	_	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit

Page : 20 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231B: Perfluoroa	ılkyl Carboxylic Acids (QC L								
EM2206998-005	SX_IB_20220416_12_04_S S_Primary_ALS	EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231B: Perfluoroa	ılkyl Carboxylic Acids (QC L	ot: 4297276)							
EM2206998-033	SX_IB_20220417_04_02_S S_Primary_ALS	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EM2206998-038	SX_IB_20220417_15_58_S S_Primary_ALS	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231B: Perfluoroa	ılkyl Carboxylic Acids (QC L	ot: 4297326)							
EM2206730-005	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit

Page : 21 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Executive parameter Semple Semple Semple Methods (Oct Lot 427358) - continued	Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
EM208789-005 Anonymous	Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231X Perfluoroolity Cartboxylic Anties Col Lot - 4084889	EP231B: Perfluoroa	alkyl Carboxylic Acids (QC L	ot: 4297326) - continued							
EP231X Perfluoroolity Cartboxylic Anties Col Lot - 4084889	EM2206730-005	Anonymous	EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EM200996 016 SX_IB_2020416_00_02_8 EP231X Perfluoroectanoic acid (PFOA) 335-67.1 0.01 ug/L 4.0.01 4.0.01 0.0 No Limit				375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
PP331X Perfluoropentanole acid (PPPA)	EP231B: Perfluoroa	ılkyl Carboxylic Acids (QC L	ot: 4298480)							
EP231X Perfluorobretanoic acid (PFPA) 2708-90.3 0.02 µg/L 0.002 0.002 0.0 No Limit	EM2206998-016		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
EP231X Perfluoronication and (PFI-pA) 375-85-9 0.02 pgl. < 0.02 < 0.02 0.0 No Limit			EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X Perfluorodecanoic acid (PFNA)			EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorodecanoic acid (PFDA)			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 19JL <0.02 <0.02 0.00 No Limit			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X Perfluorododecanoic acid (PFDoDA) 307-85-1 0.02 pg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotridecanoic acid (PFTDA)			EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05				307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorobutanoic acid (PFBA) 375-224 0.1 µg/L <0.1 <0.1 <0.0 No Limit			EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EM2206998-023 SX_IB_20220418_20_01_S S_Primary_ALS			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
S_Primary_ALS			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231X: Perfluoronexanoic acid (PFHxA)	EM2206998-023		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit
EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 pg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoronanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorododecanoic acid (PFDDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotidecanoic acid (PFTrDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotridecanoic acid (PFTrDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit			EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorobutanoic acid (PFBA) 375-22-4 0.1 µg/L <0.1 <0.1 0.0 No Limit				72629-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231B: Perfluoroalkyl Carboxylic Acids (QC Lot: 4298483) EM2206998-026 SX_20220416_08_31_SS _Primary_ALS EP231X: Perfluorooctanoic acid (PFOA) 335-67-1 0.01 µg/L <0.01 <0.01 0.0 No Limit EP231X: Perfluoropentanoic acid (PFPeA) 2706-90-3 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorononanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 376-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFTDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFTDA) 376-06-7 0.05 µg/L <0.05 <0.05 0.0 No Limit			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EM2206998-026 SX_20220416_08_31_SS			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EM2206998-026 SX_20220416_08_31_SS	EP231B: Perfluoroa	ılkyl Carboxylic Acids (QC L	ot: 4298483)							
EP231X: Perfluoropentanoic acid (PFPeA) 2706-90-3 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorononanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFNA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 µg/L <0.05 <0.05 0.0 No Limit		SX20220416_08_31_SS		335-67-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 μg/L <0.02		- ·-	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoronanoic acid (PFNA) 375-95-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroddecanoic acid (PFDDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 <0.05 0.0 No Limit				307-24-4	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFDoDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 0.05 0.0 No Limit			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 0.00 No Limit			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02				335-76-2	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02				2058-94-8	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotridecanoic acid (PFTrDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05 μg/L <0.05			` '	307-55-1	0.02	μg/L	<0.02	<0.02	0.0	No Limit
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05 μg/L <0.05 <0.05 0.0 No Limit			` '	72629-94-8	0.02		<0.02	<0.02	0.0	No Limit
			,	376-06-7	0.05		<0.05	<0.05	0.0	No Limit
				375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit

Page : 22 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231C: Perfluoroa	Ikyl Sulfonamides (Q0								
EM2206432-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EM0000000 005	A = = = = = = = = = = = = = = = = = = =	sulfonamidoethanol (EtFOSE)	754.04.0	0.00		40.00	40.00	0.0	NI a I imais
EM2206603-005	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		sulfonamidoacetic acid (MeFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane	2991-30-0	0.02	µg/L	<0.02	\0.02	0.0	INO LITTIL
		sulfonamidoacetic acid (EtFOSAA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31300-32-0	0.03	µg/L	~0.03	\0.03	0.0	NO LITTIL
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		(EtFOSA)	1101 00 2	0.00	P9/ L	10.00	10.00	0.0	140 Emili
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		sulfonamidoethanol (MeFOSE)			13				
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		sulfonamidoethanol (EtFOSE)							
EP231C: Perfluoroa	lkyl Sulfonamides (Q0	C Lot: 4297210)							
EM2206730-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		sulfonamidoethanol (EtFOSE)							

Page : 23 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231C: Perfluoroa	lkyl Sulfonamides (QC Lot:	4297210) - continued							
EM2206998-005	SX_IB_20220416_12_04_S S_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
	_ ,_	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lot:	4297276)							
EM2206998-033	SX_IB_20220417_04_02_S S_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EM2206998-038	SX_IB_20220417_15_58_S S_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit

Page : 24 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP231C: Perfluoroa	lkyl Sulfonamides (QC Lot: 4									
EM2206998-038	SX_IB_20220417_15_58_S S Primary ALS	EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231C: Perfluoroa	lkyl Sulfonamides (QC Lot: 4	. ,								
EM2206730-005	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lot: 4									
EM2206998-016	SX_IB_20220418_00_02_S S_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
	7_ 7_	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	

Page : 25 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP231C: Perfluoroa	lkyl Sulfonamides (QC Lot:	4298480) - continued								
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lot:	4298483)								
EM2206998-026	SX20220416_08_31_SS _Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
	7-	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231D: (n:2) Fluor	rotelomer Sulfonic Acids (Q	C Lot: 4294552)								
EM2206432-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EM2206603-005	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231D: (n:2) Fluor	rotelomer Sulfonic Acids (Q	C Lot: 4297210)								
EM2206730-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	

Page : 26 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 4297210) - continued								
EM2206730-001	Anonymous	EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EM2206998-005	SX_IB_20220416_12_04_S S_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 4297276)								
EM2206998-033	SX_IB_20220417_04_02_S S_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EM2206998-038	SX_IB_20220417_15_58_S S_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 4297326)								
EM2206730-005	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit	
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 4298480)								
EM2206998-016	SX_IB_20220418_00_02_S S_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit	

Page : 27 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER						Laboratory Duplicate (DUP) Report			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231D: (n:2) Fluor	otelomer Sulfonic Acids(Q	C Lot: 4298480) - continued							
EM2206998-016	SX_IB_20220418_00_02_S S_Primary_ALS	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 4298483)							
EM2206998-026	SX20220416_08_31_SS _Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4294552)								
EM2206432-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	1.79	1.71	4.6	0% - 20%
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	0.37	0.37	0.0	0% - 20%
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	1.73	1.67	3.5	0% - 20%
EM2206603-005	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	0.21	0.21	0.0	0% - 20%
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	0.21	0.21	0.0	0% - 20%
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	0.21	0.21	0.0	0% - 20%
EP231P: PFAS Sum	s (QC Lot: 4297210)								
EM2206730-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01	<0.01	0.0	No Limit
EM2206998-005	SX_IB_20220416_12_04_S S_Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit

Page : 28 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231P: PFAS Sum	s (QC Lot: 4297210) - conti	nued							
EM2206998-005	SX_IB_20220416_12_04_S S_Primary_ALS	EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4297276)								
EM2206998-033	SX_IB_20220417_04_02_S S_Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit
EM2206998-038	SX_IB_20220417_15_58_S S_Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4297326)								
EM2206730-005	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01	<0.01	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4298480)								
EM2206998-016	SX_IB_20220418_00_02_S S_Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit
EM2206998-023	SX_IB_20220418_20_01_S S_Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit
EP231P: PFAS Sum	s (QC Lot: 4298483)								
EM2206998-026	SX20220416_08_31_SS _Primary_ALS	EP231X: Sum of PFAS		0.01	μg/L	<0.10	<0.10	0.0	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.01	μg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.05	<0.05	0.0	No Limit

Page : 29 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293364)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	123 mg/kg	92.0	70.0	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1.23 mg/kg	60.9	50.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	96.7	70.0	130
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.9 mg/kg	87.7	70.0	130
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.4 mg/kg	90.7	70.0	130
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	2.19 mg/kg	87.6	70.0	130
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	91.9	70.0	130
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.9 mg/kg	91.3	70.0	130
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.33 mg/kg	82.0	70.0	130
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	70.5	70.0	130
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293367)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	123 mg/kg	92.8	70.0	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1.23 mg/kg	60.9	50.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	98.7	70.0	130
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.9 mg/kg	89.1	70.0	130
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.4 mg/kg	91.1	70.0	130
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	2.19 mg/kg	88.7	70.0	130
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	95.1	70.0	130
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.9 mg/kg	86.9	70.0	130
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.33 mg/kg	80.2	70.0	130
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	71.5	70.0	130
EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Pla	stic Vessel) (C	QCLot: 4294609)						
EN60-Dla-P: Final pH		0.1	pH Unit	7.1				
EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas	stic Vessel) ((OCL of: 4294610)						
EN60-DIa-P: Final pH		0.1	pH Unit	7.1				
EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas	atic Vescel) ((OCI et: 4206993)						
EN60-DIa-P: Final pH	stic vessel) (C	0.1	pH Unit	6.7				
		***	pri Onit	V.1			-	
EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas	stic Vessel) (C		nl I I Init	7.4				
EN60-Dla-P: Final pH		0.1	pH Unit	7.1				
EA001: pH in soil using 0.01M CaCl extract (QCLot: 429341								
EA001: pH (CaCl2)			pH Unit		4 pH Unit	101	98.8	101
					7 pH Unit	100	99.3	101

Page : 30 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CA	S Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA001: pH in soil using 0.01M CaCl extract (QCLot: 4293419)								
EA001: pH (CaCl2)			pH Unit		4 pH Unit	100	98.8	101
					7 pH Unit	100	99.3	101
EG035T: Total Recoverable Mercury by FIMS (QCLot: 4293365)								
EG035T: Mercury 74	39-97-6	0.1	mg/kg	<0.1	0.64 mg/kg	90.6	70.0	130
EG035T: Total Recoverable Mercury by FIMS (QCLot: 4293366)								
EG035T: Mercury 74	39-97-6	0.1	mg/kg	<0.1	0.64 mg/kg	79.7	70.0	130
EG048: Hexavalent Chromium (Alkaline Digest) (QCLot: 429343	1)							
EG048G: Hexavalent Chromium 185	40-29-9	0.5	mg/kg	<0.5	20 mg/kg	86.9	70.0	130
EG048: Hexavalent Chromium (Alkaline Digest) (QCLot: 429343;	2)							
, , ,	40-29-9	0.5	mg/kg	<0.5	20 mg/kg	87.8	70.0	130
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4293	594)							
	57-12-5	1	mg/kg	<1	20 mg/kg	97.1	70.0	130
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4293)	595)							
	57-12-5	1	mg/kg	<1	20 mg/kg	97.9	70.0	130
EK040T: Fluoride Total (QCLot: 4293424)								
· · · · · · · · · · · · · · · · · · ·	84-48-8	40	mg/kg	<40	400 mg/kg	78.1	75.2	110
EK040T: Fluoride Total (QCLot: 4293425)					3 0			
	84-48-8	40	mg/kg	<40	400 mg/kg	76.2	75.2	110
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 4293316)			3 3		3 3			-
EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	98.4	67.4	136
		4	99					
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 4293319) EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	99.8	67.4	136
		0.1	mg/kg	40.1	i ilig/kg	00.0	01.4	100
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4293292)	71-43-2	0.2	mg/kg	<0.2	2.1 mg/kg	88.9	69.2	116
El of Fort Bonzono	08-88-3	0.5	mg/kg	<0.5	2.1 mg/kg 2.1 mg/kg	87.0	67.7	116
Zi o' i o' i reidelle	00-41-4	0.5	mg/kg	<0.5	2.1 mg/kg	86.4	66.6	115
E. o. i e.i. Early Bonzone	08-38-3	0.5	mg/kg	<0.5	4.2 mg/kg	84.9	65.2	112
	06-42-3						20.2	
	00-42-5	0.5	mg/kg	<0.5	2.1 mg/kg	87.6	69.4	111
•	95-47-6	0.5	mg/kg	<0.5	2.1 mg/kg	84.9	68.4	110
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4293294)								
	71-43-2	0.2	mg/kg	<0.2	2.1 mg/kg	89.8	69.2	116
EP074-UT: Toluene	08-88-3	0.5	mg/kg	<0.5	2.1 mg/kg	88.5	67.7	116
EP074-UT: Ethylbenzene 1	00-41-4	0.5	mg/kg	<0.5	2.1 mg/kg	86.2	66.6	115
EP074-UT: meta- & para-Xylene 1	08-38-3	0.5	mg/kg	<0.5	4.2 mg/kg	84.0	65.2	112
	06-42-3							
EP074-UT: Styrene	00-42-5	0.5	mg/kg	<0.5	2.1 mg/kg	84.9	69.4	111

Page : 31 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4	4293294) - continue	d						
EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2.1 mg/kg	84.1	68.4	110
EP074H: Naphthalene (QCLot: 4293292)								
EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	0.6 mg/kg	96.6	72.3	114
EP074H: Naphthalene (QCLot: 4293294)								
EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	0.6 mg/kg	89.1	72.3	114
EP074I: Volatile Halogenated Compounds (QCLot: 429)	3292)							
EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	0.1 mg/kg	98.9	47.0	138
EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	0.1 mg/kg	92.0	57.6	125
EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	2.1 mg/kg	89.2	72.3	115
EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	0.1 mg/kg	92.4	60.5	122
EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	0.1 mg/kg	89.2	70.3	112
EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	0.1 mg/kg	90.4	66.6	115
EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	0.1 mg/kg	90.1	64.4	122
EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	0.1 mg/kg	90.2	58.4	127
EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	0.1 mg/kg	96.2	72.9	114
EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	0.1 mg/kg	88.7	64.7	115
EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	0.1 mg/kg	91.6	72.6	116
EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	0.1 mg/kg	90.6	60.0	119
EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01	0.1 mg/kg	87.0	71.8	116
EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	0.1 mg/kg	90.2	66.1	116
EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	0.1 mg/kg	78.0	39.8	128
EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	0.1 mg/kg	89.6	70.3	113
EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	0.1 mg/kg	82.0	62.6	113
EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	0.1 mg/kg	84.2	70.8	110
EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	0.1 mg/kg	76.4	48.4	120
EP074I: Volatile Halogenated Compounds (QCLot: 429)	3294)							
EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	0.1 mg/kg	100	47.0	138
EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	0.1 mg/kg	92.3	57.6	125
EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	2.1 mg/kg	88.3	72.3	115
EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	0.1 mg/kg	92.1	60.5	122
EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	0.1 mg/kg	90.2	70.3	112
EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	0.1 mg/kg	91.9	66.6	115
EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	0.1 mg/kg	92.6	64.4	122
EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	0.1 mg/kg	89.0	58.4	127
EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	0.1 mg/kg	96.2	72.9	114
EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	0.1 mg/kg	88.9	64.7	115
EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	0.1 mg/kg	89.5	72.6	116
EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	0.1 mg/kg	89.4	60.0	119

Page : 32 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074I: Volatile Halogenated Compounds (QCLot: 4	293294) - continued							
EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01	0.1 mg/kg	85.6	71.8	116
EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	0.1 mg/kg	83.5	66.1	116
EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	0.1 mg/kg	87.6	39.8	128
EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	0.1 mg/kg	89.5	70.3	113
EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	0.1 mg/kg	79.0	62.6	113
EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	0.1 mg/kg	83.7	70.8	110
EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	0.1 mg/kg	72.4	48.4	120
EP075A: Phenolic Compounds (Halogenated) (QCLo	ot: 4293314)							
EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.03	2 mg/kg	88.1	74.5	126
EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.03	2 mg/kg	88.2	72.7	126
EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.03	2 mg/kg	88.4	73.5	132
EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<0.03	2 mg/kg	89.7	72.8	128
EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.05	2 mg/kg	83.5	73.3	134
EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.05	2 mg/kg	82.0	72.4	128
EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	2 mg/kg	77.6	69.4	126
EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/5	0.05	mg/kg	<0.05	4 mg/kg	84.4	71.9	128
	8-90-2							
EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2	4 mg/kg	85.0	54.4	135
EP075A: Phenolic Compounds (Halogenated) (QCLo	ot: 4293317)							
EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.03	2 mg/kg	100.0	74.5	126
EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.03	2 mg/kg	97.8	72.7	126
EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.03	2 mg/kg	98.8	73.5	132
EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<0.03	2 mg/kg	97.8	72.8	128
EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.05	2 mg/kg	97.8	73.3	134
EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.05	2 mg/kg	95.4	72.4	128
EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	2 mg/kg	92.1	69.4	126
EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/5	0.05	mg/kg	<0.05	4 mg/kg	102	71.9	128
	8-90-2							1
EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2	4 mg/kg	92.8	54.4	135
EP075A: Phenolic Compounds (Non-halogenated) (QCLot: 4293314)							
EP075-EM: Phenol	108-95-2	1	mg/kg	<1	2 mg/kg	91.5	71.5	130
EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	2 mg/kg	90.4	73.4	129
EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	4 mg/kg	94.5	74.3	129
EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	2 mg/kg	88.3	70.9	133
EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	2 mg/kg	85.5	71.8	132
EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	10 mg/kg	65.2	41.0	156
EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	10 mg/kg	96.0	65.3	134
EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	10 mg/kg	77.8	43.6	128

Page : 33 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB) Report		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075A: Phenolic Compounds (Non-halogenated)	(QCLot: 4293314) - cont	inued						
EP075-EM: Dinoseb	88-85-7	5	mg/kg	<5	10 mg/kg	86.9	62.0	128
EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5	10 mg/kg	74.7	34.5	137
EP075A: Phenolic Compounds (Non-halogenated)	(QCLot: 4293317)							
EP075-EM: Phenol	108-95-2	1	mg/kg	<1	2 mg/kg	99.4	71.5	130
EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	2 mg/kg	95.8	73.4	129
EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	4 mg/kg	97.6	74.3	129
EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	2 mg/kg	95.7	70.9	133
EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	2 mg/kg	98.4	71.8	132
EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	10 mg/kg	71.8	41.0	156
EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	10 mg/kg	113	65.3	134
EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	10 mg/kg	86.6	43.6	128
EP075-EM: Dinoseb	88-85-7	5	mg/kg	<5	10 mg/kg	96.7	62.0	128
EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5	10 mg/kg	76.3	34.5	137
EP075B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 4293314)							
EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	2 mg/kg	87.8	73.0	131
EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	2 mg/kg	83.4	76.3	130
EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	2 mg/kg	83.4	72.0	135
EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	2 mg/kg	85.4	74.4	131
EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	2 mg/kg	90.1	73.3	130
EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	2 mg/kg	91.0	78.4	127
EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	2 mg/kg	87.4	75.3	132
EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	2 mg/kg	90.6	75.4	130
EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	2 mg/kg	90.5	69.6	133
EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	2 mg/kg	90.3	75.0	133
EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	<1.0	4 mg/kg	89.8	75.8	133
	207-08-9							
EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	2 mg/kg	88.4	65.1	130
EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	2 mg/kg	86.2	72.1	134
EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	2 mg/kg	87.4	72.9	135
EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	2 mg/kg	85.7	71.3	134
EP075B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 4293317)							
EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	2 mg/kg	102	73.0	131
EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	2 mg/kg	102	76.3	130
EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	2 mg/kg	102	72.0	135
EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	2 mg/kg	104	74.4	131
EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	2 mg/kg	104	73.3	130
EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	2 mg/kg	104	78.4	127
EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	2 mg/kg	104	75.3	132

Page : 34 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075B: Polynuclear Aromatic Hydrocarbons (QCI	Lot: 4293317) - continue	ed						
EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	2 mg/kg	105	75.4	130
EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	2 mg/kg	105	69.6	133
EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	2 mg/kg	109	75.0	133
EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	<1.0	4 mg/kg	109	75.8	133
	207-08-9							
EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	2 mg/kg	109	65.1	130
EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	2 mg/kg	110	72.1	134
EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	2 mg/kg	110	72.9	135
EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	2 mg/kg	110	71.3	134
EP075I: Organochlorine Pesticides (QCLot: 429331	4)							
EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.03	2 mg/kg	87.0	71.0	129
EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.03	2 mg/kg	87.0	74.8	126
EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.03	2 mg/kg	88.2	75.7	130
EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.03	2 mg/kg	88.3	70.8	130
EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.03	2 mg/kg	89.6	76.5	134
EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.03	2 mg/kg	88.2	75.5	131
EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.03	2 mg/kg	87.3	76.8	130
EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.03	2 mg/kg	88.2	73.6	130
EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	2 mg/kg	86.6	75.0	133
EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	2 mg/kg	85.7	75.3	131
EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.03	2 mg/kg	90.4	69.4	134
EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	2 mg/kg	89.1	71.0	132
EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.03	2 mg/kg	86.4	78.0	133
EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.03	2 mg/kg	86.2	69.0	143
EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.03	2 mg/kg	80.7	55.7	145
EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.03	2 mg/kg	87.1	71.4	135
EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	2 mg/kg	86.8	74.8	134
EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.03	2 mg/kg	88.4	70.2	135
EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	2 mg/kg	85.9	77.7	133
EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.03	2 mg/kg	88.6	63.6	135
EP075l: Organochlorine Pesticides (QCLot: 429331	7)							
EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.03	2 mg/kg	104	71.0	129
EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.03	2 mg/kg	105	74.8	126
EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.03	2 mg/kg	104	75.7	130
EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.03	2 mg/kg	104	70.8	130
EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.03	2 mg/kg	106	76.5	134
EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.03	2 mg/kg	102	75.5	131
EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.03	2 mg/kg	103	76.8	130
EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.03	2 mg/kg	104	73.6	130

Page : 35 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075I: Organochlorine Pesticides (QCLot: 4293317) -	- continued							
EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	2 mg/kg	105	75.0	133
EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	2 mg/kg	105	75.3	131
EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.03	2 mg/kg	104	69.4	134
EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	2 mg/kg	106	71.0	132
EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.03	2 mg/kg	106	78.0	133
EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.03	2 mg/kg	107	69.0	143
EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.03	2 mg/kg	118	55.7	145
EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.03	2 mg/kg	105	71.4	135
EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	2 mg/kg	106	74.8	134
EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.03	2 mg/kg	107	70.2	135
EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	2 mg/kg	104	77.7	133
EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.03	2 mg/kg	107	63.6	135
EP080/071: Total Petroleum Hydrocarbons (QCLot: 429	93292)							
EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	39.6 mg/kg	92.8	61.1	119
EP080/071: Total Petroleum Hydrocarbons (QCLot: 429	93294)							
EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	39.6 mg/kg	91.9	61.1	119
EP080/071: Total Petroleum Hydrocarbons (QCLot: 429	3315)							
EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	700 mg/kg	93.9	74.4	129
EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	2930 mg/kg	108	81.0	123
EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	1380 mg/kg	111	81.8	121
EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	5010 mg/kg	107	70.0	130
EP080/071: Total Petroleum Hydrocarbons (QCLot: 429	3330)							
EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	700 mg/kg	88.3	74.4	129
EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	2930 mg/kg	101	81.0	123
EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	1380 mg/kg	104	81.8	121
EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	5010 mg/kg	99.8	70.0	130
	042 Eventions (OC							
EP080/071: Total Recoverable Hydrocarbons - NEPM 20 EP074-UT: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	48.9 mg/kg	92.6	59.9	119
		10	mg/kg	<10	40.9 mg/kg	92.0	J9.9 	
EP074-UT: C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTE X	10	mg/kg	110				
ED000/074: Total Danayarahla Hydrocarbara NEDM 20		Let. 4202204)						
EP080/071: Total Recoverable Hydrocarbons - NEPM 20 EP074-UT: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	48.9 mg/kg	91.5	59.9	119
	C6 C10-BTE	10	mg/kg	<10		31.5		
EP074-UT: C6 - C10 Fraction minus BTEX (F1)	C6_C10-B1E	10	mg/kg	10				
EP080/071: Total Recoverable Hydrocarbons - NEPM 20		Lot: 4292245)						
EP071-EM: >C10 - C16 Fraction	713 Fractions (QC	50	mg/kg	<50	1030 mg/kg	99.7	75.4	132
EP071-EM: >C10 - C16 Fraction		100	mg/kg	<100	3680 mg/kg	113	80.8	120
EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	270 mg/kg	98.9	73.3	136
LFU/ 1-LIVI. >034 - 040 FIAULIUII		100	mg/kg	-100	270 mg/kg	50.8	7 0.0	100

Page : 36 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPN	M 2013 Fractions (QCLo	ot: 4293315) - co	ontinued					
EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	4980 mg/kg	110	70.0	130
EP080/071: Total Recoverable Hydrocarbons - NEPN	M 2013 Fractions (QCLo	t: 4293320)						
EP071-EM: >C10 - C16 Fraction		50	mg/kg	<50	1030 mg/kg	93.7	75.4	132
EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	3680 mg/kg	105	80.8	120
EP071-EM: >C34 - C40 Fraction		100	mg/kg	<100	270 mg/kg	91.8	73.3	136
EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	4980 mg/kg	102	70.0	130
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 429	4640)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00111 mg/kg	97.6	72.0	128
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00118 mg/kg	90.6	73.0	123
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.0014 mg/kg	76.6	67.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00119 mg/kg	93.2	70.0	132
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00116 mg/kg	102	68.0	136
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00121 mg/kg	96.8	59.0	134
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 429	4641)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00111 mg/kg	95.2	72.0	128
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00118 mg/kg	95.8	73.0	123
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.0014 mg/kg	79.9	67.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00119 mg/kg	102	70.0	132
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00116 mg/kg	90.7	68.0	136
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00121 mg/kg	89.8	59.0	134
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	1294640)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	110	71.0	135
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	114	69.0	132
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	106	70.0	132
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	89.0	71.0	131
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	100	69.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	92.7	72.0	129
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	105	69.0	133
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.8	64.0	136
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	94.0	69.0	135
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	85.4	66.0	139
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	95.5	69.0	133
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	1294641)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	96.2	71.0	135
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	104	69.0	132
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	95.6	70.0	132
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	94.5	71.0	131
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	97.4	69.0	133

Page : 37 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 42946	641) - continued							
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	96.2	72.0	129
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	91.4	69.0	133
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	91.5	64.0	136
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	97.6	69.0	135
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	88.6	66.0	139
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	96.4	69.0	133
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294640)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	101	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	105	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	100	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	92.0	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	105	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	95.2	63.0	144
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.6	61.0	139
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294641)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	92.0	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	104	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	95.6	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	96.5	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	98.7	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	106	63.0	144
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	95.0	61.0	139
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 42	94640)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00117 mg/kg	101	62.0	145
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00119 mg/kg	100	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.0012 mg/kg	97.4	65.0	137
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00121 mg/kg	116	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 42	94641)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00117 mg/kg	96.0	62.0	145
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00119 mg/kg	96.6	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.0012 mg/kg	99.9	65.0	137

Page : 38 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL		L					Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:	4294641) - continue	d								
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00121 mg/kg	96.0	70.0	130		
EP231P: PFAS Sums (QCLot: 4294640)										
EP231X: Sum of PFAS		0.0002	mg/kg	<0.0002						
EP231X: Sum of PFHxS and PFOS	355-46-4/17	0.0002	mg/kg	<0.0002						
	63-23-1									
EP231X: Sum of PFAS (WA DER List)		0.0002	mg/kg	<0.0002						
EP231P: PFAS Sums (QCLot: 4294641)										
EP231X: Sum of PFAS		0.0002	mg/kg	<0.0002						
EP231X: Sum of PFHxS and PFOS	355-46-4/17	0.0002	mg/kg	<0.0002						
	63-23-1									
EP231X: Sum of PFAS (WA DER List)		0.0002	mg/kg	<0.0002						
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	CS) Report			
out mann man				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42945	52)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	106	72.0	130		
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	99.9	71.0	127		
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	93.2	68.0	131		
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	92.6	69.0	134		
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	89.2	65.0	140		
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	87.5	53.0	142		
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42972	10)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	111	72.0	130		
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	101	71.0	127		
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	102	68.0	131		
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	106	69.0	134		
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	96.3	65.0	140		
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	99.6	53.0	142		
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42972	76)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	104	72.0	130		
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	94.4	71.0	127		
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	96.4	68.0	131		
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	102	69.0	134		
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	87.3	65.0	140		
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	84.8	53.0	142		
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42973	26)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	106	72.0	130		
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	95.5	71.0	127		

Page : 39 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4297	326) - continued							
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	95.6	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	92.7	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	99.2	65.0	140
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	91.4	53.0	142
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4298	480)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	103	72.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	103	71.0	127
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	100	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	116	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	112	65.0	140
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	107	53.0	142
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4298	483)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.222 μg/L	93.8	72.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.235 μg/L	105	71.0	127
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	0.228 μg/L	103	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	122	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.232 μg/L	113	65.0	140
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.241 μg/L	111	53.0	142
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	294552)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	84.3	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	98.8	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	99.5	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	98.9	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	95.7	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	103	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	104	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	97.4	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	102	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	90.7	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	102	71.0	132
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4:	297210)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	97.2	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	98.5	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	97.8	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	105	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	98.5	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	102	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	109	71.0	129

Page : 40 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	297210) - continued							
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	95.2	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	107	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	101	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	130	71.0	132
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	297276)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	90.2	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	91.0	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	95.9	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	98.1	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	95.1	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	96.0	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	104	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	95.4	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	94.7	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	102	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	122	71.0	132
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	297326)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	89.7	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	91.8	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	104	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	103	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	97.8	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	99.3	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	107	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	96.4	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	97.3	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	80.9	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	129	71.0	132
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	298480)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	89.4	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	110	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	99.1	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	105	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	97.1	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	101	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	91.2	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	101	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	105	72.0	134

Page : 41 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	· · ·			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4298	480) - continued									
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	94.2	65.0	144		
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	122	71.0	132		
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4298	483)									
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	92.5	73.0	129		
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	106	72.0	129		
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	100	72.0	129		
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	106	72.0	130		
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	98.5	71.0	133		
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	130		
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	93.1	71.0	129		
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	99.6	69.0	133		
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	104	72.0	134		
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	98.9	65.0	144		
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	117	71.0	132		
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294552)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	97.3	67.0	137		
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	104	68.0	141		
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	97.5	70.0	130		
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	89.6	70.0	130		
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	100	70.0	130		
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	103	65.0	136		
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	96.5	61.0	135		
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297210)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	102	67.0	137		
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	112	68.0	141		
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	102	70.0	130		
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	102	70.0	130		
P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	102	70.0	130		
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	116	65.0	136		
P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	120	61.0	135		

Page : 42 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptabl	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297276)	- continued							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	101	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	92.8	68.0	141
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	91.2	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	99.8	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	98.6	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	98.3	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	106	61.0	135
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297326)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	107	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	113	68.0	141
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	92.7	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	92.4	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	103	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	97.0	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298480)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	105	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	109	68.0	141
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	105	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	113	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	91.7	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	94.2	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	106	61.0	135
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298483)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	105	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	104	68.0	141
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	120	70.0	130

Page : 43 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298483	3) - continued							
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	104	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	95.3	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	105	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	115	61.0	135
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4	294552)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	99.5	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	102	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	113	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	120	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4	297210)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	108	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	116	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	116	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	84.1	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4	297276)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	102	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	107	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	118	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	94.8	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4	297326)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	105	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	102	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	110	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	89.1	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	96.1	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	105	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	108	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	86.9	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4	298483)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.234 μg/L	96.8	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.238 μg/L	113	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.24 μg/L	106	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.242 μg/L	84.3	70.0	130

Page : 44 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231P: PFAS Sums (QCLot: 4294552)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				
EP231P: PFAS Sums (QCLot: 4297210)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				
EP231P: PFAS Sums (QCLot: 4297276)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				
EP231P: PFAS Sums (QCLot: 4297326)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				
EP231P: PFAS Sums (QCLot: 4298480)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				
EP231P: PFAS Sums (QCLot: 4298483)								
EP231X: Sum of PFAS		0.01	μg/L	<0.01				
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.01	μg/L	<0.01				
EP231X: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Ma	trix Spike (MS) Repor	t	
			Spike	SpikeRecovery(%)	Acceptable L	Limits (%)
Laboratory sample ID Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293364)						

Page : 45 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4293364) - continue	d					
EM2206998-002	SX _20220416_08_34_SS_Duplicate_ALS	EG005T: Nickel	7440-02-0	50 mg/kg	109	78.0	120
EM2206998-002	SX_20220416_08_34_SS_Duplicate_ALS	EG005T: Arsenic	7440-38-2	50 mg/kg	84.0	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	89.8	79.7	116
		EG005T: Chromium	7440-47-3	50 mg/kg	81.9	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	98.7	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	89.7	80.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	80.4	80.0	120
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4293367)						
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EG005T: Nickel	7440-02-0	50 mg/kg	# 67.2	78.0	120
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EG005T: Arsenic	7440-38-2	50 mg/kg	86.0	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.0	79.7	116
		EG005T: Chromium	7440-47-3	50 mg/kg	118	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	102	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	94.9	80.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	85.6	80.0	120
G035T: Total Red	coverable Mercury by FIMS (QCLot: 4293365)						
EM2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EG035T: Mercury	7439-97-6	0.5 mg/kg	97.6	76.0	116
G035T: Total Red	coverable Mercury by FIMS (QCLot: 4293366)						
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EG035T: Mercury	7439-97-6	0.5 mg/kg	102	76.0	116
G048: Hexavalen	Chromium (Alkaline Digest) (QCLot: 4293431)						
M2206998-002	SX 20220416 08 34 SS Duplicate ALS	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	59.4	58.0	114
EM2206998-002	SX_20220416_08_34_SS_Duplicate_ALS	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	71.3	58.0	114
G048: Hexavalen	t Chromium (Alkaline Digest) (QCLot: 4293432)						
M2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	94.8	58.0	114
EM2206998-024	SX IB 20220419 00 01 SS Primary ALS	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	101	58.0	114
	N by Segmented Flow Analyser (QCLot: 4293594)	EGO40G. HEXAVAIGH GINOHIUM	.00.00 20 0	2099	.0.	00.0	
M2206998-001	SX 20220416 08 31 SS Primary ALS	EK026SF: Total Cyanide	57-12-5	20 mg/kg	92.7	70.0	130
		ER020SF. Total Cyanide	37-12-3	20 Hig/kg	32.1	70.0	130
	N by Segmented Flow Analyser (QCLot: 4293595)		57.40.5	00 #	00.4	70.0	400
EM2206998-023	SX_IB_20220418_20_01_SS_Primary_ALS	EK026SF: Total Cyanide	57-12-5	20 mg/kg	93.1	70.0	130
K040T: Fluoride	Total (QCLot: 4293424)						
M2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EK040T: Fluoride	16984-48-8	400 mg/kg	70.4	70.0	130
K040T: Fluoride	Total (QCLot: 4293425)						
M2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EK040T: Fluoride	16984-48-8	400 mg/kg	70.0	70.0	130
P066: Polychlorin	nated Biphenyls (PCB) (QCLot: 4293316)						
EM2206998-005	SX_IB_20220416_12_04_SS_Primary_ALS	EP066-EM: Total Polychlorinated biphenyls		1 mg/kg	85.0	59.6	152

Page : 46 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP066: Polychlori	nated Biphenyls (PCB) (QCLot: 4293319)						
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EP066-EM: Total Polychlorinated biphenyls		1 mg/kg	112	59.6	152
EP074A: Monocyc	clic Aromatic Hydrocarbons (QCLot: 4293292)						
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EP074-UT: Benzene	71-43-2	2 mg/kg	88.9	53.7	130
		EP074-UT: Toluene	108-88-3	2 mg/kg	92.7	55.1	124
EP074A: Monocyc	clic Aromatic Hydrocarbons (QCLot: 4293294)						
EM2206998-024	SX IB 20220419 00 01 SS Primary ALS	EP074-UT: Benzene	71-43-2	2 mg/kg	75.0	53.7	130
		EP074-UT: Toluene	108-88-3	2 mg/kg	76.2	55.1	124
EP074I: Volatile H	alogenated Compounds (QCLot: 4293292)						
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EP074-UT: 1.1-Dichloroethene	75-35-4	2 mg/kg	76.5	38.4	145
		EP074-UT: Trichloroethene	79-01-6	2 mg/kg	81.3	48.1	128
		EP074-UT: Chlorobenzene	108-90-7	2 mg/kg	86.9	55.5	122
EP074I: Volatile H	alogenated Compounds (QCLot: 4293294)						
EM2206998-024	SX IB 20220419 00 01 SS Primary ALS	EP074-UT: 1.1-Dichloroethene	75-35-4	2 mg/kg	66.2	38.4	145
	ossss	EP074-UT: Trichloroethene	79-01-6	2 mg/kg	69.6	48.1	128
		EP074-UT: Chlorobenzene	108-90-7	2 mg/kg	71.0	55.5	122
FP075A: Phenolic	Compounds (Halogenated) (QCLot: 4293314)						
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EP075-EM: 2-Chlorophenol	95-57-8	3 mg/kg	95.9	44.0	143
LW220000 002	5X20220110_00_01_00_Bupilouto_Xt20	EP075-EM: 4-Chloro-3-methylphenol	59-50-7	3 mg/kg	91.5	41.5	139
		EP075-EM: Pentachlorophenol	87-86-5	3 mg/kg	60.3	10.0	144
FP075A: Phenolic	Compounds (Halogenated) (QCLot: 4293317)			J			
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EP075-EM: 2-Chlorophenol	95-57-8	3 mg/kg	95.4	44.0	143
	ossss	EP075-EM: 4-Chloro-3-methylphenol	59-50-7	3 mg/kg	88.9	41.5	139
		EP075-EM: Pentachlorophenol	87-86-5	3 mg/kg	75.6	10.0	144
EP075A: Phenolic	Compounds (Non-halogenated) (QCLot: 4293314)						
EM2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EP075-EM: Phenol	108-95-2	3 mg/kg	108	44.2	134
	oxox	EP075-EM: 2-Nitrophenol	88-75-5	3 mg/kg	50.6	34.2	129
EP075A: Phenolic	Compounds (Non-halogenated) (QCLot: 4293317)	2. 0.0 2 2.1.11.05.13.13.		3 3			
EM2206998-024	SX IB 20220419 00 01 SS Primary ALS	EP075-EM: Phenol	108-95-2	3 mg/kg	93.6	44.2	134
LW2200990-024	5X_1B_20220419_00_01_55_1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EP075-EM: Prierioi EP075-EM: 2-Nitrophenol	88-75-5	3 mg/kg	81.5	34.2	129
EP075R: Polynuci	ear Aromatic Hydrocarbons (QCLot: 4293314)	El 070-Elw. 2-Milophienoi	33.70	0g.n.g	00	V <u>-</u>	
EM2206998-002	SX_20220416_08_34_SS_Duplicate_ALS	EDOZE EM Assesshifters	83-32-9	3 ma/ka	90.1	42.6	138
LIVIZZUU990-UUZ	5720220410_00_34_33_Duplicate_AL3	EP075-EM: Acenaphthene	129-00-0	3 mg/kg 3 mg/kg	90.1	37.8	152
ED075B. Bahmani	Aramatia Undraggub ana (OCI et. 4002247)	EP075-EM: Pyrene	123-00-0	J mg/kg	37.0	37.0	132
	ear Aromatic Hydrocarbons (QCLot: 4293317)		00.00.0	0	01.0	40.0	400
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EP075-EM: Acenaphthene	83-32-9	3 mg/kg	91.2	42.6	138
		EP075-EM: Pyrene	129-00-0	3 mg/kg	96.8	37.8	152

Page : 47 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 4293292)						
EM2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EP074-UT: C6 - C9 Fraction		28 mg/kg	84.8	42.3	111
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 4293294)						
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EP074-UT: C6 - C9 Fraction		28 mg/kg	74.1	42.3	111
	Petroleum Hydrocarbons (QCLot: 4293315)	21 074 01: 00 0011404011				1-1-	
EM2206998-006		EDOZA EM OAO OAA Evretina		700 mg/kg	95.2	71.3	126
EM2200990-000	SX_IB_20220416_16_12_SS_Primary_ALS	EP071-EM: C10 - C14 Fraction		700 mg/kg 2930 mg/kg	108	71.3	120
		EP071-EM: C15 - C28 Fraction			112		120
		EP071-EM: C29 - C36 Fraction		1380 mg/kg		78.1	
		EP071-EM: C10 - C36 Fraction (sum)		5010 mg/kg	107	70.0	130
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 4293320)						
EM2206998-025	SX_IB_20220419_03_59_SS_Primary_ALS	EP071-EM: C10 - C14 Fraction		680 mg/kg	90.5	71.3	126
		EP071-EM: C15 - C28 Fraction		2830 mg/kg	103	75.1	123
		EP071-EM: C29 - C36 Fraction		1340 mg/kg	106	78.1	120
		EP071-EM: C10 - C36 Fraction (sum)		4850 mg/kg	102	70.0	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 4293292)					
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EP074-UT: C6 - C10 Fraction	C6 C10	33 mg/kg	83.4	39.9	109
ED090/074: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions			3 3			
			00.040	22	70.4	20.0	400
EM2206998-024	SX_IB_20220419_00_01_SS_Primary_ALS	EP074-UT: C6 - C10 Fraction	C6_C10	33 mg/kg	73.1	39.9	109
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 4293315)					
EM2206998-006	SX_IB_20220416_16_12_SS_Primary_ALS	EP071-EM: >C10 - C16 Fraction		1030 mg/kg	101	71.5	130
		EP071-EM: >C16 - C34 Fraction		3680 mg/kg	113	76.9	119
		EP071-EM: >C34 - C40 Fraction		270 mg/kg	100	65.3	139
		EP071-EM: >C10 - C40 Fraction (sum)		4980 mg/kg	110	70.0	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 4293320)					
EM2206998-025	SX IB 20220419 03 59 SS Primary ALS	EP071-EM: >C10 - C16 Fraction		980 mg/kg	97.8	71.5	130
		EP071-EM: >C16 - C34 Fraction		3210 mg/kg	119	76.9	119
		EP071-EM: >C34 - C40 Fraction		270 mg/kg	92.5	65.3	139
		EP071-EM: >C10 - C40 Fraction (sum)		4460 mg/kg	113	70.0	130
FP231A: Parfluor	palkyl Sulfonic Acids (QCLot: 4294640)	El el l'Ellis el el el l'addell (call)		3 3			
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EDOOAN Death combuter a sulfania said (DEDO)	375-73-5	0.00111 mg/kg	88.0	72.0	128
EIVI2200996-002	3A20220410_06_34_33_Duplicate_AL3	EP231X: Perfluorobutane sulfonic acid (PFBS)	2706-91-4		87.3	73.0	123
		EP231X: Perfluoropentane sulfonic acid (PFPeS)		0.00118 mg/kg			
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00114 mg/kg	94.7	67.0	130 132
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00119 mg/kg	95.8	70.0	_
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00116 mg/kg	94.5	68.0	136
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00121 mg/kg	109	59.0	134
EP231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 4294641)						
EM2206998-023	SX_IB_20220418_20_01_SS_Primary_ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00111 mg/kg	97.6	72.0	128

Page : 48 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4294641) - continued						
EM2206998-023	SX IB 20220418 20 01 SS Primary ALS	EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00118 mg/kg	78.2	73.0	123
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00114 mg/kg	88.3	67.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00119 mg/kg	97.1	70.0	132
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00116 mg/kg	94.6	68.0	136
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00121 mg/kg	102	59.0	134
EP231B: Perfluore	palkyl Carboxylic Acids (QCLot: 4294640)						'
EM2206998-002	SX _20220416_08_34_SS_Duplicate_ALS	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	101	71.0	135
EMELOCOCO COL	0/	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	108	69.0	132
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	106	70.0	132
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	95.6	71.0	131
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	94.3	69.0	133
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	93.4	72.0	129
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	102	69.0	133
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	89.7	64.0	136
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	89.0	69.0	135
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	77.6	66.0	139
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	102	69.0	133
EP231B: Perfluore	palkyl Carboxylic Acids (QCLot: 4294641)						
EM2206998-023	SX IB 20220418 20 01 SS Primary ALS	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	98.0	71.0	135
LINEECOCOC CEC	0/C15_20220110_20_01_00_11111d1y_7/20	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	107	69.0	132
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	91.4	70.0	132
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	93.4	71.0	131
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	94.7	69.0	133
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	88.1	72.0	129
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	101	69.0	133
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	87.1	64.0	136
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	95.6	69.0	135
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	79.0	66.0	139
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	97.1	69.0	133
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 4294640)						
EM2206998-002	SX 20220416 08 34 SS Duplicate ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	95.2	67.0	137
_1412200000-002	0.1	EP231X: Pernuorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.00123 mg/kg	112	70.0	130
		(MeFOSA)		0.00012 mg/kg			
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	110	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	82.1	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	108	70.0	130

Page : 49 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4294640) - continued						
EM2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	97.7	63.0	144
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	95.0	61.0	139
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4294641)						
EM2206998-023	SX_IB_20220418_20_01_SS_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	96.0	67.0	137
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.00312 mg/kg	113	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	96.7	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	87.3	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	102	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	107	63.0	144
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	99.9	61.0	139
P231D: (n:2) Fluc	protelomer Sulfonic Acids (QCLot: 4294640)						
M2206998-002	SX20220416_08_34_SS_Duplicate_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00117 mg/kg	87.7	62.0	145
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00119 mg/kg	101	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0012 mg/kg	100	65.0	137
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00121 mg/kg	74.0	70.0	130
P231D: (n:2) Fluc	protelomer Sulfonic Acids (QCLot: 4294641)						
M2206998-023	SX_IB_20220418_20_01_SS_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00117 mg/kg	93.2	62.0	145
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00119 mg/kg	109	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0012 mg/kg	100	65.0	137
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00121 mg/kg	87.0	70.0	130
b-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4294552)						
M2206432-003	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 μg/L	108	72.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.235 μg/L	92.1	71.0	127
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.228 μg/L	91.4	68.0	131
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.238 μg/L	102	69.0	134
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.241 μg/L	84.8	53.0	142
P231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4297210)						
M2206730-002	Anonymous						

Page : 50 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike SpikeRecovery(%) Acceptable Limits (%)			Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	oalkyl Sulfonic Acids (QCLot: 4297210) - continu	ed					
EM2206730-002	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 µg/L	106	72.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.235 µg/L	83.4	71.0	127
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.228 μg/L	96.0	68.0	131
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.238 μg/L	117	69.0	134
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.232 µg/L	99.3	65.0	140
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.241 μg/L	104	53.0	142
EP231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 4297276)						
EM2206998-044	SX IB 20220418 16 07 SS Primary ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 µg/L	114	72.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.235 µg/L	86.4	71.0	127
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.228 µg/L	101	68.0	131
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.238 µg/L	106	69.0	134
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.232 µg/L	93.7	65.0	140
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.241 µg/L	82.8	53.0	142
EP231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 4297326)						
EM2206730-006	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 μg/L	104	72.0	130
	and the same of th	EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.235 μg/L	74.5	71.0	127
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.228 µg/L	87.0	68.0	131
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.238 µg/L	108	69.0	134
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.232 μg/L	93.2	65.0	140
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.241 µg/L	83.3	53.0	142
EP231A: Porfluoro	palkyl Sulfonic Acids (QCLot: 4298480)	El 2017. I dinacioaccane canonio acia (i i 20)		, ,,,			
EM2206998-011			275 72 5	0.000//	400	70.0	420
	SX_IB_20220417_08_07_SS_Primary_ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 µg/L	102 106	72.0 71.0	130 127
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4 355-46-4	0.235 µg/L	101	68.0	131
		EP231X: Perfluorohexane sulfonic acid (PFHxS)		0.228 µg/L			
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8 1763-23-1	0.238 µg/L	133	69.0 65.0	134 140
		EP231X: Perfluorooctane sulfonic acid (PFOS)	335-77-3	0.232 µg/L	126 140	53.0	140
		EP231X: Perfluorodecane sulfonic acid (PFDS)	333-11-3	0.241 μg/L	140	55.0	142
	palkyl Sulfonic Acids (QCLot: 4298483)						
EM2206998-031	SX_IB_20220416_20_06_SS_Primary_ALS	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.222 μg/L	96.2	72.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.235 μg/L	97.1	71.0	127
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.228 μg/L	102	68.0	131
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.238 μg/L	# 156	69.0	134
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.232 μg/L	126	65.0	140
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.241 μg/L	139	53.0	142
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 4294552)						
EM2206432-003	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	78.7	73.0	129
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	104	72.0	129
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	106	72.0	129

Page : 51 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 4294552) - contir	nued						
EM2206432-003	Anonymous	EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	96.5	72.0	130	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	110	69.0	130	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	106	71.0	129	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	95.9	69.0	133	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	92.3	72.0	134	
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	76.9	65.0	144	
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	101	71.0	132	
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 4297210)							
EM2206730-002	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	99.3	73.0	129	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	97.4	72.0	129	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	107	72.0	129	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	104	72.0	130	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	103	71.0	133	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	114	69.0	130	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	111	71.0	129	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	102	69.0	133	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	106	72.0	134	
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	97.9	65.0	144	
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 µg/L	132	71.0	132	
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 4297276)							
EM2206998-044	SX IB 20220418 16 07 SS Primary ALS	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	88.9	73.0	129	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	93.1	72.0	129	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 µg/L	100	72.0	129	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	103	72.0	130	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	94.8	71.0	133	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	104	69.0	130	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	107	71.0	129	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	92.0	69.0	133	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	85.0	72.0	134	
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	87.8	65.0	144	
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 µg/L	101	71.0	132	
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 4297326)						1	
EM2206730-006	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	89.4	73.0	129	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 µg/L	78.0	72.0	129	
		EP231X: Perfluoropentarioic acid (PFHxA)	307-24-4	0.25 μg/L	108	72.0	129	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 µg/L	102	72.0	130	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	95.3	71.0	133	

Page : 52 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER		M	atrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 4297326) - continued	t en					
M2206730-006	Anonymous	EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	109	71.0	129
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	97.3	69.0	133
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	88.5	72.0	134
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	71.4	65.0	144
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	97.8	71.0	132
P231B: Perfluoro	palkyl Carboxylic Acids (QCLot: 4298480)						
M2206998-011	SX_IB_20220417_08_07_SS_Primary_ALS	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	89.7	73.0	129
	0/_IB_E0EE0	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 µg/L	111	72.0	129
		EP231X: Perfluoropentarioic acid (PFHxA)	307-24-4	0.25 μg/L	95.3	72.0	129
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 µg/L	107	72.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 µg/L	97.9	71.0	133
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	106	69.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	85.7	71.0	129
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	97.7	69.0	133
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	104	72.0	134
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	94.8	65.0	144
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	120	71.0	132
P231B: Perfluoro	palkyl Carboxylic Acids (QCLot: 4298483)						
EM2206998-031	SX IB 20220416 20 06 SS Primary ALS	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	81.2	73.0	129
_W	0/_IB_E0EE0 10_E0_00_00_1 11111dily_/IE0	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 µg/L	110	72.0	129
		EP231X: Perfluoropentarioic acid (PFHxA)	307-24-4	0.25 μg/L	103	72.0	129
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	106	72.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	102	71.0	133
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	109	69.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	88.8	71.0	129
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	106	69.0	133
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	116	72.0	134
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	104	65.0	144
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	123	71.0	132
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4294552)						
EM2206432-003	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 µg/L	104	67.0	137
-1112200702-000	, alonginous	EP231X: Periluorooctane suironamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.625 μg/L	104	68.0	141
		(MeFOSA)					
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	90.7	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	88.0	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	108	70.0	130

Page : 53 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

bub-Matrix: WATER				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4294552) - continue	d d					
M2206432-003	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	99.3	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.25 μg/L	104	61.0	135
		acid (EtFOSAA)					
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4297210)						
M2206730-002	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	105	67.0	137
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	116	68.0	141
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	107	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	110	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	104	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	107	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	124	61.0	135
P231C: Parfluoro	alkyl Sulfonamides (QCLot: 4297276)	23.2 (23.23)					
M2206998-044	SX IB 20220418 16 07 SS Primary ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	101	67.0	137
IVI2200330-044	0A_IB_20220410_10_07_00_1 IIIIIaiy_AL0		31506-32-8	0.625 μg/L	76.9	68.0	141
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)					
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	73.3	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	89.7	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	93.2	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	92.7	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	92.1	61.0	135
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4297326)						
M2206730-006	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	103	67.0	137
	,	EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.625 μg/L	113	68.0	141
		(MeFOSA)	4151-50-2	0.625 μg/L	95.7	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) EP231X: N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	0.625 μg/L	101	70.0	130
		(MeFOSE) EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	99.5	70.0	130

Page : 54 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4297326) - continue	ed					
M2206730-006	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	113	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	108	61.0	135
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4298480)						
M2206998-011	SX IB 20220417 08 07 SS Primary ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	108	67.0	137
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	112	68.0	141
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	107	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	104	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	98.9	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	95.1	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	99.2	61.0	135
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 4298483)						
M2206998-031	SX_IB_20220416_20_06_SS_Primary_ALS	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	111	67.0	137
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	118	68.0	141
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	116	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	107	70.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	98.9	70.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	107	65.0	136
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	117	61.0	135
231D: (n:2) Flu	protelomer Sulfonic Acids (QCLot: 4294552)						
M2206432-003	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	99.0	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	105	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	118	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	80.0	70.0	130
231D: (n:2) Fluo	protelomer Sulfonic Acids (QCLot: 4297210)						
M2206730-002	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	105	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	119	64.0	140

Page : 55 of 55 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Sub-Matrix: WATER				М	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4297210) - co	ntinued					
EM2206730-002	Anonymous	EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	109	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	73.6	70.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4297276)						
EM2206998-044	SX_IB_20220418_16_07_SS_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	102	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	108	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	118	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	80.3	70.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4297326)						
` '	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	97.3	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	110	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	114	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	71.5	70.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4298480)						
EM2206998-011	SX_IB_20220417_08_07_SS_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	96.9	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	106	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	113	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	71.3	70.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4298483)						
EM2206998-031	SX_IB_20220416_20_06_SS_Primary_ALS	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.234 μg/L	98.3	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.238 μg/L	108	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.24 μg/L	115	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.242 μg/L	# 62.9	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2206998** Page : 1 of 25

Client : AGON ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne

Contact : DAVID LAWSON Telephone :+61-3-8549 9600
Project : JC0927 Date Samples Received :19-Apr-2022

Sampler : ES-EP Risk, LR- EP Risk, William O'Haire- Agon No. of samples received : 48
Order number :---- No. of samples analysed : 48

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005(ED093)T: Total Metals by ICP-AES	EM2206998024	SX_IB_20220419_00_01_SS_	Nickel	7440-02-0	67.2 %	78.0-120%	Recovery less than lower data quality
							objective

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	EM2206998031	SX_IB_20220416_20_06_SS_	Perfluoroheptane	375-92-8	156 %	69.0-134%	Recovery greater than upper data
			sulfonic acid				quality objective
			(PFHpS)				
EP231D: (n:2) Fluorotelomer Sulfonic Acids	EM2206998031	SX_IB_20220416_20_06_SS_	10:2 Fluorotelomer	120226-60-0	62.9 %	70.0-130%	Recovery less than lower data quality
			sulfonic acid (10:2				objective
			FTS)				

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

WIGHTA: SOIL					Lvalaation	. Holding time	breach, with	ir riolaing time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract								
Soil Glass Jar - Unpreserved (EA001)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	20-Apr-2022	20-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EA001)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	20-Apr-2022	20-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EA001)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	20-Apr-2022	20-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EA001)								

Page : 3 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract - Continu	ied							
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	20-Apr-2022	20-Apr-2022	✓
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022				20-Apr-2022	30-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EA055)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022				20-Apr-2022	01-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EA055)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022				20-Apr-2022	02-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EA055)							00 M 0000	
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022				20-Apr-2022	03-May-2022	✓
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	14-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EG005T)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	14-Oct-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG005T)				45.0-1.0000			45.0-4.0000	
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	15-Oct-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG005T)	OV ID 00000440 00 EC 22 T :	40.4	00 4 - 0000	16 Oct 2022		04 4 0000	16 Oct 2022	
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	16-Oct-2022	✓

Page : 4 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = With	n holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-May-2022	✓	21-Apr-2022	14-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EG035T)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	15-May-2022	✓	21-Apr-2022	15-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG035T)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	16-May-2022	✓	21-Apr-2022	16-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG035T)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	17-May-2022	✓	21-Apr-2022	17-May-2022	✓
EG048: Hexavalent Chromium (Alkaline Digest)								
Soil Glass Jar - Unpreserved (EG048G)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-May-2022	✓	20-Apr-2022	27-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EG048G)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	15-May-2022	✓	20-Apr-2022	27-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG048G)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	16-May-2022	✓	20-Apr-2022	27-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EG048G)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	17-May-2022	✓	20-Apr-2022	27-Apr-2022	✓

Page : 5 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	ı: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK026SF: Total CN by Segmented Flow Analyser								
Soil Glass Jar - Unpreserved (EK026SF)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	21-Apr-2022	04-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EK026SF)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	21-Apr-2022	04-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EK026SF)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	21-Apr-2022	04-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EK026SF)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	21-Apr-2022	04-May-2022	✓
EK040T: Fluoride Total								
Soil Glass Jar - Unpreserved (EK040T)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-May-2022	✓	22-Apr-2022	14-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EK040T)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	15-May-2022	✓	22-Apr-2022	15-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EK040T)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	16-May-2022	✓	22-Apr-2022	16-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EK040T)	·							
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	17-May-2022	✓	22-Apr-2022	17-May-2022	✓

Page : 6 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC092

Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Due for extraction Evaluation Due for analysis Evaluation Date extracted Date analysed EN60: ASLP Leaching Procedure - Inorganics/PFAS (Plastic Vessel) Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 16-Apr-2022 20-Apr-2022 14-Oct-2022 SX 20220416 08 31 SS Primary ALS, SX 20220416 08 34 SS Duplicate ALS, SX IB 20220416 12 04 SS Primary ALS, SX IB 20220416 16 12 SS Primary ALS. SX IB 20220416 16 24 SS Triplicate ALS, SX IB 20220416 20 06 SS Primary ALS, SX IB 20220416 23 55 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 17-Apr-2022 20-Apr-2022 14-Oct-2022 SX IB 20220417 08 10 SS Duplicate ALS, SX IB 20220417 04 02 SS Primary ALS, 1 SX IB 20220417 12 29 SS Primary ALS, SX IB 20220417 15 57 SS Triplicate ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 14-Oct-2022 SX IB 20220417 08 07 SS Primary ALS, SX IB 20220417 15 58 SS Primary ALS 17-Apr-2022 21-Apr-2022 1 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 18-Apr-2022 21-Apr-2022 15-Oct-2022 SX IB 20220418 03 59 SS Primary ALS, SX_IB_20220418_00_02_SS_Primary_ALS, SX IB 20220418 08 07 SS Primary ALS, SX IB 20220418 08 07 SS Duplicate ALS, SX IB 20220418 11 58 SS Primary ALS, SX IB 20220418 16 07 SS Primary ALS, SX_IB_20220418_16_10_SS_Triplicate_ALS, SX IB 20220418 20 01 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) SX IB 20220419 00 01 SS Primary ALS, SX IB 20220419 03 59 SS Primary ALS 19-Apr-2022 21-Apr-2022 16-Oct-2022 EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plastic Vessel) Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dia-P) SX 20220416 08 34 SS Duplicate ALS, SX IB 20220416 12 04 SS Primary ALS, 16-Apr-2022 20-Apr-2022 14-Oct-2022 1 SX IB 20220416 16 12 SS Primary ALS. SX IB 20220416 16 24 SS Triplicate ALS. SX IB 20220416 23 55 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 13-Oct-2022 16-Apr-2022 21-Apr-2022 SX 20220416 08 31 SS Primary ALS, SX IB 20220416 20 06 SS Primary ALS 1 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-DIa-P) SX IB 20220417 08 07 SS Primary ALS, 17-Apr-2022 20-Apr-2022 14-Oct-2022 SX IB 20220417 04 02 SS Primary ALS, SX IB 20220417 08 10 SS Duplicate ALS, SX IB 20220417 15 57 SS Triplicate ALS, SX IB 20220417 15 58 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 14-Oct-2022 SX IB 20220417 12 29 SS Primary ALS 17-Apr-2022 21-Apr-2022 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) SX IB 20220418 00 02 SS Primary ALS, SX IB 20220418 03 59 SS Primary ALS, 18-Apr-2022 20-Apr-2022 15-Oct-2022 SX IB 20220418 08 07 SS Primary ALS, SX IB 20220418 08 07 SS Duplicate ALS, SX IB 20220418 11 58 SS Primary ALS, SX IB 20220418 16 07 SS Primary ALS, SX IB 20220418 16 10 SS Triplicate ALS, SX IB 20220418 20 01 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 19-Apr-2022 20-Apr-2022 16-Oct-2022 1 SX IB 20220419 00 01 SS Primary ALS, SX IB 20220419 03 59 SS Primary ALS

Page : 7 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066-EM)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP066-EM)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP066-EM)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP066-EM)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓
EP074A: Monocyclic Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	21-Apr-2022	23-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	21-Apr-2022	24-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	21-Apr-2022	25-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)	·							
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	21-Apr-2022	26-Apr-2022	✓

Page : 8 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL Method		Sample Date		ktraction / Preparation	Lvaidatioi	I. Tiolding time	breach; ✓ = Withi	in notaling th
Container / Client Sample ID(s)		Sample Date			F -1 -0		. ,	F .1 .0.
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074H: Naphthalene								
Soil Glass Jar - Unpreserved (EP074-UT)					_			
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	21-Apr-2022	23-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP074-UT)					_			
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	21-Apr-2022	24-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)				05.4 0000			0	
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	21-Apr-2022	25-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)				00.4 0000				
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	21-Apr-2022	26-Apr-2022	✓
EP074I: Volatile Halogenated Compounds								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	21-Apr-2022	23-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	21-Apr-2022	24-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	21-Apr-2022	25-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	21-Apr-2022	26-Apr-2022	✓

Page : 9 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL Method		Sample Date		Extraction / Preparation			on: ■ Holding time breach; ■ Within holding Analysis		
Container / Client Sample ID(s)		Sample Date		•	F .1 .0.		. ,	F -1 -0:	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP075A: Phenolic Compounds (Halogenated)									
Soil Glass Jar - Unpreserved (EP075-EM)				00.4 0000			00.14		
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,								
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,								
SX_IB_20220416_23_55_SS_Primary_ALS									
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,								
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,								
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,								
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓	
EP075A: Phenolic Compounds (Non-halogenated)									
Soil Glass Jar - Unpreserved (EP075-EM)									
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,								
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,								
SX_IB_20220416_23_55_SS_Primary_ALS									
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,								
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓	
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,								
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,								
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP075-EM)									
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓	

Page : 10 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Method		Sample Date	F	ktraction / Preparation]	breach; ✓ = Withi	<u> </u>
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_20220416_08_31_SS_Primary_ALS,	SX 20220416 08 34 SS Duplicate ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	1	20-Apr-2022	30-May-2022	1
SX_IB_20220416_12_04_SS_Primary_ALS,	SX IB 20220416 16 12 SS Primary ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX IB 20220416 20 06 SS Primary ALS,							
SX IB 20220416 23 55 SS Primary ALS								
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓
EP075I: Organochlorine Pesticides								
Soil Glass Jar - Unpreserved (EP075-EM)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP075-EM)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP075-EM)				00 May 2000			00 14 0000	
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓

Page : 11 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	n holding tin
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071-EM)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	21-Apr-2022	23-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	21-Apr-2022	24-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	21-Apr-2022	25-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	21-Apr-2022	26-Apr-2022	✓

Page : 12 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL					Evaluation	i: × = Holding time	breach ; ✓ = With	n holding tin
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071-EM)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	30-Apr-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP074-UT)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	23-Apr-2022	✓	21-Apr-2022	23-Apr-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	01-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	24-Apr-2022	✓	21-Apr-2022	24-Apr-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	02-May-2022	✓	20-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	25-Apr-2022	✓	21-Apr-2022	25-Apr-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
Soil Glass Jar - Unpreserved (EP071-EM)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	03-May-2022	✓	20-Apr-2022	30-May-2022	✓
Soil Glass Jar - Unpreserved (EP074-UT)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	26-Apr-2022	✓	21-Apr-2022	26-Apr-2022	✓

Page : 13 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL			_		Evaluation	i: × = Holding time	breach ; ✓ = Withi	n nolding til
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
HDPE Soil Jar (EP231X)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X)				44.0.4.000			22.14	
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
HDPE Soil Jar (EP231X)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	30-May-2022	✓

Page : 14 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: SOIL			_		Evaluation	i: × = Holding time	breach ; ✓ = With	n holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
HDPE Soil Jar (EP231X)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE Soil Jar (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
HDPE Soil Jar (EP231X)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
HDPE Soil Jar (EP231X)	<u> </u>							
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	30-May-2022	✓

Page : 15 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Container / Client Sample ID(s)

Due for analysis

Evaluation

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach; ✓ = Withi	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231P: PFAS Sums								
HDPE Soil Jar (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	16-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS								
HDPE Soil Jar (EP231X)								
SX_IB_20220417_04_02_SS_Primary_ALS,	SX_IB_20220417_08_07_SS_Primary_ALS,	17-Apr-2022	20-Apr-2022	14-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,	18-Apr-2022	20-Apr-2022	15-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS							
HDPE Soil Jar (EP231X)								
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS	19-Apr-2022	20-Apr-2022	16-Oct-2022	✓	21-Apr-2022	30-May-2022	✓
Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date						

Evaluation

Date analysed

Page : 16 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X)								
SX_IB_20220416_09_36_SR_Rinsate_ALS,	SX_IB_20220416_09_38_SB_Blank_ALS	16-Apr-2022	20-Apr-2022	13-Oct-2022	1	20-Apr-2022	13-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	20-Apr-2022	21-Apr-2022	17-Oct-2022	✓	21-Apr-2022	17-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS,	SX_IB_20220417_04_02_SS_Primary_ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX20220416_08_34_SS_Duplicate_ALS,							
SX IB 20220416 12 04 SS Primary ALS,	SX IB 20220416 16 12 SS Primary ALS,							
SX IB 20220416 16 24 SS Triplicate ALS,	SX IB 20220416 23 55 SS Primary ALS,							
SX IB 20220417 04 02 SS Primary ALS,	SX IB 20220417 08 07 SS Primary ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_15_57_SS_Triplicate_ALS,							
SX IB 20220417 15 58 SS Primary ALS,	SX IB 20220418 00 02 SS Primary ALS,							
SX IB 20220418 03 59 SS Primary ALS,	SX IB 20220418 08 07 SS Primary ALS,							
SX IB 20220418 08 07 SS Duplicate ALS,	SX IB 20220418 11 58 SS Primary ALS,							
SX IB 20220418 16 07 SS Primary ALS,	SX IB 20220418 16 10 SS Triplicate ALS,							
SX IB 20220418 20 01 SS Primary ALS,	SX IB 20220419 00 01 SS Primary ALS,							
SX IB 20220419 03 59 SS Primary ALS	5X_IB_20220419_00_01_00_11IIIIaly_ALG,							
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_12_29_SS_Primary_ALS		21-Apr-2022	21-Apr-2022	18-Oct-2022	✓	21-Apr-2022	18-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_08_07_SS_Primary_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS,	21-Apr-2022	22-Apr-2022	18-Oct-2022	1	22-Apr-2022	18-Oct-2022	✓
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,							
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS,							
SX IB 20220419 00 01 SS Primary ALS,	SX IB 20220419 03 59 SS Primary ALS,							
SX 20220416 08 31 SS Primary ALS,	SX IB 20220416 20 06 SS Primary ALS							

Page : 17 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: WATER					Evaluation	n: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	E)	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X)								
SX_IB_20220416_09_36_SR_Rinsate_ALS,	SX_IB_20220416_09_38_SB_Blank_ALS	16-Apr-2022	20-Apr-2022	13-Oct-2022	✓	20-Apr-2022	13-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	20-Apr-2022	21-Apr-2022	17-Oct-2022	✓	21-Apr-2022	17-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS,	SX_IB_20220417_04_02_SS_Primary_ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX20220416_08_34_SS_Duplicate_ALS,							
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_23_55_SS_Primary_ALS,							
SX IB 20220417 04 02 SS Primary ALS,	SX IB 20220417 08 07 SS Primary ALS,							
SX IB 20220417 08 10 SS Duplicate ALS,	SX IB 20220417 15 57 SS Triplicate ALS,							
SX_IB_20220417_15_58_SS_Primary_ALS,	SX IB 20220418 00 02 SS Primary ALS,							
SX IB 20220418 03 59 SS Primary ALS,	SX IB 20220418 08 07 SS Primary ALS,							
SX IB 20220418 08 07 SS Duplicate ALS,	SX IB 20220418 11 58 SS Primary ALS,							
SX_IB_20220418_16_07_SS_Primary_ALS,	SX_IB_20220418_16_10_SS_Triplicate_ALS,							
SX IB 20220418 20 01 SS Primary ALS,	SX IB 20220419 00 01 SS Primary ALS,							
SX IB 20220419 03 59 SS Primary ALS								
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_12_29_SS_Primary_ALS		21-Apr-2022	21-Apr-2022	18-Oct-2022	✓	21-Apr-2022	18-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_08_07_SS_Primary_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS,	21-Apr-2022	22-Apr-2022	18-Oct-2022	✓	22-Apr-2022	18-Oct-2022	✓
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,							
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS,							
SX_IB_20220419_00_01_SS_Primary_ALS,	SX_IB_20220419_03_59_SS_Primary_ALS,							
SX_20220416_08_31_SS_Primary_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS							

Page : 18 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X)								
SX_IB_20220416_09_36_SR_Rinsate_ALS,	SX_IB_20220416_09_38_SB_Blank_ALS	16-Apr-2022	20-Apr-2022	13-Oct-2022	1	20-Apr-2022	13-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	20-Apr-2022	21-Apr-2022	17-Oct-2022	✓	21-Apr-2022	17-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS,	SX_IB_20220417_04_02_SS_Primary_ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX20220416_08_34_SS_Duplicate_ALS,							
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_23_55_SS_Primary_ALS,							
SX_IB_20220417_04_02_SS_Primary_ALS,	SX IB 20220417 08 07 SS Primary ALS,							
SX IB 20220417 08 10 SS Duplicate ALS,	SX IB 20220417 15 57 SS Triplicate ALS,							
SX IB 20220417 15 58 SS Primary ALS,	SX IB 20220418 00 02 SS Primary ALS,							
SX IB 20220418 03 59 SS Primary ALS,	SX IB 20220418 08 07 SS Primary ALS,							
SX IB 20220418 08 07 SS Duplicate ALS,	SX IB 20220418 11 58 SS Primary ALS,							
SX IB 20220418 16 07 SS Primary ALS,	SX IB 20220418 16 10 SS Triplicate ALS,							
SX IB 20220418 20 01 SS Primary ALS,	SX IB 20220419 00 01 SS Primary ALS,							
SX IB 20220419 03 59 SS Primary ALS	o/							
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_12_29_SS_Primary_ALS		21-Apr-2022	21-Apr-2022	18-Oct-2022	✓	21-Apr-2022	18-Oct-2022	1
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_08_07_SS_Primary_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS,	21-Apr-2022	22-Apr-2022	18-Oct-2022	1	22-Apr-2022	18-Oct-2022	✓
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,							
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX IB 20220418 16 10 SS Triplicate ALS,	SX IB 20220418 20 01 SS Primary ALS,							
SX IB 20220419 00 01 SS Primary ALS,	SX IB 20220419 03 59 SS Primary ALS,							
SX 20220416 08 31 SS Primary ALS,	SX IB 20220416 20 06 SS Primary ALS							

Page : 19 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231D: (n:2) Fluorotelomer Sulfonic Acids	Date extracted Date extracted Date or extraction Date extr							
HDPE (no PTFE) (EP231X)								
SX_IB_20220416_09_36_SR_Rinsate_ALS,	SX_IB_20220416_09_38_SB_Blank_ALS	16-Apr-2022	20-Apr-2022	13-Oct-2022	✓	20-Apr-2022	13-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	20-Apr-2022	21-Apr-2022	17-Oct-2022	✓	21-Apr-2022	17-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS,	SX_IB_20220417_04_02_SS_Primary_ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX20220416_08_34_SS_Duplicate_ALS,							
SX IB 20220416 12 04 SS Primary ALS,	SX IB 20220416 16 12 SS Primary ALS,							
SX IB 20220416 16 24 SS Triplicate ALS,	SX IB 20220416 23 55 SS Primary ALS,							
	5/(_15_25225115_55_51_65_1							
SX_IB_20220417_12_29_SS_Primary_ALS		21-Apr-2022	21-Apr-2022	18-Oct-2022	✓	21-Apr-2022	18-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_08_07_SS_Primary_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS,	21-Apr-2022	22-Apr-2022	18-Oct-2022	✓	22-Apr-2022	18-Oct-2022	✓
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,							
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX_IB_20220418_16_10_SS_Triplicate_ALS,	SX_IB_20220418_20_01_SS_Primary_ALS,							
SX IB 20220419 00 01 SS Primary ALS,	SX IB 20220419 03 59 SS Primary ALS,							
SX 20220416 08 31 SS Primary ALS,	SX IB 20220416 20 06 SS Primary ALS							

Page : 20 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Method	Sample Date	E	ktraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted		Evaluation	Date analysed	Due for analysis	Evaluation	
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X)								
SX_IB_20220416_09_36_SR_Rinsate_ALS,	SX_IB_20220416_09_38_SB_Blank_ALS	16-Apr-2022	20-Apr-2022	13-Oct-2022	✓	20-Apr-2022	13-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX20220416_08_31_SS_Primary_ALS,	SX20220416_08_34_SS_Duplicate_ALS,	20-Apr-2022	21-Apr-2022	17-Oct-2022	✓	21-Apr-2022	17-Oct-2022	✓
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX_IB_20220416_16_24_SS_Triplicate_ALS,	SX_IB_20220416_20_06_SS_Primary_ALS,							
SX_IB_20220416_23_55_SS_Primary_ALS,	SX_IB_20220417_04_02_SS_Primary_ALS,							
SX_IB_20220417_08_10_SS_Duplicate_ALS,	SX_IB_20220417_12_29_SS_Primary_ALS,							
SX_IB_20220417_15_57_SS_Triplicate_ALS,	SX20220416_08_34_SS_Duplicate_ALS,							
SX_IB_20220416_12_04_SS_Primary_ALS,	SX_IB_20220416_16_12_SS_Primary_ALS,							
SX IB 20220416 16 24 SS Triplicate ALS,	SX IB 20220416 23 55 SS Primary ALS,							
SX_IB_20220417_04_02_SS_Primary_ALS,	SX IB 20220417 08 07 SS Primary ALS,							
SX IB 20220417 08 10 SS Duplicate ALS,	SX IB 20220417 15 57 SS Triplicate ALS,							
SX IB 20220417 15 58 SS Primary ALS,	SX IB 20220418 00 02 SS Primary ALS,							
SX IB 20220418 03 59 SS Primary ALS,	SX IB 20220418 08 07 SS Primary ALS,							
SX IB 20220418 08 07 SS Duplicate ALS,	SX IB 20220418 11 58 SS Primary ALS,							
SX IB 20220418 16 07 SS Primary ALS,	SX IB 20220418 16 10 SS Triplicate ALS,							
SX IB 20220418 20 01 SS Primary ALS,	SX IB 20220419 00 01 SS Primary ALS,							
SX IB 20220419 03 59 SS Primary ALS	o,sus_s							
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_12_29_SS_Primary_ALS		21-Apr-2022	21-Apr-2022	18-Oct-2022	1	21-Apr-2022	18-Oct-2022	✓
HDPE (no PTFE) (EP231X)								
SX_IB_20220417_08_07_SS_Primary_ALS,	SX_IB_20220417_15_58_SS_Primary_ALS,	21-Apr-2022	22-Apr-2022	18-Oct-2022	✓	22-Apr-2022	18-Oct-2022	✓
SX_IB_20220418_00_02_SS_Primary_ALS,	SX_IB_20220418_03_59_SS_Primary_ALS,							, i
SX_IB_20220418_08_07_SS_Primary_ALS,	SX_IB_20220418_08_07_SS_Duplicate_ALS,							
SX_IB_20220418_11_58_SS_Primary_ALS,	SX_IB_20220418_16_07_SS_Primary_ALS,							
SX IB 20220418 16 10 SS Triplicate ALS,	SX IB 20220418 20 01 SS Primary ALS,							
SX IB 20220419 00 01 SS Primary ALS,	SX IB 20220419 03 59 SS Primary ALS,							
SX 20220416 08 31 SS Primary ALS,	SX IB 20220416 20 06 SS Primary ALS							

Page : 21 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC0927

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency i	not within specification; ✓ = Quality Control frequency within specification.	
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Moisture Content	EA055	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
pH in soil using a 0.01M CaCl2 extract	EA001	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	2	23	8.70	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	24	8.33	5.00	√	NEPM 2013 B3 & ALS QC Standard	
pH in soil using a 0.01M CaCl2 extract	EA001	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Deionised Water Leach - Plastic Leaching Vessel	EN60-Dla-P	4	31	12.90	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	23	8.70	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	24	8.33	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	23	8.70	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	2	23	8.70	5.00	√	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 22 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS

Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS

Matrix Spikes (MS)

Project : JC0927

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	quality control opcomedien	
Matrix Spikes (MS)								
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	4	23	17.39	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	10	80	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	6	80	7.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								

80

80

7.50

7.50

5.00

5.00

NEPM 2013 B3 & ALS QC Standard

NEPM 2013 B3 & ALS QC Standard

EP231X

EP231X

6

6

Page : 23 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Project : JC092

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions			
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).			
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).			
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)			
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)			
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	SOIL	In house: Referenced to USEPA SW846, Method 3060. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3)			
Total Cyanide by Segmented Flow Analyser	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511 / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3).			
Total Fluoride	EK040T	SOIL	(In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.			
PCB - VIC EPA 448.3 Screen	EP066-EM	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).			
TRH - Semivolatile Fraction	EP071-EM	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.			
Volatile Organic Compounds - Ultra-trace	EP074-UT	SOIL	In house: Referenced to USEPA SW 846 - 8260 Extracts are analysed by Purge and Trap, Capillary GC/MS in partial SIM/Scan mode. Quantification is by comparison against an established multi-point calibration curves. This method is compliant with NEPM Schedule B(3).			

Page : 24 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Volatile Organic Compounds - Ultra-trace - Summations	EP074-UT-SUM	SOIL	Summation of MAHs and VHCs
Semivolatile Organic Compounds - Waste Classification	EP075-EM	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
SVOC - Waste Classification (Sums)	EP075-EM-SUM	SOIL	Summations for EP075 (EM variation)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Lyons 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).
Alkaline digestion for Hexavalent Chromium	EG048PR	SOIL	In house: Referenced to USEPA SW846, Method 3060A.
Total Fluoride	EK040T-PR	SOIL	In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.
ASLP for Non & Semivolatile Analytes - Plastic Leaching Vessel	EN60a-P	SOIL	In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates.
Deionised Water Leach - Plastic Leaching Vessel	EN60-Dla-P	SOIL	In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils - Ultra-trace.	ORG16-UT	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids - VIC EPA Screen	ORG17-EM	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Page : 25 of 25 Work Order : EM2206998

Client : AGON ENVIRONMENTAL PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
QuECheRS Extraction of Solids	ORG71	SOIL	In house: Sequential extractions with Acetonitrile/Methanol by shaking. Extraction efficiency aided by the addition of salts under acidic conditions. Where relevant, interferences from co-extracted organics are removed with dispersive clean-up media (dSPE). The extract is either diluted or concentrated and exchanged into the analytical solvent.
Solid Phase Extraction (SPE) for PFAS in water	ORG72	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.