| TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 1. Motherhub Summary | Source TBM/Bin at | 2 | Source Geological | 1 | |-----------------------|---------------|---------------------------|--------------------| | Pivot | | Domain | | | Approx. Source Tunnel | 15 | Approx. Source Tunnel | 27 | | Chainage From | | Chainage To | | | Approx. Rings From | 9 | Approx. Rings To | 14 | | Foaming Agent | TamSoil 287AC | Water Source | Potable (City West | | | | | Water) | | | | | | | For BSF Holding Bay | E05.01 | Start of Filling From | 16/04/2022 | | No: | | (Time / date) | | | Tonnes Put in Holding | 9953.06 | Finish of Filling (Time / | 18/04/2022 | | Bay No: | | Date) | | | Classified Volume | 4000 | Spoil Classification | NPIW-CONTAINMENT | | (LCM) | | Decision | | | Sampling Ratio | 1:137.93 | Approx. Bank Cubic | 2293.61 | | (samples per LCM) | | Meters (BCM) | | #### 2. Agon Spoil Classification Decision | Spoil Categorisation Decision (State Yes or No in each Row) | | | |---|-----|--| | NPIW Containment - 2020/476 (SO 9042848) | Yes | | | NPIW Landfill - 2019/404 (SO 9038429) | Yes | | | PIW-Category C - 2019/405 (SO 9038560) | No | | | PIW-Category B - 2019/406 (SO 9038561) | No | | | PIW-Category A | No | | | | | | ### 3. Agon Spoil Classification Assessment #### 3.1 Applicable Samples Table 3.1 - 1 lists the applicable sample numbers for this spoil. These have been determined from: - The date / time bay filling was started - The date / time bay filling was finished - The ID of the first truck that deposited spoil in the bay and the date / time that it was filled at Pivot - The ID of the last truck that deposited spoil in the bay and the date / time it was filled at Pivot - The sample ID that was associated with the first truck noting that a time window to be associated with each sample is half the time interval between its sampling time and the time of the preceding and the following samples. For example, is samples were collected at 8am, noon and 4 pm, the time window for the noon sample is between 10 am and 2 pm. That is this sample "belongs" to all truck loaded in this time window | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | Table 3.1 - Applicable Sample ID's Table 3.1 - 1 Applicable Sample ID's | | Applicable Spoil Sample ID's | | |--|--|--| | SX_IB_20220416_23_55_SS_Primary | SX_IB_20220417_15_56_SS_Duplicat | SX_IB_20220418_08_07_SS_Primary | | _ALS | e_EUF | _ALS | | SX_IB_20220417_00_01_SS_Primary | SX_IB_20220417_15_56_SS_Primary | SX_IB_20220418_08_08_SS_Triplicat | | _EUF | _EUF | e_EUF | | SX_IB_20220417_03_57_SS_Primary | SX_IB_20220417_15_57_SS_Triplicat | SX_IB_20220418_08_09_SS_Primary | | _EUF | e_ALS | _EUF | | SX_IB_20220417_04_02_SS_Primary | SX_IB_20220417_15_58_SS_Primary | SX_IB_20220418_11_57_SS_Primary | | _ALS | _ALS | _EUF | | SX_IB_20220417_08_05_SS_Primary | SX_IB_20220417_20_03_SS_Primary | SX_IB_20220418_11_58_SS_Primary | | _EUF | _EUF | _ALS | | SX_IB_20220417_08_07_SS_Primary
ALS | SX_IB_20220418_00_02_SS_Primary
ALS | SX_IB_20220418_16_07_SS_Primary
ALS | | SX IB 20220417 08 10 SS Duplicat | SX IB 20220418 00 05 SS Primary | SX IB 20220418 16 08 SS Primary | | e ALS | EUF | EUF | | SX IB 20220417 08 10 SS Triplicat | SX IB 20220418 03 59 SS Primary | SX IB 20220418 16 09 SS Duplicat | | e_EUF | _ALS | e_EUF | | SX_IB_20220417_12_28_SS_Primary | SX_IB_20220418_04_01_SS_Primary | SX_IB_20220418_16_10_SS_Triplicat | | _EUF | _EUF | e_ALS | | SX_IB_20220417_12_29_SS_Primary | SX_IB_20220418_08_07_SS_Duplicat | | | _ALS | e_ALS | | | | | | | Total Sample Numbers | 29 | Ratio Acceptable | | Primary Sample Numbers | 21 | Yes | | Classified Volume (LCM) | 4000 m ³ | | | Volume: Sample Number Ratio | 1:137.93 | | | (Samples per LCM) | | | | (23) | | | | | | | | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 3.2 Data Quality Compliance with SAQP Table 3.2-1 evaluates the compliance of the data quality for this spoil – by reference to the criteria in the SAQP (Yes / No). Table 3.2 - 1 Evaluation of Quality of Data for this Spoil | DQI | Field Consideration | Laboratory
Consideration | Overall Data
Quality Acceptability | |--------------------|---------------------|-----------------------------|---------------------------------------| | Precision | Yes | Yes | Yes | | Accuracy | Yes | Yes | Yes | | Representativeness | Yes | Yes | Yes | | Completeness | Yes | Yes | Yes | | Comparability | Yes | Yes | Yes | | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 3.3 Selection of the Spoil Sample Testing Regime Table 3.3 - 1 Selection of the Spoil Sample Testing Regime | | | (State Yes or
No in each
Row) | |----|---|-------------------------------------| | A. | Is testing all spoil samples taken required for spoil in this Holding Bay, because prior to this Holding Bay, less than 10 Holding Bays of spoil have been tested from this Domain | Yes | | | If the answer is Yes, go to E. If the answer is No, go to B. | | | В. | If the answer to A is No (i.e., 10 or more Holding Bays of spoil have been tested from this Domain), do trends in the maximum data values from the previous 10 bays indicate that results are trending at <75% of the containment criteria? | NA | | | If the answer is Yes, go to C. If the answer is No, go to D. | | | C. | If the answer to B is Yes, then was testing of spoil for this Holding Bay reduced to two primary samples per bay plus QC samples (Minimum Testing Regime) as allowed by the SAQP (See SAQP Section 6.2.7)? | NA | | D. | If the answer to B is No, then was the default testing regime implemented for all samples collected for the spoil in this Holding Bay (as required by the SAQP)? | NA | | E. | Based on the answers to Questions A to D above, was the default testing regime (as defined in the SAQP) applied to the spoil in this Holding Bay? | Yes | | F. | Based on the answers to Questions A to D above, was the Minimum testing Regime (as defined in the SAQP) applied to the spoil in this Holding Bay? | No | | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 3.4 Spoil Compliance with SAQP Criteria for Containment Cell Table 3.4 - 1 Spoil Compliance with SAQP Criteria for Containment Cell | Table | 4 - 1 Spoil Compilance with SAQF Criteria for Containment Cen | | |--------|---|-----| | Need f | or IWRG 621.1 or 655.1 Testing | | | | Is Spoil in this Holding Bay from a Zone of Exception or | | | | Anomalous and required testing for IWRG 621.1? | No | | В. | Is IWRG 621.1 testing required for spoil in this Holding Bay, because prior to this Holding Bay, less than 10 Holding Bays of spoil have been tested from this Domain? | Yes | | C. | Is IWRG 621.1 testing required for spoil in this Holding Bay, because the moving 95% UCL values for the previous 10 consecutive Holding Bays of spoil from this Domain are not below TCO? | No | | D. | Is testing pursuant to IWRG 655.1 required for spoil in this Holding Bay, because the spoil comes from Exception Zone 3 (See SAQP Section 5.4)? | No | | E. | Has spoil testing for IWRG 621.1 Parameters been triggered by results of spoil water tests for previous Holding Bays of spoil from this geological domain? | No | | Outcor | ne from IWRG 621.1 testing (if needed) | | | F. | If Yes to one or more Questions A, B, C or E, (and not NOC< applicable background concentrations) then do test results for IWRG 621.1 (see Table 3.4-2) prohibit NPIW Containment as a spoil Classification Outcome? If no to all of Questions A, B, C and E, then respond NA to this question. | No | | Outcor | ne from IWRG 655.1 testing (if needed) | | | G. | If Yes to Questions D, then do test results for IWRG 655.1 (see Table 3.4-3) permit NPIW Containment as a spoil Classification Outcome? If no to Question D, respond NA to this question | NA | | | ne from PFAS Testing | | | Н. | Do test results for PFAS (see Table 3.4-4 below) permit NPIW Containment as a spoil Classification Outcome? | Yes | If Yes to either or both of Question E or F, then Spoil is Not Suitable for Containment; Go to Section 3.5. Otherwise, it is Suitable for Containment #### Notes: 1. Criteria taken from EPA Grandfathered Classifications for TBM Spoil (2020/476 (SO
9042848)), and from the EPA approved EMP for Hi Quality's Containment Cell | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | Table 3.4 - 2 IWRG 621.1 Parameter Concentration Statistics & Spoil Suitability for Containment | | | | | | IWRG | 621.1 E | xceedan | e Test Re | sults | | | | |--------------------------|-------|-----|----------------|------------------------|----------------------|-------------|---------|-----------|-----------------------|-----|--|--| | Chemical | Unit | LOR | No. of samples | No. of primary samples | Sample:
LCM Ratio | No >
LOR | Min | Mean | 95%
UCL on
Mean | Max | Limiting Criteria
for NPIW
Containment | Comment | | Arsenic | mg/kg | 2 | 29* | 21 | 1:137.93 | 29 | 15 | 30.24 | 34.46 | 120 | 20 | NPIW-Containment -
considered to be naturally
occurring chemical, see
comment 1 (Section 4) | | Nickel | mg/kg | 5 | 29* | 21 | 1:137.93 | 29 | 148 | 180.2 | 189 | 270 | 60 | NPIW-Containment -
considered to be naturally
occurring chemical, see
comment 1 (Section 4) | | Chromium
(Hexavalent) | mg/kg | 1 | 29* | 21 | 1:137.93 | 2 | <1 | 1.25 | N/A | 1.3 | 1 | NPIW-Containment -
considered to be naturally
occurring chemical, see
comment 1 (Section 4) | | Fluoride | mg/kg | 100 | 29* | 21 | 1:137.93 | 27 | 150 | 333.7 | 462.5 | 680 | 450 | NPIW-Containment -
considered to be naturally
occurring chemical, see
comment 1 (Section 4) | [&]quot;*" - Ratio used for categorisation of spoil is samples to LCM due to spoil not being from a zone of exception. (See Section 4) TBM Spoil Waste Cat Report 6 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | Table 3.4 – 3 IWRG 655.1 (WASS) Parameter Concentration Statistics & Spoil Suitability for Containment | IWRG 655.1 Test Results | | | | | | | | | | | | |-------------------------|---------------|-----|------------------------|-------------------------|-------------|-----|------|-----------------------|-----|--|---------| | Chemical | Unit | LOR | No. of primary samples | Sample:
LCM
Ratio | No >
LOR | Min | Mean | 95%
UCL on
Mean | Max | Limiting Criteria
for NPIW
Containment | Comment | | pHF | рН | | | | | | | | | 5 | | | pHFox | рН | | | | | | | | | 5 | | | Delta pH | | | | | | | | | | 2 | | | %S | % | | | | | | | | | 0.03% | | | Mol H+ /tonne | Mol/
tonne | | | | | | | | | 18 | | | Mol H+ /tonne | - | | | | | | | | | | | TBM Spoil Waste Cat Report 7 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | Table 3.4 - 4 PFAS Parameter Concentrations & Spoil Suitability for Containment | | | | | | I | PFAS Tes | t Result | s | | | | |-------------|-------|------|-------------------|------------------------|-------------|-----------|----------|--------------------|-------|--|-------------------------| | Chemical | Unit | LOR | No. of
Samples | No. of primary samples | No >
LOR | Min | Mean | 95% UCL on
Mean | Max | Upper Limiting
Criteria for NPIW
Containment | Spoil Category for PFAS | | | | | | | Tota | l PFAS Co | oncentra | tions | | 1 | | | Total PFOS | ug/kg | 5 | 29* | 21 | 0 | N/A | N/A | N/A | <5 | N/A | NPIW-Containment | | Total PFOA | ug/kg | 5 | 29* | 21 | 0 | N/A | N/A | N/A | <5 | N/A | NPIW-Containment | | Total PFHxS | ug/kg | 5 | 29* | 21 | 0 | N/A | N/A | N/A | <5 | N/A | NPIW-Containment | | | | | | | ASLP (pF | l= 5) PFA | S Conce | ntrations | | | | | PFOA | ug/L | 0.01 | 29* | 21 | 0 | N/A | N/A | N/A | <0.01 | 56 | NPIW-Containment | | PFOS+PFHxS | ug/L | 0.01 | 29* | 21 | 0 | N/A | N/A | N/A | <0.01 | 7 | NPIW-Containment | | | | | | | ASLP (pF | l= 7) PFA | S Conce | ntrations | | | | | PFOA | ug/L | 0.01 | 29* | 21 | 0 | N/A | N/A | N/A | <0.01 | 56 | NPIW-Containment | | PFOS+PFHxS | ug/L | 0.01 | 29* | 21 | 0 | N/A | N/A | N/A | <0.01 | 7 | NPIW-Containment | [&]quot;*" - Ratio used for categorisation of spoil is samples to LCM due to spoil not being from a zone of exception. (See Section 4) TBM Spoil Waste Cat Report 8 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 3.5 Waste Classification for Spoil **Not Suitable for Containment Cell** This Section 3.5 and the Tables 3.5-1 to 3.5-3 only apply if the spoil is classified in Section 3.4 as not suitable for the Containment Cell. If the spoil is classified in Section 3.4 as not suitable for the Containment Cell, then Tables 3.5-1 and 3.5-2 contain no data and no assessment. - Table 3.5 1 below contains the statistics for IWRG 621.1 Parameter concentrations, and Agon's assessment of their implications for the spoil waste category - Table 3.5 2 below contains the statistics for IWRG 655.1 Parameter concentrations, and Agon's assessment of their implications for the spoil waste category - Table 3.5 3 below contains the statistics for PFAS concentration, and Agon's assessment of their implications for the spoil waste category | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### Table 3.5 - 1 IWRG 621.1 Parameter Concentration Statistics & Waste Classifications | | | | | | | IWI | RG 621.1 E | xceedand | e Test F | Results | | | | |--------------------------|-------|-----|------------------------|-------------------------|-------------|-----|------------|-----------------------|----------|----------------------------------|-----------------------------------|-----------------------------------|---------| | Chemical | Unit | LOR | No. of primary samples | Sample:
LCM
Ratio | No >
LOR | Min | Mean | 95%
UCL on
Mean | Max | Limiting
Criteria
for NPIW | Limiting
Criteria for
Cat C | Limiting
Criteria for
Cat B | Comment | | | | | | | | | | | | | | | | | Arsenic | mg/kg | | | | | | | | | | | | | | Copper | mg/kg | | | | | | | | | | | | | | Chromium
(Hexavalent) | mg/kg | | | | | | | | | | | | | | Nickel | mg/kg | | | | | | | | | | | | | | Fluoride | mg/kg | | | | | | | | | | | | | TBM Spoil Waste Cat Report 10 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|---| | Cat Report No: | | referencing WGT-302-000-WKN-CJH-105-SWI-0001_01 | Table 3.5 – 2 IWRG 655.1 (WASS) Parameter Concentration Statistics & Waste Classification | | IWRG 655.1 Test Results | | | | | | | | | | | | |---------------|-------------------------|-----|------------------------|-------------------------|-------------|-----|------|-----------------------|-----|--|---------|--| | Chemical | Unit | LOR | No. of primary samples | Sample:
LCM
Ratio | No >
LOR | Min | Mean | 95%
UCL on
Mean | Max | Limiting Criteria
for NPIW
Containment | Comment | | | pHF | рН | | | | | | | | | 5 | | | | рНГох | рН | | | | | | | | | 5 | | | | Delta pH | | | | | | | | | | 2 | | | | %S | % | | | | | | | | | 0.03% | | | | Mol H+ /tonne | Mol/
tonne | | | | | | | | | 18 | | | TBM Spoil Waste Cat Report 11 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | Table 3.5 - 3 PFAS Parameter Concentrations and Waste Classifications | | | | | | | | PFAS | Test Resi | ults | | | | | |-------------|-------|-----|------------------------|-------------|-----|------|--------------------|-----------|--|---|--|--|----------------------------| | Chemical | Unit | LOR | No. of primary samples | No >
LOR | Min | Mean | 95% UCL
on Mean | Max | Upper Limiting
Criteria for NPIW
Containment | Upper
Limiting
Criteria for
NPIW
Landfill | Upper
Limiting
Criteria for
PIW Cat C | Upper
Limiting
Criteria for
PIW Cat B | Spoil Category for
PFAS | | | | | | | | | Total PFAS | S Concen | trations | | | | | | Total PFOS | ug/kg | | | | | | | | | | | | | | Total PFOA | ug/kg | | | | | | | | | | | | | | Total PFHxS | ug/kg | ASI | _P (pH= 5) F | PFAS Con | centrations | | | | | | PFOA | ug/L | | | | | | | | | | | | | | PFOS+PFHxS | ug/L | ASI | _P (pH= 7) F | PFAS Con | centrations | | | | | | PFOA | ug/L | | | | | | | | | | | | | | PFOS+PFHxS | ug/L | | | | | | | | | | | | | TBM Spoil Waste Cat Report 12 of 15 | TBM Spoil Waste |
E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | #### 4. Comments and Limitations | Comments | and | Limitations | |------------|-----|---| | COHIHERICS | anu | LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | - 1. Naturally Occurring Chemicals listed in IWRG 621.1 that are within the Background range despite being reported at concentrations that would otherwise categorise the material as PIW: - 1. Technical discussion around the naturally occurring metal concentrations found in soils beneath the WGTP is detailed in *Golder* (2017b) Technical Report B, Appendix E Environmental characterisation of spoil (natural soil and rock). The report indicates that elevated metals (including arsenic, nickel, copper, chromium (CrVI), zinc and mercury) were considered to be associated with natural enrichment instead of anthropogenic contamination. - a. **Arsenic** Golder (2017b) Technical Report B, Appendix E section 6.2 Arsenic enrichment in the residual soil of the upper Older Volcanics (Tvo1) found that while the soil of the upper Older Volcanics sub-unit contains arsenic, the arsenic is not characteristic of the wider sub unit (i.e the rock) or the lower sub-unit (soil or rock). The concentration of arsenic therefore appears to be related to the chemical and biological weather of the unit over time. This is further supported by: - i. The residual soil of the sub-unit being characterised by iron-oxide staining and containing goethite. Goethite is an iron oxyhydroxide mineral, which can contain elevated concentrations of arsenic. Golder therefore concluded that based on the broad vertical distribution of arsenic and the presence of arsenic throughout the greater project area, arsenic results in Upper Older Volcanics soil are not likely to be associated with anthropogenic contamination. - b. **Nickel** *Golder (2017b) Technical Report B, Appendix E* section 6.3 *Nickel enrichment within the upper Older Volcanics* found that - i. Nickel is known to be enriched within olivine and pyroxene basalt minerals, leading to nickel enrichment of soils weathered from basalt (Martini and Chesworth, 2013). - ii. The reported mean nickel concentrations within the Older Volcanics (Tvo) were comparable to results reported within soils derived from basalt in Auckland and basalt rock of Finland (ARC, 2001; Koljonen, 1992), Older Volcanics observed in the Melbourne Metro Project (Golder, 1026a) and Newer Volcanics basalt of the Westenra Plains (Birch, 2003). - iii. Enriched nickel concentrations corresponded with enriched cobalt (all units) and iron (except tertiary volcanics (Tvo2) soil) indicating that the nickel is likely associated with geochemical enrichment rather than added contamination. TBM Spoil Waste Cat Report 13 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | iv. Enriched nickel concentrations also corresponded with enriched copper (Tvo2 soil and rock) and zinc (all units) indicating that the nickel is likely associated with geochemical enrichment rather than added contamination. Golder therefore concluded that the nickel is likely associated with geochemical enrichment rather than added contamination. The Golder study found that based on review of the depth, site history and the geochemical association of elements, the reported elevated concentrations of arsenic and nickel are considered representative of geogenic conditions and are not expected to be associated with contamination. - 2. Previous reviews of the presence of **hexavalent chromium (CrVI)** in soil data outlined on the SAQP (Rev 5) were undertaken by Golders (2017) and later consolidated with data compiled by Mikkonen by AJJV (2019). The AJJV review of the consolidated data set identified: - Samples reported to contain hexavalent chromium above the IWRG621 Table 2 Fill Material Upper Limit of 1mg/kg, were not collected in areas not considered to be anthropogenic sources of CrVI - The ratio of tests reported above the laboratory LOR of 0.5 mg/kg was 15 out of 84 tests - The ratio of tests where CrVI was above 1mg/kg was 3 in 84 samples - The maximum reported concentration was 2.8mg/kg - The 95%UCLave was 0.439 The AJJV data review was to assess whether the spoil derived from the tunnelling operations would contain chemicals that would results in the spoil being classified as something other than Fill Material. AJJV concluded the CrVI was present due to natural enrichment. Refer extract from the AJJV report below: In summary, the reported CrVI concentration reported in the Older Volcanics are considered to be naturally occurring / enriched based on the following: - No potential CrVI sources have been identified in the vicinity of the sampling locations that reported the CrVI concentrations. - Similar concentrations of CrVI were reported in the Older Volcanics on the MMRP, that were deemed to be naturally occurring. - The 2017 Golder report concluded that enriched arsenic concentrations in the Older Volcanics on WGT - Corresponded with enriched vanadium indicating that the arsenic is likely associated with geochemical enrichment rather than added contamination. The elevated CrVI is also found through this area deemed to be geochemically enriched. TBM Spoil Waste Cat Report 14 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | There were limited exceedances of CrVI in the groundwater, which suggested no evidence of an anthropogenic source or Potential pathway from the surface Given the large volume of ground to be tunnelled, the 95% UCL's in Table E.2 and the likely naturally enriched nature of the reported CrVI, AJJV consider that the CrVI impacts will not alter the spoil classification within Domain 5. AJJV note that the material will undergo ongoing sampling as the TBM spoil is produced – sampling will be outlined within the SAQP. If any contaminated material is encountered beyond the extent of the nominated potentially contaminated domains, this will trigger management of the material in accordance with Tunnel Spoil Disposal Framework. Agon notes that Table E1: Summary of elevated concentration within Natural materials concludes the presence of hexavalent chromium may "Potentially" classify the spoil as PIW. | | | | | | | | | | | | | Soil g | reater the
surf | | below | Find | iings | | | |-----------------|----------------------------------|-------|---------|------|-----|-------|--------|-----------------------|---------------------|------------|------------------------------|--------|--------------------|------|-----------|--------------------------------------|---|-----------------------|--| | Unit | Element
Exceeding
Criteria | Count | Detects | Min | Max | Mean | Median | Standard
Deviation | Count of Exceedance | 95%
UCL | Fill Material
Upper Limit | Count | Min# | Max | Mean | 95% UCL
Statistical
Assessment | Victorian
Soil
Database
Assessment | Classification as PIW | | | | Fluoride | 84 | 1 | 50 | 600 | 204 | 185 | 109 | 2 | 225.1 | 450 | 92 | <100 | 790 | 283 | Not
Exceeding | Natural
Origin | No Affect | | | | Arsenic | 101 | 84 | <4 | 860 | 33 | 7 | 116 | 25 | 84.6 | 20 | 994 | <u><10</u> | 1200 | <u>18</u> | Exceeding | Natural
Origin | No Affect | | | | Cadmium | 103 | 6 | <0.1 | 3 | 0.52 | 0.5 | 0.41 | 2 | NA | 3 | - | • | - | | NA | No Data | No Affect | | | | Chromium (VI) ¹ | 84 | 15 | <0.5 | 2.8 | 0.927 | 0.7 | 0.592 | 3 | 0.439 | 1 | - | - | - | | NA | No Data | Potentially | | | Older Volcanics | Copper | 101 | 98 | <5 | 326 | 63 | 55 | 44 | 15 | 82.4 | 100 | 799 | <25 | 87 | <25 | Not
Exceeding | No Data | No Affect | | | | Mercury | 101 | 7 | <0.1 | 1.7 | 0.077 | 0.05 | 0.17 | 1 | NA | 1 | - | - | - | - | NA | No Data | No Affect | | | | Nickel | 101 | 99 | <2 | 451 | 127 | 115 | 73 | 88 | 140.6 | 60 | 830 | <25 | 170 | 28 | Exceeding | Natural
Origin | No Affect | | | | Zinc | 101 | 99 | <5 | 483 | 84 | 63 | 79 | 6 | 98.7 | 200 | 819 | <25 | 190 | <25 | Not
Exceeding | No Data | No Affect | | A review of the Agon data for spoil reported in data set B.05 shows: - A similar ratio of test results >1mg/kg compared to the overall data set; - If a ½ LOR is substituted for results reported as <LOR (of 1mg/kg), then like the AJJV 95% UCL, the calculation is <1mg/kg The results also show that there are no synthetic compounds reported above the laboratory LOR, another indication that anthropogenic contamination is not present - 3. Previous reviews of the presence of Fluoride in soil data outlined on the SAQP (Rev 5) were undertaken by AJJV (2019). The AJJV review of the consolidated data set identified: Samples which reported elevated fluoride concentrations were found to be within the range the ambient background from the parent or similar material in the Victorian Soil Database: TBM Spoil Waste Cat Report 15 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | | | i. Newer Volcanics Group – Maximum 820 mg/kg ii. Older Volcanics – Maximum 600 mg/kg iii. Sub-Basaltic Alluvium – Maximum 240 mg/kg In addition, the
95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell. A review of the Agon data for spoil reported in this data set shows: | |---------|---| | | iii. Sub-Basaltic Alluvium – Maximum 240 mg/kg In addition, the 95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell. | | | In addition, the 95% UCLs calculated for Newer Volcanics Group and Older Volcanics, was 322.7 mg/kg and 225.1 mg/kg respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell. | | | respectively, both of these values are below the 450mg/kg upper limit for spoil to be disposed of to the containment cell. | | | A review of the Agon data for spon reported in this data set shows. | | | A similar ratio of test results > LOR compared to the overall data set; | | | If a ½ LOR is substituted for results reported as <lor (of="" 100mg="" 450mg="" 95%="" ajjv="" be="" calculation="" cell.<="" containment="" disposed="" for="" is="" kg="" kg),="" less="" li="" like="" limit="" of="" spoil="" than="" the="" then="" to="" ucl,="" upper=""> </lor> | | | The results also show that there are no synthetic compounds reported above the laboratory LOR, another indication that anthropogenic contamination is not present. | | | est result outcomes can lead to two classification possibilities, however the classification decision follows the preference of the waste nanagement hierarchy. | | | poil is not from a "Zone of Exception". Zone of exception applies a sampling ratio of only Primary Samples to LCM to categorise spoil as per | | | he SAQP revision 5. Sample to categorised volume ratio in zones of exception is to be as per IWRG702 with 1 primary spoil sample ategorising a maximum 250 m3 of spoil. | | 4. Lo | oose Cubic metres (LCM) to mass (tonnes) conversion ratio used is 1 LCM:1.6 tonnes | | p
tł | his report has been prepared in accordance with industry recognised standards and procedures current at the time of the work. The report presents the results of the assessment based on the quoted scope of works (unless otherwise agreed in writing) for the specific purposes of the engagement by the Client. No warranties expressed or implied, are offered to any third parties and no liability will be accepted for use of this report by third parties. | | | Il information provided by third parties has been assumed to be correct and complete. Agon does not assume any liability for nisrepresentation of information by third parties or for matters not visible, accessible or present on the subject site. | | 7. O | Opinions and judgements expressed herein are based on Agon's understanding of current regulatory standards and should not be construed s legal opinions. | | | lo responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties other than hose listed above. | | | his report should be read in full. | | | | TBM Spoil Waste Cat Report 16 of 15 | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | ### 5. Attachments ATTACHMENT A: TABULATED RESULTS ATTACHMENT B: 95% UCL AVE CALCULATIONS ATTACHMENT C: LABORATORY CERTIFICATES | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | ATTACHMENT A: TABULATED RESULTS | | Arsenic | Cadmium | Copper | Chromium (III+VI) | Chromium (hexavalent) | реад | Mercury | Molybdenum | Nickel | |---|---------|---------|--------|-------------------|-----------------------|-------|---------|------------|--------| | | mg/kg | CQL | 2 | 0.4 | 5 | 5 | 1 | 5 | 0.1 | 5 | 5 | | PA PFAS Classification - Tunnel Zone - 2019/404 (SO 9038429) Threshold | | | | | | | | | | | PA PFAS Classification - Tunnel Zone - 2019/405 (SO 9038560) Threshold | | | | | | | | | | | PA PFAS Classification - Tunnel Zone - 2019/406 (SO 9038561) Threshold | | | | | | | | | | | PA PFAS Classification - Tunnel Zone - No option for disposal threshold | | | | | | | | | | | PA Victoria IWRG621 Category B Leached Upper Limits | | | | | | | | | | | PA Victoria IWRG621 Category B Upper Limits | 2,000 | 400 | 20,000 | | 2,000 | 6,000 | 300 | 4,000 | 12,000 | | PA Victoria IWRG621 Category C Leached Upper Limits | | | | | | | | | | | PA Victoria IWRG621 Category C Upper Limts | 500 | 100 | 5,000 | | 500 | 1,500 | 75 | 1,000 | 3,000 | | PA Victoria IWRG621 Fill Upper Limits | 20 | 3 | 100 | | 1 | 300 | 1 | 40 | 60 | | ocation Code Field ID Sample Code Date Lab Report Number Lab Name Sample Type Parent Sample | | | | | | | | | | | Location Code | Field ID | Sample Code | Date | Lab Report Number | Lab Name | Sample Type | Parent Sample | 27 | 1 | F0. | 116 | -1.0 | -F | -0.1 | | 171 | |---------------|--|---------------|------------|-------------------|----------------|-------------|---------------|------|------|--------------|------|------|-----|------|-------------|--| | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | EM2206998009 | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 27 | 1 | 58 | 116 | <1.0 | <5 | <0.1 | <5 | 171 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | EM2206998032 | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 20 | 10.4 | | 120 | 1.2 | -F | -0.1 | | 160 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | M22-Ap0036827 | 17/04/2022 | 880891 | MGT | Normal | | 29 | <0.4 | 57 | 130 | 1.3 | <5 | <0.1 | <5 | 160 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | M22-Ap0036851 | 17/04/2022 | 880891 | MGT | Normal | | _ | - | | - | | | | | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | M22-Ap0036875 | 17/04/2022 | 880891 | MGT | Normal | | 20 | 10.4 | C.F. | 1.10 | | -F | -0.1 | | 210 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | M22-Ap0036828 | 17/04/2022 | 880891 | MGT | Normal | | 30 | <0.4 | 65 | 140 | <1 | <5 | <0.1 | <5 | 210 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | M22-Ap0036852 | 17/04/2022 | 880891 | MGT | Normal | | _ | - | | - | | | | | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | M22-Ap0036876 | 17/04/2022 | 880891 | MGT | Normal | | 16 | | F0 | 114 | -1.0 | | -0.1 | | 152 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | EM2206998010 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 16 | <1 | 50 | 114 | <1.0 | <5 | <0.1 | <5 | 152 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | EM2206998033 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 10 | 10.4 | 42 | 120 | | -F | -0.1 | | 150 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | M22-Ap0036829 | 17/04/2022 | 880891 | MGT | Normal | | 18 | <0.4 | 42 | 120 | <1 | <5 | <0.1 | <5 | 150 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | M22-Ap0036853 | 17/04/2022 | 880891 | MGT | Normal | | _ | - | | - | | | | | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | M22-Ap0036877 | 17/04/2022 | 880891 | MGT | Normal | | 22 | -12 | | 104 | -1.0 | .F | -0.1 | | 150 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | EM2206998011 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 22 | <1 | 52 | 104 | <1.0 | <5 | <0.1 | <5 | 159 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | EM2206998034 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 26 | | 62 | 442 | -1.0 | | .0.4 | | 105 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | EM2206998012 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998011 | 26 | <5 | 62 | 113 | <1.0 | <5 | <0.1 | <5 | 195 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | EM2206998035 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998034 | 20 | -0.4 | 62 | 420 | - | | .0.4 | | 100 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | M22-Ap0036830 | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998011 | 38 | <0.4 | 63 | 130 | <1 | <5 | <0.1 | <5 | 190 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | M22-Ap0036854 | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998011 | | 1 | | | 1 | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | M22-Ap0036878 | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998034 | | | | | 1.0 | | | | 212 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | M22-Ap0036831 | 17/04/2022 | 880891 | MGT | Normal | | 28 | <0.4 | 70 | 140 | 1.2 | <5 | <0.1 | <5 | 210 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | M22-Ap0036855 | 17/04/2022 | 880891 | MGT | Normal | | | | | | 1 | | | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | M22-Ap0036879 | 17/04/2022 | 880891 | MGT | Normal | | - 15 | | | 100 | 1.0 | |
| | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | EM2206998013 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 46 | 1 | 59 | 130 | <1.0 | <5 | <0.1 | <5 | 151 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | EM2206998036 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | <u> </u> | | 1 | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | M22-Ap0036833 | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036832 | 27 | <0.4 | 54 | 130 | <1 | <5 | <0.1 | <5 | 160 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | M22-Ap0036857 | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036856 | | | - | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | M22-Ap0036881 | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036880 | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | M22-Ap0036832 | 17/04/2022 | 880891 | MGT | Normal | | 27 | <0.4 | 66 | 140 | <1 | <5 | <0.1 | <5 | 210 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | M22-Ap0036856 | 17/04/2022 | 880891 | MGT | Normal | | | | | | 1 | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | M22-Ap0036880 | 17/04/2022 | 880891 | MGT | Normal | | | | - | | | | | | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | EM2206998014 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036832 | 18 | <1 | 57 | 112 | <1.0 | <5 | <0.1 | <5 | 173 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | EM2206998037 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036880 | | | - | | | | | | | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | EM2206998015 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 15 | 1 | 57 | 104 | <1.0 | <5 | <0.1 | <5 | 160 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | EM2206998038 | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | ₩ | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | M22-Ap0036834 | 17/04/2022 | 880891 | MGT | Normal | | 32 | <0.4 | 75 | 150 | <1 | <5 | <0.1 | <5 | 230 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | M22-Ap0036858 | 17/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | M22-Ap0036882 | 17/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | EM2206998016 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 23 | <5 | 57 | 122 | <1.0 | <5 | <0.1 | <5 | 166 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | EM2206998039 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | M22-Ap0036835 | 18/04/2022 | 880891 | MGT | Normal | | 33 | <0.4 | 74 | 140 | <1 | <5 | <0.1 | <5 | 210 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | M22-Ap0036859 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | M22-Ap0036883 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | EM2206998017 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 28 | <1 | 58 | 109 | <1.0 | <5 | <0.1 | <5 | 173 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | EM2206998040 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | M22-Ap0036836 | 18/04/2022 | 880891 | MGT | Normal | | 120 | <0.4 | 58 | 140 | <1 | 5.6 | <0.1 | <5 | 180 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | M22-Ap0036860 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | <u> </u> | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | M22-Ap0036884 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | EM2206998019 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998018 | 18 | <1 | 56 | 108 | <1.0 | <5 | <0.1 | <5 | 172 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | EM2206998042 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998041 | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | EM2206998018 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 17 | <1 | 54 | 110 | <1.0 | <5 | <0.1 | <5 | 168 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | EM2206998041 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | M22-Ap0036837 | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998018 | 33 | <0.4 | 69 | 150 | <1 | <5 | <0.1 | <5 | 200 | | | | | | | | | | | | | | | | Metals | | | |--------|--|---------------|------------|-----------|----------------|------------|---------------|---------|---------|-----------|-------------------|-----------------------|------------|-------------|------------|--------| | | | | | | | | | Arsenic | Cadmium | Copper | Chromium (III+VI) | Chromium (hexavalent) | Lead | Mercury | Molybdenum | Nickel | | | | _ | Τ | 1 | 1 | T | _ | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | M22-Ap0036861 | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998018 | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | M22-Ap0036885 | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998041 | F2 | ٠٥.4 | FF | 120 | -1 | F 2 | -0.1 | 4 F | 170 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | M22-Ap0036838 | 18/04/2022 | 880891 | MGT | Normal | | 52 | <0.4 | 55 | 130 | <1 | 5.3 | <0.1 | <5 | 170 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | M22-Ap0036862 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | M22-Ap0036886 | 18/04/2022 | 880891 | MGT | Normal | | 20 | -0.4 | CO | 120 | -1 | 4 F | -0.1 | 4 F | 100 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | M22-Ap0036839 | 18/04/2022 | 880891 | MGT | Normal | | 20 | <0.4 | 69 | 120 | <1 | <5 | <0.1 | <5 | 180 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | M22-Ap0036863 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | M22-Ap0036887 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | _ | 100 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | EM2206998020 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 22 | <5 | 79 | 100 | <1.0 | <5 | <0.1 | <5 | 188 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | EM2206998043 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | EM2206998021 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 24 | <1 | 50 | 105 | <1.0 | <5 | <0.1 | <5 | 148 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | EM2206998044 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | M22-Ap0036840 | 18/04/2022 | 880891 | MGT | Normal | | 26 | <0.4 | 56 | 120 | <1 | <5 | <0.1 | <5 | 160 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | M22-Ap0036864 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | M22-Ap0036888 | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | M22-Ap0036841 | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036840 | 41 | <0.4 | 84 | 170 | <1 | 6.0 | <0.1 | <5 | 270 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | M22-Ap0036865 | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036864 | | | | | | | | | Ī | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | M22-Ap0036889 | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036888 | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | EM2206998022 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036840 | 21 | 1 | 60 | 109 | <1.0 | <5 | <0.1 | <5 | 161 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | EM2206998045 | 18/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036888 | | | | | | | | | | | ENVIRO | NMENTAL |--|--|----------|--------|-------|---------------|---------------------|--------------------------|--------------|----------------|------------|-------------------|-----------------------------------|--------------------------|-----------------------------------|-----------------|------------------------|----------------------|----------------------|----------|-----------------------|--------------|--|-------------------------| | | | | | | | | | | | | | | | | | P.A | АН | | | | | | | | | | Selenium | Silver | Έ | Zinc | PAHs (Vic EPA List) | Benzo(b+j+k)fluoranthene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene TEQ calc
(Zero) | Benzo(a)pyrene TEQ (LOR) | Benzo(a)pyrene TEQ calc
(Half) | Benzo(a) pyrene | Benzo(b+j)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | | [| | mg/kg | EQL
FPA PFAS Classification | - Tunnel Zone - 2019/404 (SO 9038429) Thresh | 2 | 2 | 10 | 5 | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | - Tunnel Zone - 2019/405 (SO 9038560) Thresh | - Tunnel Zone - 2019/406 (SO 9038561) Thresh | - Tunnel Zone - No option for disposal threshol
Category B Leached Upper Limits | EPA Victoria IWRG621 C | | 200 | 720 | | 140,000 | 400 | | | | | | | | | 20 | | | | | | | | | | | Category C Leached Upper Limits | 50 | 180 | 500 | 35 000 | 100 | | | | | | | | | 5 | | | | | | | | | | EPA Victoria IWRG621 C
EPA Victoria IWRG621 F | |
10 | 10 | 50 | 35,000
200 | 100
20 | | | | | | | | | 1 | • | | | | | | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | <5 | <2 | <10 | 90 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | 1 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | | _ | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <2 | <2 | <10 | 110 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <5 | <2 | <10 | 84 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | E05.01
E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF | <2 | <2 | <10 | 81 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <5 | <2 | <10 | 86 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS | <5 | <2 | <10 | 92 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | E05.01
E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_10_33_TTIplicate_EUF | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF | | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <5 | <2 | <10 | 96 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <2 | -22 | <10 | 100 | | | <0.5 | <0.5 | <0 F | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0 F | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF | <2 | <2 | <10 | 100 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | ₹0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <5 | <2 | <10 | 87 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_58_SS_Primary_ALS | <5 | <2 | <10 | 85 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | - | | | | | - | | | | | | | | | | | | | | | | | | E05.01
E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <2 | <2 | <10 | 140 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF SX_IB_20220417_20_03_SS_Primary_EUF | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <5 | <2 | <10 | 90 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS SX_IB_20220418_00_05_SS_Primary_EUF | <2 | <2 | <10 | 140 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | ļ | 12 | 110 | 140 | | | 10.5 | 10.5 | ,0.5 | 10.5 | 10.5 | 1.2 | 0.0 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | ,,,,, | 10.5 | 10.5 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | | | .10 | 02 | .0.5 | .4.0 | .0.5 | .0.5 | -0.5 | .0.5 | -0.5 | 4.2 | 0.6 | .0.5 | | .0.5 | | -0.5 | .0.5 | .0.5 | .0.5 | | | E05.01
E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS
SX_IB_20220418_03_59_SS_Primary_ALS | <5 | <2 | <10 | 93 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | | | | | | | | | | | | | | | | | | - | | | | | | E05.01
E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_08_07_SS_Duplicate_ALS | <5 | <2 | <10 | 98 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | _ | | | _ | - | _ | _ | | | | | _ | | | | - | | | | E05.01
E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS | <5 | <2 | <10 | 97 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <2 | <2 | <10 | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | ENVIR | ONMENTAL |--------|--|----------|--------|-------|-------|---------------------|--------------------------|--------------|----------------|------------|-------------------|-----------------------------------|--------------------------|-----------------------------------|-----------------|------------------------|----------------------|----------------------|----------|------------------------|--------------|-------------------|-------------------------| | | | | | | | | | | | | | | | | | P | AH | | | | | | | | | | Selenium | Silver | πn | Zinc | PAHs (Vic EPA List) | Benzo(b+j+k)fluoranthene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene TEQ calc
(Zero) | Benzo(a)pyrene TEQ (LOR) | Benzo(a)pyrene TEQ calc
(Half) | Benzo(a) pyrene | Benzo(b+j)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Chrysene | Dibenz(a,h) anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | | | | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | \longmapsto | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | \longrightarrow | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <2 | <2 | <10 | 110 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | \longrightarrow | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | \longrightarrow | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <2 | <2 | <10 | 140 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | $\overline{}$ | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | $\overline{}$ | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <5 | <2 | <10 | 101 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <5 | <2 | <10 | 85 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <2 | <2 | <10 | 110 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <2 | <2 | <10 | 180 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | |
E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <5 | <2 | <10 | 94 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | 1 | | | ENVIRO | DNMENTAL |----------------------|--|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | | | | | | | ВТ | TEX | | | | | | TRH | | | | | | ТРН | - | | | | | | | | втех) | | s s | | | total) | | | | | tota | | | | _ | e e | | ftota | | | | | (a | | | inus | | a in C | | | n of 1 | | | | | <u>5</u> | | | | alene | thren | | о
Е | a) | zene | | <u> </u> | 8 | Fotal | | <u> </u> | | (F2 i | | | (Sur | | | | | ns) 9: | | | | hth | nant | e e | 1s (Sı | zene | ylber | nen | eue (| eue (| l ene | C10 | C10 (| 0-C16 | -C16 (F2 | -C34 | , C40 | C40 | ච | FC14 | -C28 | -C36 | S-0 | | | | e e | P. | \$ | PA | Ber | 돮 | 2 | Ž | × | × | 9 | 9 | ū | Na C | 2 | Ğ. | 25 | 9 | 22 | 25 | 55 | Ψ | | EQL | | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.1 | mg/kg
0.1 | mg/kg
0.1 | mg/kg
0.1 | mg/kg
0.2 | mg/kg
0.3 | mg/kg
20 | mg/kg
20 | mg/kg
50 | mg/kg
50 | mg/kg
100 | mg/kg
100 | mg/kg
50 | mg/kg
20 | mg/kg
20 | mg/kg
50 | mg/kg
50 | mg/kg
50 | | | n - Tunnel Zone - 2019/404 (SO 9038429) Thresh | | 0.5 | 0.5 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.5 | 20 | 20 | 30 | 30 | 100 | 100 | 50 | 20 | 20 | 50 | 30 | 30 | | | n - Tunnel Zone - 2019/405 (SO 9038560) Thresho | n - Tunnel Zone - 2019/406 (SO 9038561) Thresh | n - Tunnel Zone - No option for disposal threshol | L Category B Leached Upper Limits
L Category B Upper Limits | | | | 400 | 16 | | | | | | | | | | | | | 2,600 | | | | 40.000 | | | L Category C Leached Upper Limits | | | | 400 | 10 | | | | | | | | | | | | | 2,000 | | | | 10,000 | | | L Category C Upper Limts | | | | 100 | 4 | | | | | | | | | | | | | 650 | | | | 10,000 | | EPA Victoria IWRG621 | L Fill Upper Limits | | | | 20 | 1 | | | | | | | | | | | | | 100 | | | | 1,000 | | Location Code | Field ID | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01
E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF | E05.01 | SX_IB_20220417_00_01_33_P1111a1y_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | | | 0.5 | | | | | 0.5 | | | | | | | 100 | 400 | | | | 400 | 100 | | | E05.01
E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS
SX_IB_20220417_08_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | | | | | | - | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_07_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_08_07_3S_Primary_ALS
SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01
E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | | | 0.5 | | | | | 0.5 | | | | | | | 100 | 400 | | | | 400 | 100 | | | E05.01
E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS
SX_IB_20220417_12_29_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | 0.5 | | 0.5 | 0.5 | | | | | | | | | | | 100 | 100 | 400 | | | | | <u> </u> | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | .0.5 | -0.5 | -0.5 | | .0.2 | -0.5 | -0.5 | .0.5 | -0.5 | -0.5 | -20 | -20 | -50 | .50 | .100 | .400 | .50 | -20 | .50 | .400 | .100 | | | E05.01
E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS
SX_IB_20220417_15_58_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | -0.5 | -0.5 | -O.F | | .0.2 | -0.5 | -0.5 | -O.F | 40 F | -0.5 | -20 | -20 | -50 | -50 | -100 | 1100 | -50 | -20 | -50 | -100 | -100 | -50 | | E05.01
E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS
SX_IB_20220418_00_02_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | 40 F | -0.5 | 40 F | | -0.2 | -0.5 | -0.5 | -0.5 | 40 F | -0.5 | -20 | -20 | -50 | -50 | -100 | -100 | -50 | -20 | .50 | -100 | -100 | .50 | | E05.01
E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS
SX_IB_20220418_03_59_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | -0.5 | -0.5 | -0.5 | | -0.0 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -20 | -20 | .50 | .50 | -400 | -400 | -50 | -20 | -50 | -400 | -400 | -50 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS
SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | E05.01 |
SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | ENVII | RONMENTAL |--------|--|-------------|--------------|--------|---------------------|---------|--------------|---------|------------|----------------|--------------|--------|------------------------|---------|-----------------------------------|---------|---------|------------------------|-------|---------|---------|---------|--| | | | | | | | | | ВТ | EX | | | | | | TRH | | | | | | ТРН | | | | | | Naphthalene | Phenanthrene | Pyrene | PAHs (Sum of total) | Benzene | Ethylbenzene | Toluene | Xylene (o) | Xylene (m & p) | Xylene Total | C6-C10 | C6-C10 (F1 minus BTEX) | C10-C16 | C10-C16 (F2 minus
Naphthalene) | C16-C34 | C34-C40 | C10-C40 (Sum of total) | 67-93 | C10-C14 | C15-C28 | 629-636 | +C10-C36 (Sum of total) | | | | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | - | | - | - | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | + | | | | | | | | | | | | | | 100 | 100 | 100 | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | - | | - | - | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | + | | | | | | | | | | | | | | 100 | 100 | 100 | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.5 | <0.5 | <0.5 | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <u>. </u> | | ENVIRON | IMENTAL |--|--|-------|-------|-------|-------|-------|-------|-------|--------|---------|-------|-------|----------|----------|-----------------|----------|-------|-------|----------|--------|-------|-------|-------| | | [| | | | | | | | | | | | | Orga | nochlorine Pest | icides | ate . | | | | e | | 9 | | | | | | | | | ř | | | | Q | | | | a a | yde | <u> </u> | | (si | 'ans) | enzei | | poxic | | | | | | | | | Dielc | | | | E+DI | au – | an
E | | eton | de | gus | _
 | ne (c | ne (t | orob | <u>o</u> | or e | | | | | | | Ę | drin | | g . | _ | DDE | ± DD | osni | osnij | Ę | Ë | Ë | osnij | rdar | orda | orda | achi | tach | tach | 오 | 오 | 오 | | | г | Ald | Die | Ald | ۵ | Γαα | 4,4 | Laa | Ē | ᇤ | E | Ē | <u> </u> | Ē | ਝ | <u> </u> | รี้ | Ě | He He | H
H | a-B | 8-8 | 8-B | | 501 | | mg/kg | EQL EPA PEAS Classification - | Tunnel Zone - 2019/404 (SO 9038429) Thresh | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1 | 0.03 | 0.03 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | | Tunnel Zone - 2019/405 (SO 9038560) Thresh | EPA PFAS Classification - | Tunnel Zone - 2019/406 (SO 9038561) Thresh | Tunnel Zone - No option for disposal threshol | EPA Victoria IWRG621 Ca
EPA Victoria IWRG621 Ca | Itegory B Leached Upper Limits | | | 4.8 | | | | 50 | | | | | | | 16 | | | | 4.8 | | | | | | | rtegory C Leached Upper Limits | | | 4.0 | | | | 30 | | | | | | | 10 | | | | 4.0 | | | | | | EPA Victoria IWRG621 Ca | | | | 1.2 | | | | 50 | | | | | | | 4 | | | | 1.2 | | | | | | EPA Victoria IWRG621 Fil | l Upper Limits | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | .0.03 | 10.03 | .0.50 | .0.03 | .0.03 | .0.03 | .0.03 | 10.03 | .0.03 | .0.03 | | .0.03 | .0.03 | 10.20 | .0.03 | .0.03 | .0.03 | .0.03 | .0.03 | 10.00 | | .0.03 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | • | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.1 | | | 10.03 | 10.03 | 10.03 | 10.03 | 10.05 | 10.03 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS
SX_IB_20220417_08_05_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | 10.03 | 10.03 | 10.03 | 10.03 | ٧٥.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.05 | 10.03 | 10.03 | 10.1 | | | 10.03 | 10.03 | 10.03 | 10.03 | 10.05 | 10.05 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.03 | <0.05 | <0.30 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | V0.05 | <0.05 | | <0.05 | <0.03 | <0.10 | <0.03 | <0.03 | <0.03 | <0.03 | <0.05 | <0.03 | <0.05 | <0.03 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.05 | <0.05 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.03 | <0.03 | <0.1 | | | <0.03 | <0.03 | <0.05 | <0.03 | <0.05 | <0.03 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 |
SX_IB_20220417_15_56_SS_Duplicate_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.05 | <0.05 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.03 | <0.05 | <0.03 | V0.1 | | | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.03 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | 10.03 | 10.03 | 10.50 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | | 10.03 | 10.03 | 10.10 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.03 | 10.05 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | .0.05 | .0.05 | .0.05 | .0.05 | .0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | .0.05 | -0.4 | | | .0.05 | .0.05 | .0.05 | .0.05 | -0.05 | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220417_20_03_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | 0.05 | 2.25 | 0.05 | 0.05 | 0.05 | 2.25 | 0.05 | | 0.05 | 2.25 | | 0.05 | | | | | 0.05 | 0.05 | 0.05 | 2.25 | 2.25 | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF
SX_IB_20220418_04_01_SS_Primary_EUF | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | - | | | | | | - | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | | | | | | | | 2.35 | 1 2.35 | | | 1 | | | | | | | | | | | | | ENVIRO | NMENTAL |--------|--|--------|----------|-------------------|-------|-------|---------|-------------|---------------|---------------|--------|---------------|-----------------|---------------------|------------------|-----------------|-------------------|-------------------|------------|--------------------|-------|-------|-------| | | | | | | | | | | | | | | | Orga | nochlorine Pesti | cides | | | | | | | | | | | Aldrin | Jieldrin | Aldrin + Dieldrin | aac | DOT | 1,4-DDE | DDT+DDE+DDD | endo sulfan 1 | indosulfan II | indrin | indrin ketone | indrin aldehyde | indosulfan sulphate | Chlordane | Chlordane (cis) | Chlordane (trans) | Hexachlorobenzene | Heptachlor | leptachlor epoxide | •внс | -внс | 3-внс | | | | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | i | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | 1 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | i | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | 1 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | 1 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | 1 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.05 | <0.05 | <0.30 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | 1 | | ENVIRON | | | | | | | , | | | | | | | | | | | | | | | | | |---------------------------|---|-------------------|----------------|----------------|-------------------------------------|---|----------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------|---------------------|--|--------------------------------|----------------------|---------------------------|--------------|--------------------------|-----------------------------------|--|----------------------|------------------| | | | | 1 | T | 1 | 1 | | | | | | | 1 | | ı | | ı | ı | Phenols | 1 | | | | | | | . g-BHC (Lindane) | , Methoxychlor | Toxaphene | Organochlorine pesticides
EPAVIC | Other organochlorine
pesticides EPAVic | 2-Chlorophenol | , 2,4-Dichlorophenol | , 2,4,5-Trichlorophenol | , 2,4,6-Trichlorophenol | , 2,6-Dichlorophenol | 4-chloro-3-methylphenol | , Pentachlorophenol | 2,34,5 & 2,3,4,6-
Tetrachlorophenol | 4,6-Dinitro-2-
methylphenol | , Tetrachlorophenols | 2,3,5,6-Tetrachlorophenol | Cresol Total | 4,6-Dinitro-o-cyclohexyl | Phenois (halogenated)
: EPAVic | Phenois (non-halogenated) | , 2,4-Dimethylphenol | . 2-Methylphenol | | EQL | | mg/kg
0.05 | mg/kg
0.05 | mg/kg
0.5 | mg/kg | mg/kg
0.03 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
1 | mg/kg
1 | mg/kg
0.5 | mg/kg
1 | mg/kg
1 | mg/kg
0.05 | mg/kg
5 | mg/kg | mg/kg | mg/kg
0.5 | mg/kg
20 | mg/kg
1 | mg/kg | mg/kg
0.5 | mg/kg | | | Tunnel Zone - 2019/404 (SO 9038429) Thresh | | 0.05 | 0.5 | 0.1 | 0.03 | 0.5 | 0.5 | 1 | 1 | 0.5 | 1 | 1 | 0.05 | 5 | 10 | 0.03 | 0.5 | 20 | 1 | 20 | 0.5 | 0.2 | | | Tunnel Zone - 2019/405 (SO 9038560) Thresh | EPA PFAS Classification - | Tunnel Zone - 2019/406 (SO 9038561) Thresh | Tunnel Zone - No option for disposal threshol | ategory B Leached Upper Limits | | | | | | | | | | | | | | | | | | | 200 | | | | | EPA Victoria IWRG621
Ca | ategory B Upper Limits ategory C Leached Upper Limits | | | | | 50 | | | | | | | | | | | | | | 320 | 2,200 | | | | EPA Victoria IWRG621 Ca | | | | | | 10 | | | | | | | | | | | | | | 10 | 560 | | | | EPA Victoria IWRG621 Fi | | | | | 1 | | | | | | | | | | | | | | | 1 | 60 | Location Code | Field ID | 40.0F | <0.05 | T | 40.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | 41.00 | -10 | <0.05 | 4 F | 1 | <0.03 | 1 | -20 | <1.00 | <20 | -1 | -1 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS
SX_IB_20220416_23_55_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | \U.U3 | \U.3U | \U.3U | \1.00 | <u></u> | \U.3U | <1.00 | <1.0 | \U.U3 | <5 | | \U.U3 | | <20 | <1.00 | <u>\20</u> | <1 | <1 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | -0.05 | .0.05 | -0.5 | -0.4 | -0.4 | -0.5 | .0.5 | | | .0.5 | .4 | | | | -40 | | .0.5 | -20 | | <u> </u> | | .0.0 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | - | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | <u> </u> | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF
SX_IB_20220417_08_05_SS_Primary_EUF | + | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.05 | <0.03 | <0.5 | V0.1 | V0.1 | ζ0.5 | V0.5 | <1 | | ₹0.5 | <1 | <u> </u> | | - 3 | <10 | | V0.5 | \20 | | | VU.5 | <0.2 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <u> </u> | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_29_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | 10.03 | 10.03 | | 10.10 | 10.03 | 10.50 | 10.50 | 11.00 | 12.00 | 10.50 | 11.00 | 12.0 | 10.03 | ,,, | | 10.03 | | 120 | 11.00 | 120 | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | ' | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Primary_EUF | \0.03 | V0.03 | \(\) .5 | V0.1 | V0.1 | \0.5 | \0.5 | \1 | | \0.3 | <u> </u> | \1 | | \ \ | <10 | | <0.5 | <20 | | | VU.5 | <u> </u> | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.05 | <0.05 | | z0.10 | <0.03 | <0.50 | 20 FO | c1.00 | -1.00 | <0.50 | <1.00 | -1.0 | <0.05 | <5 | - | <0.03 | | <20 | <1.00 | <20 | -1 | | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS
SX_IB_20220417_15_58_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <u> </u> | <u> </u> | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS
SX_IB_20220418_00_02_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | - | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | | | | | | | _ | | | | - | | | | | | | | | | | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | - | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_04_01_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | - | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | 10.05 | 10.03 | 10.5 | VV.1 | \U.1 | 10.5 | , v | `` | | \0.J | `` | | | _ ~ | 110 | | νο.σ | `~20 | | | 10.5 | -0.2 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | 40.0F | 40.0F | | z0.10 | <0.02 | -0 F0 | -0 F0 | c1.00 | -1.00 | 20 F0 | z1 00 | -1.0 | 40.0F | ٠,- | - | <0.02 | | -20 | -1.00 | -20 | -1 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | - | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | | _ . | • | • | · · | | | • | | | | • | | • | • | • | • | • | ī. | • | | | | | | ENVI | RONMENTAL |--------|--|-----------------|--------------|-----------|-------------------------------------|---|----------------|--------------------|-----------------------|-----------------------|--------------------|-------------------------|-------------------|---|--------------------------------|--------------------|---------------------------|--------------|------------------------------------|---------------------------------|-------------------------------------|--------------------|----------------| Phenols | | | | | | | | g-BHC (Lindane) | Methoxychlor | Toxaphene | Organochlorine pesticides
EPAVic | Other organochlorine
pesticides EPAVic | 2-Chlorophenol | 2,4-Dichlorophenol | 2,4,5-Trichlorophenol | 2,4,6-Trichlorophenol | 2,6-Dichlorophenol | 4-chloro-3-methylphenol | Pentachlorophenol | 2,3,4,5 & 2,3,4,6-
Tetrachlorophenol | 4,6-Dinitro-2-
methylphenol | Tetrachlorophenols | 2,3,5,6-Tetrachlorophenol | Cresol Total | 4,6-Dinitro-o-cyclohexyl
phenol | Phenols (halogenated)
EPAVic | Phenols (non-halogenated)
EPAVic | 2,4-Dimethylphenol | 2-Methylphenol | | | | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | |
 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.05 | <0.05 | <0.5 | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.05 | <0.05 | | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | ENVIRO | NMENTAL |-------------------------|--|------------|---------------|-----------|----------|-------------|-------|--------|----------------|---|----------|----------------------|---------|----------------------|--------------|----------------------|---------|----------------------|-----------------|----------------------|---------|----------------------|---------------| | | | | ı | I | 1 | | I | 1 | 1 | | | . a | | l 0 | | l 0 | | I | | 1 . | | | | | | | | | n&p
-d | | | | | | | <u>s</u> | fonic | | Ifonic | | lfonic | | ane | ₹ | | SAA) | 9 | FOSE) | | | | | _ | ا
ت | | | | | u _O | je. | 22
F1 | er su | | er su | | er su | | ooct | TFOS | 9 | E E | 1 | (NEtF | | | | <u> </u> | henc | - Phe | <u> </u> | | | ē ē | d tal | le lor | d (10 | e e | ŝ | e e | S | e o u | ŝ | - Inc | S
S | | Z (2 | | anol | | | | obhei | litro | lethy | bhe | ą | _ | ls (To | ls (To | luoro | icaci | lorot | F 2:2 | lorot | 5:2 F1 | lorot | 12 51 | l per | amid | + 5 | tic ac | | oeth
loeth | | | | -Nitro | i <u>d</u> -4 | &4-IV | Nit. | inose | heno | heno | heno | 0:2 | ng Ho | .2
F | S) | .2 Ft | cid (6 | 2.
F. | cid (4 | Eth | l og | - th | oace | 7 4 | thyip
amid | | | | mg/kg mg/L | EQL | | 1 | 5 | 0.4 | 5 | 20 | 0.5 | 1 | 20 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00005 | 0.01 | 0.00001 | 0.005 | 0.00005 | 0.005 | 0.00005 | 0.01 | 0.00005 | 0.005 | | | n - Tunnel Zone - 2019/404 (SO 9038429) Thresho | n - Tunnel Zone - 2019/405 (SO 9038560) Thresh
n - Tunnel Zone - 2019/406 (SO 9038561) Thresh | n - Tunnel Zone - No option for disposal threshol | Category B Leached Upper Limits | Category B Upper Limits Category C Leached Upper Limits | EPA Victoria IWRG621 | Category C Upper Limits | EPA Victoria IWRG621 | Fill Upper Limits | Lacation Cada | Field ID | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | ZO 00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.01 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.0000F | <0.01 | <0.00005 | <0.005 | | E05.01
E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF SX_IB_20220417_00_01_SS_Primary_EUF | | | | | | | | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | 1 | | E05.01
E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF
SX_IB_20220417_04_02_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00001
<0.00005 | <0.0050 | <0.00001
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00001
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | `* | | 1 | 1 3 | 120 | `- | | | <0.00005 | 10.0030 | <0.00005 | 10.0030 | <0.00005 | 10.0100 | <0.00005 | 10.0030 | <0.00005 | 10.0030 | <0.00005 | 10.0100 | <0.00005 | 10.0030 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | E05.01
E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF
SX_IB_20220417_08_05_SS_Primary_EUF | | | | | | | | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00005 | <0.0100 | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01
E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | -11 | .5 | 10.4 | | -20 | 40 F | -1 | -20 | <0.00001 | 40.00F | <0.00001 | 10.005 | <0.00005 | 10.01 | <0.00001 | 10.005 | <0.00005 | 40.00E | <0.00005 | 10.01 | <0.00005 | 10.005 | | E05.01
E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF
SX_IB_20220417_12_28_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.01 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01
E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | _ | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | 0.000 | <0.00005 | 0.000 | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | _ | | _ | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.01 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.0005 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01
E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS
SX_IB_20220417_15_58_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | - | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | | E05.01
| SX_IB_20220417_15_58_SS_Primary_ALS | \ <u>1</u> | | \1 | \ \ | \20 | \1 | | | <0.00005 | V0.0030 | <0.00005 | V0.0030 | <0.00005 | V0.0100 | <0.00005 | V0.0030 | <0.00005 | V0.0030 | <0.00005 | V0.0100 | <0.00005 | V0.0030 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | E05.01
E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | | | | - | | | | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | <u> </u> | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220418_00_02_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00005 | <0.0100 | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | -0.00001 | <0.005 | 10.00001 | <0.005 | 10 00005 | <0.01 | 10.00001 | <0.005 | 10.00005 | <0.005 | *O 0000E | <0.01 | 10 00005 | <0.005 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | | | | | | | | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | - | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | | | | | | 2 - | | | <0.00005 | | <0.00005 | .2.25= | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | 2.5 | <0.00005 | .0.05= | | E05.01
E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF
SX_IB_20220418_04_01_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | <0.00001 | <0.005 | <0.0001 | <0.005 | <0.00005 | <0.01 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF
SX_IB_20220418_04_01_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | -1 | ~E | <1 | | <20 | -1 | - | | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | | E05.01
E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS
SX_IB_20220418_08_07_SS_Primary_ALS | <1 | <5 | <1 | <5 | \2 U | <1 | | | <0.00005 | \U.UU3U | <0.00005 | \U.UU3U | <0.00005 | ~U.U1UU | <0.00005 | \U.UU3U | <0.00005 | \U.UU5U | <0.00005 | ~U.U1UU | <0.00005 | \U.UU3U | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | 1 | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | 1 | <0.01 | | <0.005 | | ENVIR | RONMENTAL | | | | | | | | | T | | | | | | | | | | | | | | |--------|--|---------------|-------------------|-----------------------------------|---------------|---------|--------|--------------------------------|------------------------------------|--------------------|--------------------------|----------------------------|----------------|----------------------------|----------------|----------------------------|----------------|-------------------------|-----------------------|----------|--|-----------|------------------------| | | | 2-Nitrophenol | 2,4-Dinitrophenol | 3&4-Methylphenol (m&p-
cresol) | 4-Nitrophenol | Dinoseb | Phenol | Phenols (Total
Halogenated) | Phenols (Total Non
Halogenated) | 10:2 Fluorotelomer | sulfonic acid (10:2 FTS) | 8:2 Fluorotelomer sulfonic | acid (8:2 FTS) | 6:2 Fluorotelomer sulfonic | acid (6:2 FTS) | 4:2 Fluorotelomer sulfonic | acid (4:2 FTS) | N-Ethyl perfluorooctane | sulfonamide (NEtFOSA) | N-ethyl- | perruorooccanesuronami
doacetic acid (NEtFOSAA) | -N | namidoethanol (NEFOSE) | | | | mg/kg mg/L | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | <0.00001 | | <0.0001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | <0.00001 | | <0.0001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | < 0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | < 0.00005 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | < 0.005 | | < 0.005 | | <0.01 | | <0.005 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <1 | <5 | <0.4 | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | < 0.005 | | <0.01 | | <0.005 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <1 | <5 | <1 | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | | ENVIRON | IMENTAL |--|---|----------------------|---------|----------------------|---------|----------------------|--------------|----------------------|--------|----------------------|---------|----------------------|---------|----------------------|---------|----------------------|---------|----------------------|---------|----------------------|---------|----------------------|---------| | | | | | 1 | | I | | 1 | | 1 | | ı | | I | | ı | | I | | T | PFOS, | /PFOA | | | | | ctane |)SA) | ctane | 1 | anesul | | <u> </u> | | onic | | <u> </u> | | acid | | onic | | ğ. | | fonic | | ë | | | | | uoroo | MeFG | orood | | Oocta | <u> </u> | oic ac | | e sulf | | oicae | | Sanoic | | esulf | | noica | | lue su | | noic a | | | | | perfi | 8
2 | perflu | AA) | fuor | ethar | butan | | butan | · | decar | | dodec | | decar | 6 | hepta | | hepta | · (Sc | hexar | | | | | ethyl | nami | ethylı | e FOS | hylpe | mido
OSE) | uoro | ৰ | luoro | (PFB3 | noro | € | luoro | орд) | luoro | (PFD) | luoro | (ed | loron | (PFH) | luoro | (xA) | | | | Ž | sulfo | - S | N N | ⊼
Ret | fona
Me F | Perf | (PFB | Perf | acid | Perf | (PE | Perf | GFG | Perf | acid | Perf | H H | Perf | acid | Perf | (PFH | | 501 | | mg/L | mg/kg | EPA PFAS Classification - | Tunnel Zone - 2019/404 (SO 9038429) Thresho | 0.00005 | 0.005 | 0.00005 | 0.01 | 0.00005 | 0.005 | 0.00005 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | | | Tunnel Zone - 2019/405 (SO 9038560) Thresh | Tunnel Zone - 2019/406 (SO 9038561) Threshol
Tunnel Zone - No option for disposal threshol | | | | | | | | | | | | |
 | | | | | | | | | | | stegory B Leached Upper Limits | EPA Victoria IWRG621 Ca | EPA Victoria IWRG621 Ca
EPA Victoria IWRG621 Ca | itegory C Leached Upper Limits | EPA Victoria IWRG621 Fill | La contra de da | 5:445 | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | <0.00005 | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_00_01_SS_Primary_EUF | <0.00005 | <0.005 | <0.0005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | | <0.005 | 2 22225 | <0.01 | | <0.005 | 2 22225 | <0.005 | | <0.005 | | <0.005 | 2 22224 | <0.005 | | <0.005 | | <0.005 | 0.00004 | <0.005 | 2 22224 | <0.005 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.00005 | <0.005 | <0.00005 | 40 O1 | <0.00005 | <0.005 | <0.0001 | <0.005 | <0.00002 | 40.00F | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | 40.00F | <0.00002 | 40.00F | <0.00002 | 40.00F | | E05.01
E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_07_SS_Primary_ALS | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0001
<0.0001 | <0.005 | <0.00002
<0.00002 | <0.0050 | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.00005 | 10.005 | <0.00005 | 10.01 | <0.00005 | 10.005 | <0.0001 | +0.00F | <0.00002 | 10.005 | <0.00002 | 10.005 | <0.00002 | 10.005 | <0.00002 | 40.00F | <0.00002 | 10.005 | <0.00002 | 40.00F | <0.00002 | 10.005 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF
SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00005 | <0.005 | <0.0005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF
SX_IB_20220417_12_28_SS_Primary_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01
E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.0001 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Primary_EUF | <0.00005 | <0.003 | <0.00005 | <0.01 | <0.00005 | <0.003 | <0.00005 | <0.003 | <0.00001 | <0.003 | <0.00001 | <0.003 | <0.00001 | <0.003 | <0.00001 | <0.003 | <0.00001 | <0.003 | <0.00001 | <0.005 | <0.0001 | <0.003 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0001
<0.0001 | <0.005 | <0.00002
<0.00002 | <0.0050 | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | <0.00005 | <0.005 | <0.00005 | 40.01 | <0.00005 | <0.005 | <0.0001 | <0.005 | <0.00002 | 40.00F | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00002 | 40.00F | <0.00002 | <0.005 | <0.00002 | <0.005 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220417_20_03_SS_Primary_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS
SX_IB_20220418_00_02_SS_Primary_ALS | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0001
<0.0001 | <0.005 | <0.00002
<0.00002 | <0.0050 | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | \0.00003 | <0.005 | V0.00003 | <0.01 | \0.00003 | <0.005 | V0.0001 | <0.005 | \0.00002 | <0.005 | V0.00002 | <0.005 | V0.00002 | <0.005 | V0.00002 | <0.005 | V0.00002 | <0.005 | <0.00002 | <0.005 | <0.0000Z | <0.005 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_03_59_SS_Primary_ALS | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0005
<0.0001 | <0.005 | <0.00001
<0.00002 | <0.0050 | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.00005 | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.00005 | <0.005 | <0.00005 | <0.01 | <0.00005 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF
SX_IB_20220418_04_01_SS_Primary_EUF | <0.00005 | | <0.00005
<0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001
<0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001
<0.00001 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS | <0.00005
<0.00005 | <0.0050 | <0.00005
<0.00005 | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0001
<0.0001 | <0.005 | <0.00002
<0.00002 | <0.0050 | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS | <0.00005 | \0.0030 | <0.00005 | ~U.U1UU | <0.00005 | 10.0030 | <0.0001 | -0.003 | <0.00002 | \0.0030 | <0.00002 |
\0.0030 | <0.00002 | \0.0030 | <0.00002 | 10.0030 | <0.00002 | \0.0030 | <0.00002 | \0.0030 | <0.00002 | ~0.0030 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | MENTAL |--|---|-----------------------|--|---------------------|---|---|---|--
--|--|-------------------------------------|-------------------------------------|--|--|--
--|------------------------|--|---|--------------|------------------------|---| | | - | | | | | | | | | | | | | | | | | | | PFOS | /PFOA | | | | N-Methyl perfluorooctane | sulfonamide (NMeFOSA) | N-methylperfluorooctane
sulfonamidaaceit acid | (NMeFOSAA) | N-
Methyperfluorooctanesul | fonamidoethano! (N-
MeFOSE) | Perfluorobutanoic acid | (FFBA) | Perfluorobutane sulfonic | acid (PFBS) | Perfluorodecanoic acid | (PFDA) | Perfluorododecanoic acid | (PFDoDA) | Perfluorodecanesulfonic | acid (PFDS) | Perfluoroheptanoicacid | (РҒНрА) | Perfluoroheptane sulfonic | acid (PFHpS) | Perfluorohexanoic acid | (PFHKA) | | | mg/L | mg/kg | SX_IB_20220418_08_08_SS_Triplicate_EUF | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_08_09_SS_Primary_EUF | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_11_57_SS_Primary_EUF | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | SX_IB_20220418_11_57_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_11_57_SS_Primary_EUF |
<0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00005 | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00005 | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00005 | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF | mg/L | SX_IB_20220418_08_08_SS_Triplicate_EUF SX_IB_20220418_08_09_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Primary_EUF SX_IB_20220418_16_09_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_57_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_EUF SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_11_58_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_07_SS_Primary_ALS SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_08_SS_Primary_EUF SX_IB_20220418_16_09_SS_Duplicate_EUF SX_IB_2 | mg/L mg/kg mg/L | Ref SX_B_20220418_08_08_SS_Triplicate_EUF C0.00005 C0.00005 | Republic | May | SX_IB_20220418_08_09_SS_Primary_EUF <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0 | Record R | Major Majo | SX_IB_20220418_08_09_SS_Primary_EUF | SK.IB_20220418_08_09_SS_Primary_EUF | SX_IB_20220418_08_08_5S_Triplicate_EUF | The color of | The color of | The color of | St. | The color of | Part | No. | Proceedings | Part | | ENVIRON | MENTAL |---------------------------|--|----------------------|--------------|----------------------|--------------|----------------------|---------|----------------------|------------|----------------------|---------|----------------------|---------|----------------------|--------|----------------------|---------|----------------------|---------|----------------------|--------------|----------------------|---------| | | | | | | | 1 | | ı | | ı | | 1 | | 1 | | 1 | | ı | | ı | | I | | | | | | | nic
Snic | | <u>.</u> | | | | Cid
Di | | fonic | | fonic | | , <u>s</u> | | acid | | acid | | Ę | | | | | oic ac | | saufc | • | ic aci | | | osa) | oica | | e sul | | lesult | | canc | | noic | | noic | | sulfo | | | | | onan | | onan | (trac | ctano | | ctane | e (PF | entar | | entar | | opar | | trade | ৰ | ideca | | Jdec | | ctane | | | | | oro | | orong . | FNS) |) oor | _ | J. Oo. | amid
p | oro
pope | 2 | oro a | FPes | l oro | FPrS |] | FTeD | protr | ₹ |)rour | (A) |)roor | FOS) | | | | erflu | AN | erflu | g) | erflu | FOA | erflu | lfon | erflu | ₹Pe | erflu | P) | erflu | P) | l in | P) | erflu | r F | erflu | Į. | erflu | eid (P | | | | mg/L | mg/kg | mg/L | ਲ
mg/kg | mg/L | mg/kg | mg/L | ಸ
mg/kg | mg/L | mg/kg | EQL | | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00005 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | | | Tunnel Zone - 2019/404 (SO 9038429) Thresh | • | | | | 0 | Tunnel Zone - 2019/405 (SO 9038560) Thresh
Tunnel Zone - 2019/406 (SO 9038561) Thresh | | | | | 0.00056
0.0056 | Tunnel Zone - No option for disposal threshol | | | | | 0.056 | tegory B Leached Upper Limits | EPA Victoria IWRG621 Cat | EPA Victoria IWRG621 Cat | tegory C Leached Upper Limits tegory C Upper Limts | EPA Victoria IWRG621 Fill | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | 0.000 | | | <0.00005 | 0.000 | <0.00002 | | <0.00002 | 0.000 | <0.00001 | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | | <0.005 | 2 22224 | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | 0.0004 | <0.005 | | <0.005 | 0.00004 | <0.005 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_00_01_SS_Primary_EUF | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | 10.00001 | <0.005 | 10.00001 | <0.005 | VO.00001 | <0.005 | 10.00003 | <0.005 | VO.00001 | <0.005 | 10.00001 | <0.005 | 10.00001 | <0.005 | 10.00001 | <0.005 | V0.00001 | <0.005 | 10.00001 | <0.005 | 10.00001 | <0.005 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | |
<0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF
SX_IB_20220417_04_02_SS_Primary_ALS | <0.00001
<0.00002 | <0.0050 | <0.00001 | | <0.00001
<0.00001 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001 | | <0.00001
<0.00005 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.00002 | <0.0030 | | | <0.00001 | <0.0030 | <0.00005 | V0.0030 | <0.00002 | V0.0030 | <0.00002 | V0.0030 | | | <0.00005 | V0.0030 | <0.00002 | <0.0030 | <0.00002 | \0.0050 | <0.00001 | V0.0030 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001
<0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF
SX_IB_20220417_08_07_SS_Primary_ALS | <0.00001
<0.00002 | <0.0050 | <0.00001 | | <0.00001
<0.00001 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001 | | <0.00001
<0.00005 | <0.0050 | <0.00001
<0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00002 | <0.005 | | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | | <0.005 | <0.00005 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00001 | 2.22 | <0.00001 | 0.00= | <0.00001 | 2.00 | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF
SX_IB_20220417_12_28_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01
E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00002 | <0.005 | | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | | <0.005 | <0.00005 | <0.005 | <0.00002 | <0.005 | <0.00002 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00001 | -0.005 | <0.00001 | .0.005 | <0.00001 | -0.005 | <0.00005 | -0.005 | <0.00001 | -0.005 | <0.00001 | -0.005 | <0.00001 | .0.005 | <0.00001 | .0.005 | <0.00001 | -0.005 | <0.00001 | 0.005 | <0.00001 | .0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS
SX_IB_20220417_15_58_SS_Primary_ALS | <0.00002
<0.00002 | <0.0050 | | | <0.00001
<0.00001 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00002
<0.00002 | <0.0050 | | | <0.00005
<0.00005 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | <0.00002 | 10.0030 | | | <0.00001 | 10.0030 | <0.00005 | 10.0030 | <0.00002 | 10.0030 | <0.00002 | 10.0030 | | | <0.00005 | 10.0030 | <0.00002 | 10.0050 | <0.00002 | 10.0030 | <0.00001 | 10.0030 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220417_20_03_SS_Primary_EUF | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <0.00001 | <0.0050 | 10.00001 | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | 10.00001 | | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.00002 | <0.005 | | <0.00F | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00002 | ZO 00F | <0.00002 | <0.005 | | <0.005 | <0.00005 | <0.005 | <0.00002 | <0.00F | <0.00002 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_04_01_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00005 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS
SX_IB_20220418_08_07_SS_Primary_ALS | <0.00002
<0.00002 | <0.0050 | | | <0.00001
<0.00001 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00002
<0.00002 | <0.0050 | | | <0.00005
<0.00005 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00002
<0.00002 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.00002 | 2.0000 | | | <0.00001 | 2.0000 | <0.00005 | 3.0350 | <0.00002 | 2.0000 | <0.00002 | 3.0350 | | | <0.00005 | 3.0000 | <0.00002 | | <0.00002 | 2.0000 | <0.00001 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | | | | 1 | | I | | I | | | | | | | | | | | | | | | | |--------|--|----------------------------------|---------|---|--------|----------------------------------|---------|--|---------|----------|---------|--|---------|---|--------|---|---------|--|---------|------------------|---------|-----------------|-----------| | | | Perfluorononanoic acid
(PFNA) | | Perfluorononanesulfonic
acid (PFNS)(trace) | | Perfluorooctanoic acid
(PFOA) | | Perfluorooctane
sulfonamide (PFOSA) | | (PFPeA) | | Perfluoropentane sulfoni
acid (PFPeS) | | Perfluoropropanesulfoni
acid (PFPrS) | | Perfluorotetradecanoic
acid (PFTeDA) | | Perfluorotride canoic acid
(PFTrDA) | | undecano ic acic | | ooctanesulfonic | Perfluore | (PFUnDA | Perfluore | acid (PFC | | | | mg/L mg/kg mg/L | | mg/L | mg/kg | E05.01
 SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00002 | <0.0050 | | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00002 | | | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | | ENVIROI |----------------------------------|--|----------------------|----------|----------------------|---------|----------------------|------------|----------------------|--------|----------------------|---------|--------------|-------|-------|-------------|----------|---------------------|--------|-------|-------|-------|-------|----------| | | | | | | | ı | | | | | | | | | 1 | | | | | | | - I | | | | | ë | | | S | FOS | | | * | | | | | | | | | | 9 | ω. | | | e e | | | | <u>ş</u> | | | 9 | AS (P | | FAS | PFOA) | | | _ | | ane | _ | <u>a</u> | <u>a</u> | aue | etha | han | e . | | etha | | | | ne s | | | and | PF/ | | | + | | | ane | Jene | prop | Jane | opar | opar | eth | loro | met | etha | | o o o | | | | Je xa | <u>જ</u> | | HXS | (H) | | Hea | PFOS | AS | AS | oet | roet | loro | oet | ğ | ropr | l or | ract | 5 | loro | F | ra c | | | | oro. | £ | | F. | ļ š | *₹ | ā | + | f PF. | f PF. | 亨 | l de | trich | l g | ō | o de |) de | 2-tet | dict | trich | ofori | 2-tet | | | | erflu | Cid (| | Ē | Jo wn | <u> </u> | Ĕ | PFHXS | Ę | Ę | <u> 6</u> | ib-f | 2,3- | 2-di | 2-di | ب ا ه در | ē
Ē | 1,1, | ě | .1,1- | hlore | 1,2,7 | | | | mg/L | mg/kg | mg/L | mg/kg | mg/L | +
mg/kg | mg/L | mg/kg | mg/L | mg/kg | ਜ਼ੌ
mg/kg | mg/kg | mg/kg | ਜ਼
mg/kg | mg/kg | ਜ਼ੌ
mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | | EQL | | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.0001 | 0.05 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | EPA PFAS Classification - | - Tunnel Zone - 2019/404 (SO 9038429) Thresh | | | 0 | EPA PFAS Classification - | - Tunnel Zone - 2019/405 (SO 9038560) Thresh | | | 0.00007 | EPA PFAS Classification - | - Tunnel Zone - 2019/406 (SO 9038561) Thresh | | | 0.0007 | - Tunnel Zone - No option for disposal threshol | | | 0.007 | ategory B Leached Upper Limits | EPA Victoria IWRG621 C | EPA Victoria IWRG621 C | ategory C Leached Upper Limits | EPA Victoria IWRG621 Fi | Location Code | Field ID | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | <0.00001 | .0.00= | <0.00001 | -0.00= | | .0.00= | | .0.00= | <0.00010 | -0.0- | -0.5 | -0.5 | .0.5 | .0.5 | .0.5 | -0.5 | | | -0.5 | .0.5 | .0.5 | -0.5 | | E05.01
E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_00_01_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | <u> </u> | | E05.01 | SX_IB_20220417_00_01_33_F1111a17_E0F
SX_IB_20220417_03_57_SS_Primary_EUF | 2.20001 | <0.005 | .0.0001 | <0.005 | 2.20001 | <0.005 | 3.30001 | <0.005 | 5.5001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | <0.00001 | .0.005 | <0.00001 | .0.005 | | -0.005 | | -0.005 | <0.00010 | -0.05 | -0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | .0.5 | | | E05.01
E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | 0.0000 | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.00001 | | <0.00001 | | | | | | <0.00010 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.00001 | | <0.00001 | 1 | | | | | <0.00010 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | 40 00001 | <0.005 | 40 00001 | <0.005 | 40 00001 | <0.005 | <0.00001 | <0.005 | 40.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.00001
<0.00001 | | <0.00001
<0.00001 | 1 | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.0001
<0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | \0.00001 | <0.005 | <0.00001 | <0.005 | V0.00001 | <0.005 | V0.00001 | <0.005 | V0.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
 SX_IB_20220417_12_28_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | <0.0001 | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | <0.00001 | 2 225 | <0.00001 | 2 225 | | 2 225 | | 2 225 | <0.00010 | 2.25 | | | 0.5 | 0.5 | | | | | | 0.5 | | | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 10.00001 | <0.005 | 10.00001 | <0.005 | 10.00002 | <0.005 | 10.00001 | <0.005 | 1010002 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.00001 | .0.0050 | <0.00001 | .0.0050 | | | | | <0.00010 | .0.0500 | | .0.50 | | .0.50 | | | | -0.50 | | .0.50 | 0.50 | | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS
SX_IB_20220417_15_58_SS_Primary_ALS | <0.00001
<0.00001 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | | | | <0.00010
<0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220417_13_36_33_F1111aly_ALS
SX_IB_20220417_20_03_SS_Primary_EUF | \0.00001 | <0.005 | <0.00001 | <0.005 | | <0.005 | | <0.005 | \0.00010 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.00001 | 0.000 | <0.00001 | 1 | <0.00001 | | <0.0001 | 0.000 | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | <0.00001 | | <0.00001 | | | | | | <0.00010 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.00001 | <0.005 | <0.0001 | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | \0.00001 | | V0.00001 | | <0.0001 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | <0.00001 | | <0.00001 | 1 | | | | | <0.00010 | 0.0000 | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.00001 | <0.0050 | <0.00001
<0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | - | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01
E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS
SX_IB_20220418_08_07_SS_Primary_ALS | <0.00001
<0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010
<0.00010 | <0.0500 | | <0.50 | | <0.50 | | | - | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS
SX_IB_20220418_08_07_SS_Primary_ALS | <0.00001 | \0.0030 | <0.00001 | \0.0030 | | | | | <0.00010 | \0.0300 | | VU.JU | | \U.JU | | | | \0.JU | | ·0.50 | V0.30 | , U.JU | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | - | | | _ | | _ | | | _ | | | | _ | _ | | _ | | _ | _ | _ | _ | | | | | ENVIR | ONMENTAL |--------|--|--|---------|-----------------------|---------|--------------------------------------|--------|--|--------|-------------|-------------|--------------------|--------------------|------------------------|--------------------|---------------------|---------------------|--------------------|---------------------------|----------------------|-----------------------|------------|---------------------------| | | | Perfluorohexane sulfonic
acid (PFHxS) | | Sum of PFHxS and PFOS | | Sum of US EPA PFAS (PFOS
+ PFOA)* | | Sum of enHealth PFAS
(PFHxS + PFOS + PFOA)* | | Sum of PFAS | Sum of PFAS | 1,1-dichloroethane | 1,1-dichloroethene | 1,2,3-trichloropropane | 1,2-dichloroethane | 1,2-dichloropropane | 1,3-dichloropropane | Bromochloromethane | 1,1,1,2-tetrachloroethane | Bromodichloromethane | 1,1,1-trichloroethane | Chloroform | 1,1,2,2-tetrachloroethane | | | | mg/L | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | <0.00001 | | <0.00001 | | | | | | <0.00010 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | <0.00001 | | <0.00001 | | | | | | <0.00010 | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | < 0.005 | | < 0.005 | | <0.005 | | <0.005 | | < 0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00001 | <0.0050 | <0.00001 | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.00001 | | <0.00001 | | | | | | <0.00010 | | | | | | | | | | | | | 1 | | ENVIRON | IMENTAL |---------------------------|--|---------------|-------------------------|--|-----------------|---------------------|--|-----------------|-------------------------|------------------------|-----------------------|-------------------------|----------------|-----------|----------------------|----------------------|--------------|--|--------------------|---------------------
----------------|--|---------------| | | - | | | Chlorinated | Hydrocarbons | | | | | | | | | | | | | | | | NA | | | | | - | | | | | | | | ş | | | ē | | | | | | | | | | | | | | | chloromethane | cis-1,3-dichloropropene | Dibromomethane | Dichloromethane | Hexachlorobutadiene | Other chlorinated
nydrocarbons EPAVic | rrichloroethene | Chlorinated hydrocarbon | :is-1,2-dichloroethene | 1,1,2-trichloroethane | rans-1,3-dichloroproper | Vinyl chloride | Bromoform | Carbon tetrachloride | Chlorodibromomethane | Chloroethane | rans-1,2-dichloroethene | Tetrachlo roethene | Sum of WA DWER PFAS | (n=10)* | Moisture Content | Arochlor 1232 | | | | mg/kg μg/L | UG/KG | % | mg/kg | | EQL | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | 0.05 | 1 | 0.1 | | EPA PFAS Classification - | Tunnel Zone - 2019/404 (SO 9038429) Thresh | Tunnel Zone - 2019/405 (SO 9038560) Thresh | Tunnel Zone - 2019/406 (SO 9038561) Threshol | Itegory B Leached Upper Limits | EPA Victoria IWRG621 Ca | | | | | | 11 | 50 | | | | | | 4.8 | | | | | | | | | | | | EPA Victoria IWRG621 Ca | itegory C Leached Upper Limits | EPA Victoria IWRG621 Ca | | | | | | 2.8 | 10 | | | | | | 1.2 | | | | | | | | | | | | EPA Victoria IWRG621 Fil | l Upper Limits | | | | | | | | 1 | | | | | | | | | | | | | | | | Lasatian Cada | Field ID | Location Code
E05.01 | Field ID SX_IB_20220416_23_55_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 27.6 | | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.05 | \vdash | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.5 | 20 F | -0 F | -0 F | -0.F | -0 F | <0.5 | -0 F | 20 F | 20 F | -0 F | -0 F | 20 F | <0.5 | | <0.05 | | ZO 1 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF SX_IB_20220417_03_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10
<0.05 | $\overline{}$ | <0.1 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 31.2 | 1 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | —— | <0.1 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | | | | | | | | | | | | | | | | | - | | | <0.05
<0.05 | | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF
SX_IB_20220417_08_07_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.03 | 30.0 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 31.4 | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.05
<0.05 | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05
<0.05 | <10.0 | 30.3 | i | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.05 | <10 | | <0.1 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | 10.15 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.5 | 10.15 | 10.0 | 10.0 | | <0.05 | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.05 | | 1 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <0.05
<10.0 | 30.4 | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | .0.5 | .0.50 | .0.50 | 10.50 | .0.50 | 10.50 | 10.50 | | 10.50 | | 10.50 | | | 10.50 | 10.50 | <0.05 | 120.0 | 30.4 | | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 30.8 | | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | \vdash | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | \longrightarrow | <0.1 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220417_20_03_SS_Primary_EUF | | | | | | | | | | | - | - | - | - | - | - | 1 | | | <0.05
<0.05 | | | | E05.01 | SX_IB_20220417_20_03_33_Primary_EUP
SX_IB_20220418_00_02_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.03 | 29.8 | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | | | | | | | | | | | - | | - | | | | 1 | | | <0.05 | | i | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | | | - | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | - | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <0.05
<10.0 | 30.0 | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS
SX_IB_20220418_03_59_SS_Primary_ALS | | | - | \U.5 | \U.3U | \U.3U | \U.3U | \U.3U | \U.3U | <u> </u> | + | <u> </u> | | <u> </u> | | | <u.3u< td=""><td>\U.3U</td><td><0.05</td><td>\1U.U</td><td>30.0</td><td></td></u.3u<> | \U.3U | <0.05 | \1U.U | 30.0 | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | .5.03 | <10 | | <0.1 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | - | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | - | <0.50 | <0.50 | <0.05 | <10.0 | 27.4 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | - | <0.50 | - | <0.50 | - | - | <0.50 | <0.50 | <0.05
<0.05 | <10.0 | 27.7 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS | | | | 10.3 | 10.50 | VV.30 | 10.50 | \v.50 | 10.50 | \0.J0 | | 10.50 | | \0.50 | | | \0.50 | 10.50 | <0.05 | 110.0 | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | ENVI | RONMENTAL |--------|--|---------------|-------------------------|----------------|-----------------|---------------------|--|-----------------|------------------------------------|------------------------|-----------------------|---------------------------|----------------|-----------|----------------------|----------------------|--------------|--------------------------|-------------------|---------------------|---------|------------------|---------------| | | | | | Chlorinated I | Hydrocarbons | | | | | | | | | | | | | | | | NA | | | | | | Chloromethane | cis-1,3-dichloropropene | Dibromomethane | Dichloromethane | Hexachlorobutadiene |
Other chlorinated
hydrocarbons EPAVIc | Trichloroethene | Chlorinated hydrocarbons
EPAVic | cis-1,2-dichloroethene | 1,1,2-trichloroethane | trans-1,3-dichloropropene | Vinyl chloride | Bromoform | Carbon tetrachloride | Chlorodibromomethane | Chloroethane | trans-1,2-dichloroethene | Tetrachloroethene | Sum of WA DWER PFAS | (n=10)* | Moisture Content | Arochlor 1232 | | | | mg/kg μg/L | UG/KG | % | mg/kg | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.05 | | ' | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.05 | | <u> </u> | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.05 | | <u> </u> | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.05 | | <u> </u> | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.05 | | [| | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 29.7 | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | <u> </u> | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 32.5 | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | <0.05 | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <10 | | <0.1 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.05 | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <0.05 | <10.0 | 29.8 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | 0.0 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 1 | 3.50 | | 1 3.50 | | | 3.50 | 3.50 | <0.05 | | | | | ENVIRON | IMENTAL |----------------------------------|---|---------------|---------------|---------------|---------------|---------------|---------------|---------------------|----------------|-------------|--------------|----------------------|----------------------|----------|-------------------------------------|---------------|------------------------|---------------------|---------------------|---------------------|--------------|-----------------|----------------| | | -
- | | | PC | CBs | I | 1 | ı | | I | ı | Inorg | ganics | 1 | | ı | | ı | На | logenated Benze | nes | | | | | | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1221 | Arochlor 1260 | Arochlor 1016 | PCBs (Sum of total) | рн (after HCL) | pH (Final) | рн (Initial) | pH of Leaching Fluid | pH (aqueous extract) | Fluoride | Moisture Content (dried @
103°C) | Cyanide Total | 1,2,4-trichlorobenzene | 1,2-dichlorobenzene | 1,3-dichlorobenzene | 1,4-dichlorobenzene | Bromobenzene | 4-chlorotoluene | Chloro benzene | | | | mg/kg - | - | - | - | - | mg/kg | % | mg/kg | EQL
EPA PFAS Classification - | Tunnel Zone - 2019/404 (SO 9038429) Thresh | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 100 | 1 | 5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | Tunnel Zone - 2019/405 (SO 9038560) Thresh | Tunnel Zone - 2019/406 (SO 9038561) Threshol
Tunnel Zone - No option for disposal threshol | EPA Victoria IWRG621 Ca | itegory B Leached Upper Limits | EPA Victoria IWRG621 Ca | Itegory B Upper Limits Itegory C Leached Upper Limits | | | | | | | | | | | | | 40,000 | | 10,000 | | | | | | | | | EPA Victoria IWRG621 Ca | tegory C Upper Limts | | | | | | | | | | | | | 10,000 | | 2,500 | | | | | | | | | EPA Victoria IWRG621 Fil | l Upper Limits | | | | | | | 2 | | | | | | 450 | | 50 | | | | | | | | | Location Code | Field ID | | _ | , | | | | | | | | | | _ | | | | | | | | | | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS
SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | <0.1 | 1.3 | 5.1
9.1 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 3.1 | | | 11 | <100 | 34 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_00_01_SS_Primary_EUF | | | | | | | | | 7.4
11 | | 5.0
6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | 0.5 | 9.4 | <100 | 30 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | | | | | | | | | 5.7
10.0 | | 5.0
6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | | | | | | | <0.1 | 1.2 | 5.3 | 10.3 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | 10.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | | 10.4 | | | 10 | 600 | 25 | | 40 F | -0.5 | 40 F | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF SX_IB_20220417_08_05_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 7.6 | | 5.0 | 10 | 680 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | | | | | | | .0.1 | 4.2 | 10 | 0.2 | 6.3 | | 470 | | | .0.50 | .0.50 | | .0.50 | | | -0.50 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | <0.1 | 1.3 | 5.0
9.5 | 9.3 | 5.0 | | 170 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | | <0.1 | 1.3 | 5.0 | 9.6 | 5.0 | | 150 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 9.4 | | | 9.0 | 420 | 30 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | 5.5 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 9.7 | | 6.3 | 8.4 | 540 | 28 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | | | | | | | | | 5.4 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF
SX_IB_20220417_12_29_SS_Primary_ALS | | | | | | | <0.1 | 1.2 | 9.4
5.1 | 9.8 | 6.3
5.0 | | 170 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | | | | | | | | | 10.0 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 5.4 | | 5.0 | 9.0 | 470 | 31 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | 9.7 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 5.3 | | 5.0 | 8.4 | 520 | 31 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | 9.5 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | | <0.1 | 1.1 | 5.0
9.1 | 9.5 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | <0.1 | 1.2 | 5.0 | 8.9 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS SX_IB_20220417_20_03_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 9.0 | | | 8.7 | 560 | 30 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | -0.2 | 10.12 | 1012 | 1012 | 10.12 | 1012 | .0.1 | | 5.3 | | 5.0 | 0 | 300 | | | 10.15 | 10.0 | 10.0 | 10.15 | 10.15 | 1010 | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220418_00_02_SS_Primary_ALS | | | | | | | <0.1 | 1.2 | 9.5
5.0 | 8.8 | 6.3
5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | | | | | | | 10.1 | 1.2 | 9.0 | 0.0 | 3.0 | | 100 | | | 10.50 | 10.50 | | 10.50 | | | 10.50 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF SX_IB_20220418_00_05_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 5.3 | | 5.0 | 8.6 | 500 |
30 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF | | | | | | | | | 9.5 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | | | | | | | <0.1 | 1.2 | 5.1
9.6 | 9.4 | 5.0 | | 160 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01
E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS SX_IB_20220418_04_01_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | 3.0 | | | 9.0 | 490 | 32 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | | | | | | | | - | 5.4
9.6 | | 5.0
6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | | <0.1 | 1.2 | 5.0 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | | -0.4 | 4.4 | 9.4 | 0.7 | | | 100 | | | -0 F0 | r0 F0 | | -0.50 | | | 40.50 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | <0.1 | 1.1 | 5.0
9.5 | 9.7 | 5.0 | - | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 9.0 | 460 | 29 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | ENVI | RONMENTAL |--------|--|---------------|---------------|---------------|---------------|---------------|---------------|---------------------|----------------|------------|--------------|----------------------|----------------------|----------|-------------------------------------|---------------|------------------------|---------------------|---------------------|---------------------|--------------|-----------------|---------------| | | | | | PC | CBs | | | | | | | Inor | ganics | | | | | | На | logenated Benze | nes | | | | | | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1221 | Arochlor 1260 | Arochlor 1016 | PCBs (Sum of total) | рН (after HCL) | рН (Final) | рН (Initial) | рН of Leaching Fluid | pH (aqueous extract) | Fluoride | Moisture Content (dried @
103°C) | Cyanide Total | 1,2,4-trichlorobenzene | 1,2-dichlorobenzene | 1,3-dichlorobenzene | 1,4-dichlorobenzene | Bromobenzene | 4-chlorotoluene | Chlorobenzene | | | | mg/kg - | - | - | - | - | mg/kg | % | mg/kg | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | 1 | | - | | | | | 5.4 | | 5.0 | | | - | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | 9.7 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 8.7 | 530 | 32 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | 5.5 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | 9.8 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 8.8 | 450 | 31 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | 5.3 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | 9.4 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | <0.1 | 1.1 | 5.0 | 9.3 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | | | 9.2 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | <0.1 | 1.1 | 5.1 | 10.2 | 5.0 | | 160 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | | | 10.0 | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 10 | 500 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | 5.3 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | 11 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 10 | 450 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | 5.2 | | 5.0 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | 11 | | 6.3 | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | <0.1 | 1.2 | 5.0 | 10.2 | 5.0 | | 190 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | | | 9.9 | | | | | | | | | | | | | | | | Г | | | | | | | | | | | | Ι | | | | | | |----------------------------|--|-------------|--------------|-------------------|-------------------------|--|-----------|---|------------------------|-------------|-------------------|------------------------|----------------------|--------------------|----------------|-------------------|---------------------|------------| | | Į | | Halog | genated Hydroca | _ | | | | M | IAH
 | | 1 | | Ι | Solvents | 1 | | SPOCAS | | | | lodomethane | Bromomethane | 1,2-dibromoethane | Dichlorodifluoromethane | Trichlorofluoromethane | Total MAH | Monocylic aromatic
hydrocarbons EPAVic | 1,3,5-trimethylbenzene | Styrene | lso propylbenzene | 1,2,4-trimethylbenzene | 4-Methyl-2-pentanone | Acetone | Allyl chloride | Carbon di sulfide | Methyl Ethyl Ketone | рн (СаСІ2) | | | | mg/kg - | | EQL EDA DEAS Classificati | on - Tunnel Zone - 2019/404 (SO 9038429) Thresh | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.1 | | | on - Tunnel Zone - 2019/405 (SO 9038560) Thresh | on - Tunnel Zone - 2019/406 (SO 9038561) Thresh | on - Tunnel Zone - No option for disposal threshol | 21 Category B Leached Upper Limits 21 Category B Upper Limits | | | | | | | 240 | | | | | | | | | | | | | 21 Category C Leached Upper Limits | | | | | | | 240 | | | | | | | | | | | | | 21 Category C Upper Limts | | | | | | | 70 | | | | | | | | | | | | EPA Victoria IWRG62 | 21 Fill Upper Limits | | | | | | | 7 | | | | | | | | | | | | Location Code | Field ID | | | | | | | | | | | | | | | | | | | Location Code
E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.6 | | E05.01 | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01
E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_00_01_SS_Primary_EUF
SX_IB_20220417_03_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_03_57_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 9.0 | | E05.01
E05.01 | SX_IB_20220417_04_02_SS_Primary_ALS
SX_IB_20220417_08_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | | | E05.01 | SX_IB_20220417_08_05_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.9 | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | - | 7.8 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS
SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | | \0.3 | | \0.5 | | | | | | | | 7.0 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | | | | | | | | | | | E05.01
E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF SX_IB_20220417_12_28_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF SX_IB_20220417_12_28_SS_Primary_EUF | <0.5 | V0.5 | <0.5 | \U.5 | <0.5 | <0.5 | | \U.5 | VU.5 | <0.5 | VU.3 | VU.3 | \(\(\) \(\) | <0.5 | VU.3 | VU.3 | | | E05.01 | SX_IB_20220417_12_28_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 8.0 | | E05.01 | SX_IB_20220417_12_29_SS_Primary_ALS | 40 F | 40 F | 40 ت | 40 ۲ | 40 F | 40.5 | | 40 ۲ | 40 F | 40 F | 40 ۲ | 40 ۲ | 40 F | 40 F | 40 ۲ | 40 F | | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
 | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.5 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | | | | | | | | | | | | 1.0 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.4 | | E05.01 | SX_IB_20220417_15_58_SS_Primary_ALS | -0.5 | 40 F | -0.5 | -0.5 | -0.5 | -0.5 | | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | 40 F | -0.5 | | | E05.01
E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF
SX_IB_20220417_20_03_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220417_20_03_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.4 | | E05.01 | SX_IB_20220418_00_02_SS_Primary_ALS | .0.5 | -0.5 | -0- | | | -0- | | | | -0.5 | | | -0- | | | -0- | - | | E05.01
E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_00_05_SS_Primary_EUF
SX_IB_20220418_00_05_SS_Primary_EUF | | | | | <u> </u> | | | | 1 | | | | | 1 | | 1 | | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 8.3 | | E05.01 | SX_IB_20220418_03_59_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | E05.01
E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_04_01_SS_Primary_EUF
SX_IB_20220418_04_01_SS_Primary_EUF | | | | | | | | | | | - | - | - | | - | | 1 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.7 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | lav := aaaaa aa a= aa = | | l | 1 | | | | <0.5 | | <0.5 | | I | 1 | | | | | 7.9 | | E05.01
E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS
SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | ENVIR |--------|--|-------------|--------------|-------------------|--------------------------|------------------------|-----------|---|------------------------|---------|------------------|------------------------|----------------------|---------|----------------|------------------|---------------------|------------| | | | | Halog | genated Hydroca | rbons | | | | М | AH | | | | | Solvents | | | SPOCAS | | | | lodomethane | Bromomethane | 1,2-dibromoethane | Dichloro difluoromethane | Trichlorofluoromethane | Тоtal MAH | Monocylic aromatic
hydrocarbons EPAVic | 1,3,5-trimethylbenzene | Styrene | Isopropylbenzene | 1,2,4-trimethylbenzene | 4-Methyl-2-pentanone | Acetone | Allyl chloride | Carbon disulfide | Methyl Ethyl Ketone | рн (сасі2) | | | | mg/kg - | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | ļ | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | | | | | | | | | ļ | | E05.01 | SX_IB_20220418_08_09_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_57_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 7.4 | | E05.01 | SX_IB_20220418_11_58_SS_Primary_ALS | | | | | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 9.2 | | E05.01 | SX_IB_20220418_16_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | 1 | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | 1 | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | <0.5 | | <0.5 | | | | | | | | 8.8 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | | | | | | | | | | | | Metals | EQL | | | | | | | mg/kg
2 | mg/kg | mg/kg
5 | mg/kg | mg/kg
By/gmuinm (hexavalent) | mg/kg
5 | mg/kg 0.1 | wnuəpqAioW
mg/kg
5 | ng/kg
5 | ening
y
mg/kg
2 | mg/kg
2 | E
mg/kg
10 | |----------------------|--|--------------------------|-------------------|----------------|-------------------|---------------|------------|-----------|------------|-----------|---------------------------------|------------|-----------|--------------------------|------------|--------------------------|--|--| | Location Code | Field ID | Date | Lab Report Number | Lab Name | Sample Type | Parent Sample | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 16/04/2022 | 880891 | MGT | Normal | | 23 | <0.4 | 50 | 120 | <1 | 5.5 | <0.1 | <5 | 130 | <2 | <2 | <10 | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | 16/04/2022 | 880891 | MGT | Field_D | M22-Ap0036822 | 20
14 | <0.4
0 | 38
27 | 76
45 | <1
0 | 5.7
4 | <0.1
0 | <5
0 | 90
36 | <2
0 | <2
0 | <10
0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 16/04/2022 | 880891 | MGT | Normal | | 23 | <0.4 | 50 | 120 | <1 | 5.5 | <0.1 | <5 | 130 | <2 | <2 | <10 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036822 | 13 | <1 | 36 | 61 | <1.0 | <5 | <0.1 | <5 | 78 | <5 | <2 | <10 | | RPD | SV ID 20220445 45 40 55 D : 5U5 | 45 (04 (2022 | logges4 | la sor | lau | - | 56 | 0 | 33 | 65 | 0 | 10 | 0 | 0 | 50 | 0 | 0 | 0 | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | 16/04/2022
16/04/2022 | 880891
880891 | MGT | Normal
Field_D | M22-Ap0036848 | - | | | | | | 1 | | | | | | | RPD | 37_10_1010410_10_11_03_bupileate_101 | 10/04/2022 | 000031 | Inio | i i ciu_b | MEE APOUSOUTO | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 16/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | 16/04/2022 | 880891 | MGT | Field_D | M22-Ap0036872 | | | | | | | | | | | <u> </u> | | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 16/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036872 | | | | | | | | | | | | | | RPD | | 1 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 20 | <1 | 37 | 91 | <1.0 | <5 | <0.1 | <5 | 113 | <5 | <2 | <10 | | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998001 | 20 | <1
0 | 42
13 | 88 | <1.0
0 | <5
0 | <0.1
0 | <5
0 | 108
5 | <5
0 | <2
0 | <10
0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 20 | <1 | 37 | 91 | <1.0 | <5 | <0.1 | <5 | 113 | <5 | <2 | <10 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | 16/04/2022 | 880891 | MGT | Interlab_D | EM2206998001 | 57 | <0.4 | 60 | 140 | <1 | 8.1 | <0.1 | <5 | 150 | <2 | <2 | <10 | | RPD | | 1 | | | | | 96 | 0 | 47 | 42 | 0 | 47 | 0 | 0 | 28 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 20 | <1 | 37 | 91 | <1.0 | <5 | <0.1 | <5 | 113 | <5 | <2 | <10 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | 16/04/2022 | 880891 | MGT | Interlab_D | EM2206998001 | | | | | | | - | | | | | | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998026 | | | | | | | | | | | | | | RPD | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 16/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | 16/04/2022 | 880891 | MGT | Interlab_D | EM2206998026 | | | | | | | 1 | | | | | | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 17/04/2022 | 880891 | MGT | Normal | | 27 | <0.4 | 66 | 140 | <1 | <5 | <0.1 | <5 | 210 | <2 | <2 | <10 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036832 | 27 | <0.4 | 54 | 130 | <1 | <5 | <0.1 | <5 | 160 | <2 | <2 | <10 | | RPD | | | |
| | | 0 | 0 | 20 | 7 | 0 | 0 | 0 | 0 | 27 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 17/04/2022 | 880891 | MGT | Normal | | 27 | <0.4 | 66 | 140 | <1 | <5 | <0.1 | <5 | 210 | <2 | <2 | <10 | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036832 | 18
40 | <1
0 | 57
15 | 112
22 | <1.0
0 | <5
0 | <0.1
0 | <5
0 | 173
19 | <5
0 | <2
0 | <10
0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 17/04/2022 | 880891 | MGT | Normal | | 40 | 0 | 15 | 22 | 0 | 0 | 0 | 0 | 19 | U | 0 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036856 | | | | | | | | | | | | | | RPD | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 17/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | <u> </u> | | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | 17/04/2022 | 880891 | MGT | Field_D | M22-Ap0036880 | | | | | | | - | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 17/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036880 | | | | | | | | | | | | | | RPD | | 1 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 22 | <1 | 52 | 104 | <1.0 | <5 | <0.1 | <5 | 159 | <5 | <2 | <10 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998011 | 26
17 | <5
0 | 62
18 | 113
8 | <1.0
0 | <5
0 | <0.1
0 | <5
0 | 195
20 | <5
0 | <2
0 | <10
0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 22 | <1 | 52 | 104 | <1.0 | <5 | <0.1 | <5 | 159 | <u> </u> | <2 | <10 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998011 | 38 | <0.4 | 63 | 130 | <1 | <5 | <0.1 | <5 | 190 | <2 | <2 | <10 | | RPD | · | | ·
 | | | | 53 | 0 | 19 | 22 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 22 | <1 | 52 | 104 | <1.0 | <5 | <0.1 | <5 | 159 | <5 | <2 | <10 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998011 | | | | | | | 1 | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | 1 | | 1 | 1 | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998034 | | | | | | | 1 | | | | | | | RPD | | | | | | | | | | · | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 17/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | 1 | | | | <u> </u> | | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | 17/04/2022 | 880891 | MGT | Interlab_D | EM2206998034 | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 18/04/2022 | 880891 | MGT | Normal | | 26 | <0.4 | 56 | 120 | <1 | <5 | <0.1 | <5 | 160 | <2 | <2 | <10 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036840 | 41 | <0.4 | 84 | 170 | <1 | 6.0 | <0.1 | <5 | 270 | <2 | <2 | <10 | | IC0927 - West Gate T | Funnal Spail Tasting | | | | | 1 of 24 | | | | | | | | | | | | BSF | | | | | | | | | | | | | | | Metals | | | | | | |--------|--|------------|-----------|----------------|------------|---------------|-------------|------------|-------------|-------------------|-----------------------|-------------|-------------|------------|-------------|------------|-------------|------------| | | | | | | | | Arsenic | Cadmium | Copper | Chromium (III+VI) | Chromium (hexavalent) | Fead | Mercury | Molybdenum | Nickel | Selenium | Silver | ξ
mg/kg | | RPD | | | | | | | mg/kg
45 | mg/kg
0 | mg/kg
40 | mg/kg
34 | mg/kg
0 | mg/kg
18 | mg/kg
() | mg/kg
0 | mg/kg
51 | mg/kg
0 | mg/kg
() | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 18/04/2022 | 880891 | MGT | Normal | | 26 | <0.4 | 56 | 120 | <1 | <5 | <0.1 | <5 | 160 | <2 | <2 | <10 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036840 | 21 | 1 | 60 | 109 | <1.0 | <5 | <0.1 | <5 | 161 | <5 | <2 | <10 | | RPD | | | • | • | <u> </u> | | 21 | 86 | 7 | 10 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036864 | | | | | | | | | | | | | | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | 18/04/2022 | 880891 | MGT | Field_D | M22-Ap0036888 | | | | | | | | | | | | | | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 18/04/2022 | 880891 | MGT | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Interlab_D | M22-Ap0036888 | | | | | | | | | | | | | | RPD | | 1 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 17 | <1 | 54 | 110 | <1.0 | <5 | <0.1 | <5 | 168 | <5 | <2 | <10 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998018 | 18 | <1 | 56 | 108 | <1.0 | <5 | <0.1 | <5 | 172 | <5 | <2 | <10 | | RPD | | 1 | | | | | 6 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 17 | <1 | 54 | 110 | <1.0 | <5 | <0.1 | <5 | 168 | <5 | <2 | <10 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998018 | 33 | <0.4 | 69 | 150 | <1 | <5 | <0.1 | <5 | 200 | <2 | <2 | <10 | | RPD | | | | | | | 64 | 0 | 24 | 31 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | 17 | <1 | 54 | 110 | <1.0 | <5 | <0.1 | <5 | 168 | <5 | <2 | <10 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998018 | | | | | | | | | | | | | | RPD | | T | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Field_D | EM2206998041 | | | | | | | | - | | | | | | RPD | | T | | | <u> </u> | | _ | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 18/04/2022 | EM2206998 | ALSE-Melbourne | Normal | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | 18/04/2022 | 880891 | MGT | Interlab_D | EM2206998041 | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | | | ^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL. ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory | ENVIRO | ONMENTAL |------------------|---|------------|---------------------|--------------------------|--------------|----------------|--------------|-------------------|-----------------------------------|-------------------------|-----------------------------------|-----------------|------------------------|----------------------|----------------------|--------------|--|--------------|--------------|-------------------------|--------------|--|--------------| | | | | | l o | | Τ | 1 | Ι | 1 | Γ ≈ | | Τ | P | AH T | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | Zinc | PAHS (VIC EPA LIST) | Benzo(b+j+k)fluoranthene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene TEQ calc
(Zero) | Benzo(a)pyrene TEQ (LOR | Benzo(a)pyrene TEQ calc
(Half) | Benzo(a) pyrene | Benzo(b+j)fluoranthene | Benzo(g.h.i)perylene | Benzo(k)fluoranthene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | | EQL | | mg/kg
5 | mg/kg
0.5 | mg/kg | mg/kg
0.5 | LQL | | | 0.5 | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Location Code | Field ID | 100 | T | Т | 40 F | 40.5 | 40.5 | 40.5 | 40.5 | 1.2 | 1 00 | 40.5 | 40.5 | 40.5 | 40.5 | 40.5 | 40.5 | -0.F | -0.F | -0.5 | 40.5 | T 40 F | 40.F | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF | 100
91 | | | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | 1.2 | 0.6 | <0.5
<0.5 | RPD | | 9 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 100 | -0.5 | -1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E03.01
RPD | SX_IB_20220416_16_24_SS_Triplicate_ALS | 78
25 | <0.5 |
<1.0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | 1.2
0 | 0.6 | <0.5
0 | | <0.5
0 | | <0.5
0 | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | 1 | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | + | 1 | | | | | | | | | | | | | | + | | | | - | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | † | RPD | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | | | | | | | | | | | | | | - | - | | | - | | | RPD | 3A_ID_20220410_10_24_33_111pilicate_AL3 | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 75 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | 79
5 | <0.5
0 | <1.0
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | 1.2
0 | 0.6 | <0.5
0 | | <0.5
0 | | <0.5
0 | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 75 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | 120 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 46 | -0.5 | -1.0 | 0 | 0 | 0 | 0 | 0 -0 -5 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF | 75 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | 1 | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | | + | | | | | | | | | | | | | | | + | + | + | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | 100 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 26 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | 130
87 | <0.5 | <1.0 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | 1.2
1.2 | 0.6 | <0.5
<0.5 | <0.5 | <0.5
<0.5 | <0.5 | <0.5
<0.5 | E05.01
RPD | 5X_IB_20220417_15_57_55_111piicate_AL5 | 40 | VU.3 | V1.0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.6 | 0 | | 0.5 | | 0 | 0.5 | 0 | 0 | 0.5 | 0.5 | 0.5 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | - | | | | | | | | | | | | | | | | | - | | | \vdash | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | RPD | CV ID 20220147 45 55 55 5 1 | - | 1 | | | - | | - | | - | | | | | | | | - | - | 1 | - | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | | + | | | | | | | | | | | | | | | + | + | + | | + | | | RPD | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 86 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | 92
7 | <0.5
0 | <1.0
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | 1.2
0 | 0.6 | <0.5
0 | - | <0.5
0 | | <0.5
0 | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 86 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | 130 | <u> </u> | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 41
86 | <0.5 | <1.0 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 1.2 | 0.6 | 0
<0.5 | | 0
<0.5 | | 0
<0.5 | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | 10.5 | 1.0 | νο.σ | 10.5 | νο.σ | 10.5 | 10.5 | 1.2 | 0.0 | \0.5 | | νο.5 | | νο.σ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 10.5 | 10.5 | 10.5 | \0.5 | νο.5 | 10.5 | | RPD | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_10_SS_Duplicate_ALS | - | 1 | | | - | | - | | - | | | | | | | - | 1 | - | 1 | - | | | | RPD | 3/V_ID_50550411_00_10_33_Dublicate_ALS | <u> </u> | + | | | | | | | <u> </u> | | <u> </u> | | | | | | + | + | † | | + | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | <u> </u> | | | | | | | | | | | | | | | <u> </u> | | 1 | | | | | RPD
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 110 | + | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | 180 | <u> </u> | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | | | | - | | | | | | | - | P | АН | | | | | | | | | | |--------|--|-------|---------------------|--------------------------|--------------|----------------|------------|-------------------|-----------------------------------|--------------------------|-----------------------------------|-----------------|------------------------|----------------------|----------------------|----------|-----------------------|--------------|----------|-------------------------|--------------|--------------|--------| | | | Zinc | PAHs (Vic EPA List) | Benzo(b-j+k)fluoranthene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene TEQ calc
(Zero) | Benzo(a)pyrene TEQ (LOR) | Benzo(a)pyrene TEQ calc
(Half) | Benzo(a) pyrene | Benzo(b+j)fluoranthene | Benzo(g,h,i)perylene | Benzo(k)fluoranthene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Fluorene | Indeno(1,2,3-c,d)pyrene | Naphthalene | Phenanthrene | Pyrene | | | | mg/kg | RPD | | 48 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | 110 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | 94 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 16 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | ' | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <u> </u> | i | | | RPD | ' | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | ' | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <u> </u> | | | | RPD | ' | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <u> </u> | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <u> </u> | | | | RPD | <u> </u> | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 97 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | 98 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 97 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | 130 | | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 29 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 97 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.2 | 0.6 | <0.5 | | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | ' | | | | RPD | | | | 1 | | | | | | | | | | | | | | | | | ' | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | 1 | | | | | | | | | | | | | | | | | ' |
 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <u> </u> | | | | RPD | └── ' | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | ' | | , | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | ' | | | | RPD | | | 1 | | | | | | | 1 | 1 | | | | | | 1 | 1 | 1 | | , ' | ı | . | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIRON | MENTAL |------------------|--|---------------------|--------------|--------------|--------------|--------------|----------------|--------------|------------|------------------------|------------|-----------------------------------|--------------|--------------|------------------------|------------|------------|--------------|-------------|-------------------------|----------------|--|-------------------| | | - | | | | ВТ | EX | | 1 | | 1 | 1 | TRH | 1 | | ı | | 1 | TPH | 1 | | | | | | | | PAHs (Sum of total) | Benzene | Ethylbenzene | Toluene | Xylene (o) | Xylene (m & p) | Xylene Total | C6-C10 | C6-C10 (F1 minus BTEX) | C10-C16 | C10-C16 (F2 minus
Naphthalene) | C16-C34 | C34-C40 | C10-C40 (Sum of total) | 62-93 | C10-C14 | C15-C28 | C29-C36 | +C10-C36 (Sum of total) | Aldrin | Dieldrin | Aldrin + Dieldrin | | | | mg/kg | EQL | | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 20 | 20 | 50 | 50 | 100 | 100 | 50 | 20 | 20 | 50 | 50 | 50 | 0.05 | 0.05 | 0.05 | | Location Code | Field ID | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.5
0 | <0.1 | <0.1
0 | <0.1 | <0.1
0 | <0.2
0 | <0.3 | <20
0 | <20
0 | <50
0 | <50
0 | <100
0 | <100
0 | <100
0 | <20
0 | <20
0 | <50
0 | <50
0 | <50
0 | <0.05
0 | <0.05
0 | <0.05
0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | 260 | 210 | 470 | <20 | <50 | <100 | 250 | 250 | <0.05 | <0.05 | <0.30 | | RPD | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 89 | 71 | 130 | 0 | 0 | 0 | 133 | 133 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | 1 | | RPD | 5X_15_40120 | i | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <u>'</u> | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | | | | | | | | | | | | | 1 | | | \vdash | | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | i | | RPD | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_34_SS_Duplicate_ALS | | <0.2
<0.2 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | <20
<20 | <20
<20 | <50
<50 | <50
<50 | <100
180 | <100
140 | <50
320 | <20
<20 | <50
<50 | <100
<100 | <100
170 | <50
170 | <0.05
<0.05 | <0.05
<0.05 | <0.30
<0.30 | | RPD | 3A_IB_20220410_06_34_33_Duplicate_AL3 | | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 33 | 146 | 0 | 0 | 0 | 52 | 109 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | 0
<0.2 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 0
<0.5 | 0
<20 | 0
<20 | 0
<50 | 0
<50 | 0
<100 | 0
<100 | 0
<50 | 0
<20 | 0
<50 | 0
<100 | 0
<100 | 0
<50 | 0
<0.05 | 0
<0.05 | 0
<0.30 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | 10.2 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 120 | 120 | 150 | 130 | 100 | 1200 | 130 | 120 | 150 | 1200 | 1100 | 150 | 10.03 | 10.03 | 10.50 | | RPD | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | \vdash | | | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | i | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | 1 | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | RPD | | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | <0.2 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <20
0 | <20
0 | <50
0 | <50
0 | <100
0 | <100
0 | <50
0 | <20
0 | <50
0 | <100
0 | <100
0 | <50
0 | <0.05
0 | <0.05
0 | <0.30 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | Ů | | | | | | " | | - ŭ | | <u> </u> | <u> </u> | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | RPD | SV ID 20220447 45 55 55 D 5U5 | \vdash | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF SX_IB_20220417_15_56_SS_Duplicate_EUF | RPD | i | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <u></u> | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | 1 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | RPD | | | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.2
<0.1 | <0.5
<0.1 | <0.5
<0.1 | <0.5
<0.1 | <0.5
<0.2 | <0.5
<0.3 | <20
<20 | <20
<20 | <50
<50 | <50
<50 | <100
<100 | <100
<100 | <50
<100 | <20
<20 | <50
<20 | <100
<50 | <100
<50 | <50
<50 | <0.05
<0.05 | <0.05
<0.05 | <0.30
<0.05 | | RPD | 5X_16_E6EE6417_66_E6_55_TTIPREGREE_E61 | 10.5 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | RPD | \Box | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | | | - | | | | | | | | | | | | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | | | | | + | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | ENVIKO | N M E N I A E |--------|--|---------------------|---------|--------------|---------|------------|----------------|--------------|--------|------------------------|---------|-----------------------------------|---------|---------|------------------------|-------|---------|---------|---------|-------------------------|--------|----------|-------------------| | | | | | | ВТ | EX | | | | | | TRH | | | | | | TPH | | | | | | | | | PAHs (Sum of total) | Вепzепе | Ethylbenzene | Toluene | Xylene (o) | Xylene (m & p) | Xylene Total | c6-c10
| C6-C10 (F1 minus BTEX) | 010-016 | C10-C16 (F2 minus
Naphthalene) | C16-C34 | C34-C40 | C10-C40 (Sum of total) | 62-93 | C10-C14 | C15-C28 | C29-C36 | +C10-C36 (Sum of total) | Aldrin | Dieldrin | Aldrin + Dieldrin | | | | mg/kg | RPD | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | RPD | | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | RPD | | | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.5 | <0.1 | <0.1 | <0.1 | <0.1 | <0.2 | <0.3 | <20 | <20 | <50 | <50 | <100 | <100 | <100 | <20 | <20 | <50 | <50 | <50 | <0.05 | <0.05 | <0.05 | | RPD | | | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <20 | <20 | <50 | <50 | <100 | <100 | <50 | <20 | <50 | <100 | <100 | <50 | <0.05 | <0.05 | <0.30 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | RPD | 1 | 1 | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be | LIVIK | COMMENTAL |------------------|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|------------------|--|------------------|------------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|---------------| | | | | | 1 | <u> </u> | <u> </u> | | | | | Orga | anochlorine Pest | icides | 1 | Ι | | | 1 | | | | | | | | | a | Ь | ,4-ррЕ | DT+DDE+DDD | ndosulfan I | ndosulfan II | ndrin | ndrin ketone | ndrin aldehyde | ndosulfan sulphate | nlordane | hlordane (cis) | hlordane (trans) | exachlorobenzene | eptachlor | eptachlor epoxide | внс | внс | внс | -BHC (Lindane) | lethoxychlor | охарнепе | | | | ng/kg | mg/kg | EQL | | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.1 | 0.03 | 0.03 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.5 | | Location Code | Field ID | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.5 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.5 | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 0
<0.05 0
<0.1 | | | 0
<0.05 | <0.05 | <0.05 | <0.05 | 0
<0.05 | <0.05 | 0
<0.05 | 0
<0.05 | 0
<0.5 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 10.00 | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 40.5 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | - | | | RPD | JA_1B_20220410_10_22_33_Bupilcate_L01 | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | - | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | . | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | RPD | CV ID 20220445 00 24 55 Drivery ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | i | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 40.0F | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 40 F | | E03.01
RPD | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.05
0 <0.05 | <0.05
0 | <0.05
0 | <0.1
0 | | | <0.05
0 | <0.05 | <0.05
0 | <0.05
0 | <0.05
0 | <0.05
0 | <0.05
0 | <0.05
0 | <0.5 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | 1 | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | 1 | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | RPD | Inv | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_36_SS_Triplicate_EUF | RPD | [| E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.05 | <0.5 | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.05
0 | <0.05
0 | <0.05 | <0.05
0 | <0.05
0 | <0.05
0 | <0.05 | <0.05
0 | <0.05 | <0.05
0 | <0.1 | | | <0.05
0 | <0.05 | <0.05
0 | <0.05
0 | <0.05
0 | <0.05 | <0.05
0 | <0.05
0 | <0.5
0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.5 | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <u> </u> | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | i | | RPD | | | | 1 | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | | | + | | | | | | | | | | | | | | 1 | | | | + | <u> </u> | | RPD | Ws_10110 11, _10_00_00_0 # Wester_10. | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | + | | | | | | | | | | | | | | 1 | | | | + | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 |
<0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 0
<0.05 | 0
<0.05 | 0
<0.05 | 0
<0.10 | 0
<0.03 | 0
<0.03 | 0
<0.05 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.10 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | V0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.5 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | + | | | | | | | | | - | 1 | - | | | + | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | 1 | | - | | | | | | | - | 1 | - | | | 1 | | | | <u> </u> | <u> </u> | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | + | | | | | | | | | | 1 | | | | + | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | RPD | OV ID 20222222 22 22 22 2 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.1 | | | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | -0.05 | 10.05 | -0.5 | | E05.01
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF
SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.05
<0.05 <0.1
<0.1 | - | 1 | <0.05
<0.05 <0.5
<0.5 | | | | | 1 | 1 | | | | | | 1 | | | | | | 1 | | 1 | | 1 | | | | | | | | | | , | | | | , | | Orga | nochlorine Pesti | icides | | ı | | ı | | | | | , | | |--------|--|-------|-------|---------|--------|----------|----------|--------|----------|---------|--------------|------------------|----------|------------|------------|---------|-------------|-------|-------|-------|----------|---------|---------| | | | | | | E+DDD | ian I | ian II | | etone | ldehyde | ian sulphate | ē | ne (cis) | ne (trans) | orobenzene | lor | lor epoxide | | | | indane) | rchlor | eu. | | | | QQQ | ТОО | 4,4-DDE | DDT+DD | Endosulf | Endosuli | Endrin | Endrin k | Endrina | Endosult | chlordar | Chlordaı | Chlordaı | Hexachle | Heptach | Heptach | а-ВНС | р-внс | д-внс | 1) ЭНВ-В | Methoxy | Тохарће | | | | mg/kg | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.5 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | 1 | | | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | i | | | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | | <0.05 | < 0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.1 | | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | <0.5 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | <0.05 | <0.05 | <0.10 | <0.03 | <0.03 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | 1 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | 1 | | | RPD | 1 | | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIRO | N M E N T A L |------------------|---|-------------------------------------|---|----------------|--------------------|-----------------------|-----------------------|--------------------|-------------------------|-------------------|---|--------------------------------|--------------------|--------------------------|--------------|------------------------------------|---------------------------------|------------------------------------|--------------------|----------------|---------------|-------------------|-----------------------------------| | | - | 10 | | | | | | 1 | | | l | | | T = | | Phenols | | - | 1 | 1 | | | | | | r | Organochlorine pesticides
EPAVIC | Other organochlorine
pesticides EPAVic | 2-Chlorophenol | 2,4-Dichlorophenol | 2,4,5-Trichlorophenol | 2,4,6-Trichlorophenol | 2,6-Dichlorophenol | 4-chloro-3-methylphenol | Pentachlorophenol | 2,3.4,5 & 2,3,4,6.
Tetrachlorophenol | 4,6-Dinitro-2-
methylphenol | Tetrachlorophenols | 2,3,5,6-Tetrachloropheno | Cresol Total | 4,6-Dinitro-o-cyclohexyl
phenol | Phenois (halogenated)
EPAVic | Phenols (non-halogenatec
EPAVic | 2,4-Dimethylphenol | 2-Methylphenol | 2-Nitrophenol | 2,4-Dinitrophenol | 3&4-Methylphenol (m&p-
cresol) | | EQL | | mg/kg
0.1 | mg/kg
0.03 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
1 | mg/kg
1 | mg/kg
0.5 | mg/kg
1 | mg/kg
1 | mg/kg
0.05 | mg/kg
5 | mg/kg
10 | mg/kg
0.03 | mg/kg
0.5 | mg/kg
20 | mg/kg
1 | mg/kg
20 | mg/kg
0.5 | mg/kg
0.2 | mg/kg
1 | mg/kg
5 | mg/kg
0.4 | | | | 0.2 | 0.00 | 0.5 | 0.5 | | | 1 0.0 | | | 0.00 | | | 1 0.00 | 0.5 | | | | 1 0.0 | 1 0.2 | _ | | | | Location Code | Field ID | 40.1 | 40.1 | 40 F | 40.5 | -1 | -1 | 40.5 | -1 | -1 | I | ۷. | -10 | Τ | 40 F | 420 | ı | Τ | 1 40 5 | 40.2 | -1 | | 40.4 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.1
<0.1 | <0.1
<0.1 | <0.5
<0.5 | <0.5
<0.5 | <1
<1 | <1
<1 | <0.5
<0.5 | <1
<1 | <1
<1 | | <5
<5 | <10
<10 | | <0.5
<0.5 | <20
<20 | | | <0.5
<0.5 | <0.2
<0.2 | <1
<1 | <5
<5 | <0.4
<0.4 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_24_SS_Triplicate_ALS | <0.1
<0.10 | <0.1
<0.03 | <0.5
<0.50 | <0.5
<0.50 | <1
<1.00 | <1
<1.00 | <0.5
<0.50 | <1
<1.00 | <1
<1.0 | <0.05 | <5
<5 | <10 | <0.03 | <0.5 | <20
<20 | <1.00 | <20 | <0.5
<1 | <0.2
<1 | <1
<1 | <5
<5 | <0.4
<1 | | RPD | 3A_IB_20220410_10_24_33_111plicate_AL3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | V0.03 | 0 | | 10.05 | | 0 | VI.00 | \20 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | | | | | | | | | | | | | 1 | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | RPD | CV ID 20220445 00 24 55 Drivery ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E03.01
E03.01 |
SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.10
<0.1 | <0.03
<0.1 | <0.50
<0.5 | <0.50
<0.5 | <1.00
<1 | <1.00
<1 | <0.50
<0.5 | <1.00
<1 | <1.0
<1 | <0.05 | <5
<5 | <10 | <0.03 | <0.5 | <20
<20 | <1.00 | <20 | <1
<0.5 | <1 <0.2 | <1
<1 | <5
<5 | <1 <0.4 | | RPD | 3A_IB_20220410_00_30_33_111pilcate_LOF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | \10 | | \0.5 | 0 | | | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E03.01
RPD | SX_IB_20220416_08_36_SS_Triplicate_EUF | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | RPD | CV ID 20220417 15 56 66 Drimony EUF | <0.1 | ~ 0.1 | <0.5 | <0.5 | <1 | <1 | ∠0. E | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | ∠0. E | <0.2 | <1 | | <0.4 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.1
<0.1 | <0.1
<0.1 | <0.5 | <0.5 | <1 | <1 | <0.5
<0.5 | <1 | <1 | | <5 | <10
<10 | | <0.5 | <20 | | | <0.5
<0.5 | <0.2 | <1 | <5
<5 | <0.4 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.1
<0.10 | <0.1
<0.03 | <0.5
<0.50 | <0.5
<0.50 | <1
<1.00 | <1
<1.00 | <0.5
<0.50 | <1
<1.00 | <1
<1.0 | <0.05 | <5
<5 | <10 | <0.03 | <0.5 | <20
<20 | <1.00 | <20 | <0.5
<1 | <0.2
<1 | <1
<1 | <5
<5 | <0.4
<1 | | RPD | 3X_10_20120417_13_37_33_THIphreate_ALS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.03 | 0 | | 10.03 | | 0 | 12.00 | 120 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <u>-</u> | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0
<0.50 | 0 | 0 | 0
<0.05 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.10
<0.1 | <0.03
<0.1 | <0.50
<0.5 | <0.50
<0.5 | <1.00
<1 | <1.00
<1 | <0.50 | <1.00
<1 | <1.0
<1 | <0.05 | <5
<5 | <10 | <0.03 | <0.5 | <20
<20 | <1.00 | <20 | <1
<0.5 | <1
<0.2 | <1
<1 | <5
<5 | <1
<0.4 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | - | | | 0 | | | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | | | | | 1 | | | | + | † | 1 | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | | | | | | | | | | | | | 1 | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | | 1 | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | RPD
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | - | <0.5 | <0.2 | <1 | <5 | <0.4 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | <1 | <5 | <0.4 | Phenols | | | | | | | | |--------|--|-------------------------------------|---|----------------|--------------------|-----------------------|-----------------------|--------------------|-------------------------|-------------------|---|--------------------------------|--------------------|---------------------------|--------------|------------------------------------|---------------------------------|-------------------------------------|--------------------|----------------|---------------|--|-----------------------------------| | | | Organochlorine pesticides
EPAVIC | Other organochlorine
pesticides EPAVic | 2-Chlorophenol | 2,4-Dichlorophenol | 2,4,5-Trichlorophenol | 2,4,6-Trichlorophenol | 2,6-Dichlorophenol | 4-chloro-3-methylphenol | Pentachlorophenol | 2,3,4,5 & 2,3,4,6-
Tetrachlorophenol | 4,6-Dinitro-2-
methylphenol | Tetrachlorophenols | 2,3,5,6-Tetrachlorophenol | Cresol Total | 4,6-Dinitro-o-cyclohexyl
phenol | Phenols (halogenated)
EPAVIC | Phenols (non-halogenated)
EPAVIC | 2,4-Dimethylphenol | 2-Methylphenol | 2-Nitrophenol | 2,4-Dinitrophenol | 3&4-Methylphenol (m&p-
cresol) | | | | mg/kg | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | <1 | <5 | <0.4 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | | 0 | | | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | \Box | | RPD | \Box | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | $\overline{}$ | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | \vdash | | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.1 | <0.1 | <0.5 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | | <5 | <10 | | <0.5 | <20 | | | <0.5 | <0.2 | <1 | <5 | <0.4 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | | 0 | | | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.10 | <0.03 | <0.50 | <0.50 | <1.00 | <1.00 | <0.50 | <1.00 | <1.0 | <0.05 | <5 | | <0.03 | | <20 | <1.00 | <20 | <1 | <1 | <1 | <5 | <1 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | \vdash | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | - | | | | | | - | | | | | | | | - | | | <u> </u> | | | RPD | | \vdash | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | RPD | | | | 1 | | | | 1 | | | 1 | I | 1 | | | 1 | | | | 1 | | 1 | 1 | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIRON | IMENIAL . | | | | | | T | | | | | | | | | | | | | | | | | |-------------------------|--
------------|-------------|--------------|-------------|--------------------|-----------------|----------------|-----------------|----------------|-----------------|---------------|-----------------|----------------|-----------------|----------------|-----------------|---------------|-----------------|-------------------|-----------------|----------------|-----------------| | | | | I | Ι | | | | | , i | | 2 | | , i | | | _ | 1 | 3 | | £ (£) | an e | | | | | | | | | | 5 | ě | 2 FTS) | er sulfo | | ar sulfo | | er sulfo | | octan | tFOSA) | | EtFOSA | | (NEtFOSE) | prooct | 1eFOS/ | roocta | | | | lou l | | | otal
ed) | otal No
ed) | otelon | id (10 | telome | <u>S</u> | telome | S 2 | telome | (3) | fluore | de (NE | | cid (NE | | Jorooc
Janol (| perfluc | N) e | erfluo | | | | rophe | ges | <u> </u> | iols (To | iols (Te
genate | Fluor | onic ac | luoroi | (8:2 F | luoro | (6:2 F | luoroi | (4:2 F | hyl pe | onamic | <u> </u> | etic a | 5 | idoet | ethyl | onamic | ethylp | | | ı | 4-Nit | Dino | Pher | Pher | Pher
Halo | 10:2 | ği ş | 8:2 | acid | 6:2 | acid | 12:3 | acid | ž, | sulfo | Z-et | d og d | ź · | ethy
nam | Σż | sulfo | F 3 | | EQL | | mg/kg
5 | mg/kg
20 | mg/kg
0.5 | mg/kg
1 | mg/kg
20 | mg/L
0.00001 | mg/kg
0.005 | mg/L
0.00001 | mg/kg
0.005 | mg/L
0.00005 | mg/kg
0.01 | mg/L
0.00001 | mg/kg
0.005 | mg/L
0.00005 | mg/kg
0.005 | mg/L
0.00005 | mg/kg
0.01 | mg/L
0.00005 | mg/kg
0.005 | mg/L
0.00005 | mg/kg
0.005 | mg/L
0.00005 | | | | | | | | | | | | | | | | ' | | | ' | | ' | | | | | | Location Code
E03.01 | Field ID SX_IB_20220416_16_18_SS_Primary_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 0
<5 | 0
<20 | 0
<0.5 | 0
<1 | 0
<20 | | 0
<0.005 | | 0
<0.005 | | 0
<0.01 | | <0.005 | | <0.005 | | 0
<0.01 | | 0
<0.005 | | 0
<0.005 | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 0 | 0 | 0 | | | <0.00001 | 0 | <0.00001 | 0 | <0.00005 | 0 | <0.00001 | 0 | <0.00005 | 0 | <0.00005 | 0 | <0.00005 | 0 | <0.00005 | 0 | <0.00005 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | 0
<0.00005 | | 0
<0.00001 | | 0
<0.00005 | | <0.00005 | | <0.00005 | | 0
<0.00005 | | 0
<0.00005 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | 0
<0.00005 | | <0.00001 | | 0
<0.00005 | | <0.00005 | | 0
<0.00005 | | 0
<0.00005 | | <0.00005 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <5 | <20 | <1 | | | 0
<0.00005 | <0.0050 | <0.00005 | <0.0050 | 0
<0.00005 | <0.0100 | 0
<0.00005 | <0.0050 | 0
<0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | 0
<0.00005 | <0.0050 | 0
<0.00005 | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 0
<5 | 0
<20 | 0
<1 | | | 0
<0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0100 | <0.00005 | 0
<0.0050 | 0
<0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0100 | <0.00005 | 0
<0.0050 | 0
<0.00005 | 0
<0.0050 | 0
<0.00005 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | 0
<5 | 0
<20 | 0
<1 | | | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0100 | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0100 | <0.00005 | 0
<0.0050 | <0.00005 | 0
<0.0050 | <0.00005 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | 0
<0.00005 | | <0.00005 | | 0
<0.00005 | | <0.00005 | | 0
<0.00005 | | <0.00005 | | <0.00005 | | 0
<0.00005 | | 0
<0.00005 | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | 0
<0.00005 | | <0.00005 | | 0
<0.00005 | | <0.00005 | | 0
<0.00005 | | <0.00005 | | <0.00005 | | 0
<0.00005 | | 0
<0.00005 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <5 | <20 | <0.5 | <1 | <20 | 0 | <0.005 | 0 | <0.005 | 0 | <0.01 | 0 | <0.005 | 0 | <0.005 | U | <0.01 | 0 | <0.005 | 0 | <0.005 | - 0 | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | <5
0 | <20
0 | <0.5
0 | <1
0 | <20
0 | | <0.005
0 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | <5
0 | <20
0 | <1
0 | | | <0.00005 | <0.0050
0 | <0.00005 | <0.0050
0 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050
0 | <0.00005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | U | U | U | | | <0.00001 | U | <0.00001 | 0 | <0.00005 | U | <0.00001 | 0 | <0.00005 | U | <0.00005 | U | <0.00005 | U | <0.00005 | - 0 | <0.00005 | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005
0 | | <0.00005
0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005
0 | | <0.00005 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | <5
0 | <20
0 | <1
0 | | | <0.00005 | <0.0050
0 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050
0 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005
0 | <0.0050
0 | <0.00005 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | <5
0 | <20
0 | <0.5
0 | <1 | <20 | | <0.005
0 | | <0.005
0 | | <0.01
0 | | <0.005
0 | | <0.005
0 | | <0.01
0 | | <0.005 | | <0.005
0 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005
0 | | <0.00005 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | ,—— <u> </u> | <0.00005 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | |
<0.00005 | | <0.00005 | | <0.00005 | | RPD
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <5 | <20 | <0.5 | <1 | <20 | U | <0.005 | U | <0.005 | U | <0.01 | 0 | <0.005 | U | <0.005 | 0 | <0.01 | U | <0.005 | U | <0.005 | 0 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | | | -Nitrophenol | Dinoseb | henol | henois (Total
Ialogenated) | henois (Total Non
talogenated) | 10:2 Fluorotelomer | sulfonic acid (10:2 FTS) | 8:2 Fluorotelomer sulfonic | acid (8:2 FTS) | 5:2 Fluorotelomer sulfonic | acid (6:2 FTS) | 4:2 Fluorotelomer sulfonic | acid (4:2 FTS) | N-Ethyl perfluorooctane | sulfonamide (NEtFOSA) | N-ethyl- | eerluorooctanesulfonami
doacetic acid (NEtFOSAA) | Office contracts of the second | enylpernuoroocanesuro
namidoethanol (NEtFOSE) | N-Methyl perfluorooctane | sulfonamide (NMeFOSA) | N-methylperfluorooctane | |--------|--|--------------|---------|-------|-------------------------------|-----------------------------------|--------------------|--------------------------|----------------------------|----------------|----------------------------|----------------|----------------------------|----------------|-------------------------|-----------------------|----------|---|--------------------------------|--|--------------------------|-----------------------|-------------------------| | | | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/L | RPD | | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | 1 | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | <u>'</u> | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | RPD | | 0 | 0 | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | RPD | <u>.</u> | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | , | <0.00005 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | <u> </u> | <0.00005 | | RPD | <u>.</u> | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | , | <0.00005 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | <u> </u> | <0.00005 | | RPD | | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | RPD | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <5 | <20 | <0.5 | <1 | <20 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | <0.01 | | <0.005 | | <0.005 | | | RPD | | 0 | 0 | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | 0 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <5 | <20 | <1 | | | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | <0.0100 | <0.00005 | <0.0050 | <0.00005 | <0.0050 | <0.00005 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | <u> </u> | <0.00005 | | RPD | | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | <u> </u> | <0.00005 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | ' | <0.00005 | | RPD | | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | ↓ ' | <0.00005 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | <0.00001 | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00005 | | <0.00005 | | <0.00005 | | <0.00005 | ' | <0.00005 | | RPD | | | | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIRO | DNMENTAL |------------------|---|----------------|----------------------|--|---------------------|------------------|----------------------|------------------|----------------------|--------------------|----------------------|------------------|----------------------|------------------|----------------------|------------------|----------------------|------------------|----------------------|--------------------|----------------------|------------------|--| | | | | = | | I | | 1 | | 1 | | 1 - | | 1 | | 1 | | | PFOS | S/PFOA | | | | | | | | 3 | tanesı | ż | acid | | fonic | | acid | | ic acic | | fonic | | acid | | uffoni | | oci di | 3 | acid | | fonic | | | | 3 | prooc |) loue | anoica | | ane su | | noic | | ecano | | anesu | | tanoic | | tane s | | noic or | | anoic | | anesu | | | | SAA) | erflu | doetha | obuts | | opnt | BS) | 90 | | 9090 | िक | o o o | DS) | ohe | | deyo | (Sdн | , x | | u ouo. | | u ouo. | | | | NMeFC | Aethylp | onamic | erfluor | PFBA) | erfluor | icid (PF | erfluor | PFDA) | erfluor | PFD0D | erfluor | icid (PF | erfluor | РҒНрА) | erfluor | icid (PF | erfluor | PFHxA) | erfluor | PFNA) | erfluor | | FOL | | mg/kg | mg/L | EQL | | 0.01 | 0.00005 | 0.005 | 0.00005 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | | Location Code | Field ID | 1 | 1 | 1 | 1 1 | | T | | | 1 | | T | | 1 | | T | T | T | 1 | 1 | Г | | T 1 | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.01
<0.01 | | <0.005
<0.005 | RPD | Ws_12220 120_13_12_00_24pinatte_120 | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E03.01
RPD | SX_IB_20220416_16_24_SS_Triplicate_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050 | <0.00002 | <0.0050
0 | \vdash | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | 0 | <0.00005 | 0 | <0.00005 | U | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | 1 0 | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | U | <0.00001 | 0 | <0.00001 | U | <0.00001 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | | <0.00005 | | <0.00005
0 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | + | <0.00001 | | <0.00001 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.0001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | 1 | <0.00001 | | <0.0001 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | |
RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | \Box | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005
<0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050
<0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050
<0.0050 | <0.00002 | <0.0050 | \vdash | | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | <0.0100 | <0.00005 | <0.0050
0 | <0.0001
0 | 0.005 | <0.00002 | <0.0050
0 | <0.00002 | 0.0050 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | <0.0050
0 | <0.00002 | 0.0050 | <0.00002 | <0.0050
0 | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.0100 | <0.00005
<0.00005 | <0.0050 | <0.0001
<0.00005 | <0.005 | <0.00002
<0.00001 | <0.0050 <0.00001 | | E03.01
RPD | SX_IB_20220416_08_36_SS_Triplicate_EUF | | 0.00003 | | 0.00003 | | 0.00001 | | 0.00001 | | 0.00001 | | 0.00001 | | 0.00001 | | 0.00001 | | 0.00001 | | 0.00001 | | <0.00001 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_36_SS_Triplicate_EUF | | <0.00005
<0.00005 | | <0.0001
<0.00005 | | <0.00002
<0.00001 <0.00001 | | RPD | 3A_ID_20220410_00_30_33_111pilcate_L01 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0.00001 | | 0.00001 | | 0 | | 0 | | 0.00001 | | 10.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | 0
<0.01 | | 0
<0.005 | | 0
<0.005 | | 0
<0.005 | | 0
<0.005 | | <0.005 | | 0
<0.005 | | | E05.01 | SX_IB_20220417_15_58_53_F11111ary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.0005 | | 0
<0.00005 | | <0.00001 | | <0.00001 | | 0
<0.00001 | | <0.00001 | | 0
<0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | 0
<0.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | 1 | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | <0.00005 | | <0.0001
0 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | 1 | <0.00002 | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | RPD | | 0 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | — | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.01 | | <0.005
0 | | <0.005
0 | | <0.005
0 | | <0.005 | + | <0.005 | | <0.005
0 | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | \Box | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00005
<0.00005 | - | <0.0001
<0.0001 | | <0.00002
<0.00002 | - | <0.00002
<0.00002 | | <0.00002
<0.00002 | - | <0.00002
<0.00002 | | <0.00002
<0.00002 | | <0.00002
<0.00002 | | <0.00002
<0.00002 | 1 | <0.00002 | | \vdash | | E05.01
RPD | SX_IB_20220417_08_10_SS_Duplicate_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | - | <0.00002 | | <0.00002 | - | <0.00002 | | <0.00002 | | <0.00002 | 1 | <0.00002 | | \vdash | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.0005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | - | <0.005
<0.005 | | <0.005 | - | <0.005 | - | <0.005 | | <0.005 | | <0.005 | | <0.005 | \vdash | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.01 | 1 | <0.005 | | <0.005 | <u> </u> | <0.005 | <u> </u> | \U.UU5 | 1 | <0.005 | <u> </u> | <0.005 | <u> </u> | <0.005 | 1 | <0.005 | 1 | <0.005 | ı | <0.005 | PFOS, | /PFOA | | | | | |--------|--|------------|----------|---------|-----------|--------|----------|----------|----------|---------|----------|----------|----------|----------|----------|------------------|----------|----------|------------------|----------|----------|-------------|------------| | | | | la: | | | | .2 | | | | 1 2 | | ي. | | _ = | | Ë | | | | _ | | .9 | | | | 2 | tane | ÷ | gid | | <u> </u> | | ğ. | | i. | | l e | | aci | | 읔 | | acid | | acid | | 틸 | | | | 3 | 50 | 5 | 3 | | l s | | 1 3 | | a o | | esn | | ğ | | l s | | Si. | | ioic | | lesu | | | | i | luor | re d | ltan ltan | | ltan | | g | | a | | g | | pta | | pta | - | xan | | nar | | , a | | | | SA | Jerf | ⊕ Set | ļ ģ | | 9 | BS) | ļ ģ | | 8 | ব | 8 | OS) | ļ ģ | _ | j e | Я | ļ ģ | _ | j o | | i ê | | | | 2 5
2 7 | I | i Si | <u> </u> | g
g | 91 | <u>r</u> | 9 | রি | <u> </u> | Q
Q | 9 | <u>r</u> | <u> </u> | ₽ <mark>ф</mark> | <u></u> | <u>E</u> | ion ₁ | ξ
¥ | l on | (4) | . <u> </u> | | | | | ⊼ Ā | MeF | Perf | PF8 | Per | acid | Per | PFI | l Per | <u> </u> | Per | acid | Perf | <u>t</u> | Perf | acid | Perf | <u> </u> | Perf | (PFI | Perf | | | | mg/kg | mg/L | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | |
<0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | RPD | | 0 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.01 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0100 | <0.00005 | <0.0050 | <0.0001 | <0.005 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.00005 | | <0.0001 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | <0.00002 | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00005 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | , 7 | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs $\ensuremath{\text{f}} \alpha$ $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIR | JAMENTAL |-------------------------|--|----------|----------------------|----------------|----------------------|--------------|----------------------|--------------|----------------------|--------------|----------------------|----------|----------------------|--------------|----------------------|---------|----------------------|----------|----------------------|-------------|----------------------|-------------|--| | | | | 1 | | 1 | | 1 | | · | | 1 | | 1 | | 1 | | ı | | 1 | | ı | | | | | | | _ <u>.</u> | | | | <u> </u> | | fonic | | onic | | .5 | ! | acid | | acid | | Ë | | onic
C | | ځ | | | | - | ic aci | | | OSA) | oic a | | e sui | | esulf | | Cano | | 90.0 | | noic | | oglifo | | sulfe | , | ì | | | | trace | tanoi | | ane | PF(| ran | | l tan | | bau | | rade | a | eca . | | de ca | | lanes | | kane | ļ | 1 | | | | NS)(SN | 0,0 | | 000 | nide. | o o o | - | obe. | PeS) | , side | Prs) | otet | Te D/ | , otric | ~ | ļ ģ | ∂ | 000 | os) | ope. | HxS) | į | | | | <u>F</u> | llo | € | lloor | onar | l | PeA) | l | <u> </u> | linor | <u> </u> | lior | <u> </u> | l jui | P.D. | lino | Qu C | lluor | <u>r</u> | lluor | PE | 1 | | | | acic | Per | P _F | Per | ¥ns snlt | Per | <u>F</u> | Per | acic | Per | acic | Per | acic | Per | 4 | Per | <u> </u> | Per | acic | Perl | acic | | | | | mg/kg | mg/L | EQL | | 0.005 | 0.00001 | 0.005 | 0.00005 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.00001 | | 1 | E.U.D. | Location Code
E03.01 | Field ID SX_IB_20220416_16_18_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD | SV ID 20220445 45 40 55 D ivv 5U5 | | *0.00001 | 0 | 40 0000F | 0 | 40.00001 | 0 | <0.00001 | 0 | 40.00001 | | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | 0 | ¢0.00001 | 0 | *0.00001 | 0 | ±0.00001 | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF SX_IB_20220416_16_22_SS_Duplicate_EUF | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00001 RPD | 3X_15_20220410_10_222_33_54\$medite_201 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | - | <0.00001 | - | <0.00001 | | <0.00001 | - | <0.00001 | | <0.00001 | - | <0.00001 | | <0.00001 | | <0.00001 | | E03.01
RPD | SX_IB_20220416_16_24_SS_Triplicate_ALS | | <0.00001 | | <0.00005
0 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.0001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.0001 | <0.0050 | <0.00001 | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.005 | 1 | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | | | 10.00001 | 0 | 10 00005 | 0 | 10.00003 | 0 | 10.00003 | 0 | | | 10 00005 | 0 | 10.00003 | 0 | 10.00000 | 0 | 10.00001 | 0 0050 | 10.00001 | 0 | 10.00001 | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS SX_IB_20220416_08_36_SS_Triplicate_EUF | | <0.00001
<0.00001 | <0.0050 | <0.00005
<0.00005 | <0.0050 | <0.00002
<0.00001 | <0.0050 | <0.00002
<0.00001 | <0.0050 | <0.00001 | | <0.00005
<0.00001 | <0.0050 | <0.00002
<0.00001 | <0.0050 | <0.00002
<0.00001 | <0.0050 | <0.00001
<0.00001 | <0.0050 | <0.00001
<0.00001 | <0.0050 | <0.00001
<0.00001 | | RPD | 3X_IB_20220410_06_30_33_111plicate_EUF | | 0.00001 | | 0.00003 | | 0 | | 0.00001 | | \0.00001 | | 0.00001 | | 0.00001 | | 0 | | 0.00001 | | 0.00001 | | 0.00001 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | ļ | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | <0.00001 | | <0.00005 | | <0.00002 | |
<0.00002 | | 0.00004 | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | E03.01
RPD | SX_IB_20220416_08_36_SS_Triplicate_EUF | | <0.00001 | | <0.00005
0 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001
0 | | <0.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.005 | | <0.005 | 0 | <0.005 | | <0.005 | | <0.005 | | <0.005 | 0 | <0.005 | 0 | <0.005 | 0 | <0.005 | | <0.005 | 0 | <0.005 | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | • | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00001 | 0 | <0.00005 | 0 | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | 0 | <0.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | 5.1.5_10110 11. 115_00_00_5upcate_10. | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | ļ | <0.00001 | | RPD | T | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | - | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00001
<0.00002 | | <0.00001
<0.00002 | | <0.00001 | | <0.00001
<0.00005 | | <0.00001
<0.00002 | | <0.00001
<0.00002 | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | 0.00001 | | 0.00003 | | 0.00002 | | 0.00002 | | | | 0.00003 | | 0.00002 | | 0 | | 0.00001 | | 0.00001 | | 0.0001 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005
0 | | <0.005
0 | | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00001 | <0.0050 | <0.00005 | 0
<0.0050 | <0.00002 | 0
<0.0050 | <0.00002 | 0
<0.0050 | | | <0.00005 | 0
<0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | <0.00001 | .0.0000 | <0.00005 | .0.0000 | <0.00002 | 10.0000 | <0.00002 | 10.0000 | <0.00001 | | <0.00003 | 10.0000 | <0.00002 | .0.0000 | <0.00002 | 10.0000 | <0.00001 | .0.0000 | <0.00001 | -5.5050 | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 |
 | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | T | | 0 | | 0 | | 0 | | 0 | | | | 0 | - | 0 | | 0 | | 0 | | 0 | <u> </u> | 0 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00002
<0.00001 | | <0.00002
<0.00001 | | <0.00001 | | <0.00005
<0.00001 | - | <0.00002
<0.00001 | | <0.00002
<0.00001 | | <0.00001 | | <0.00001
<0.00001 | | <0.00001
<0.00001 | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.0001 | | <0.00001 | 1 | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | / | <0.00001 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.005 | <u> </u> | <0.005 | | <0.005 | <u> </u> | <0.005 | <u> </u> | <0.005 | <u> </u> | <0.005 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | i, | | ي | | | | - | | 70 | | | | u | | | |--------|--|----------|----------------------|---------|----------------------|-----------|----------------------|---------|----------------------|----------|----------|----------|----------------------|----------|----------------------|---------|----------------------|---------|----------------------|---------|----------|----------|----------------------| | | | | ē | | | _ | acid | | Ifon | | fo. | | 9 | | aci. | | aci | | nic
Si | | onic | | ţ | | | | â | ic ac | | | OSA | oica | | e su | | le su | | l sa | | jo
E | | anoi | | sulf | | 18 | | | | | | trac | tano | | tane | P. | ntar | | ntar | | opar | | rade | ব | deca | | dec | | tane | | xane | _ | i
4 | | | |)(SN | 90 | | 900 | nide
e | obe. | _ | ope | PeS) | ğ | Prs) | ote | TeD. | i di | 2 | uno. | ₹ | 90 | os) | ohe | HXS | i | | | | <u>a</u> | l on | (S) | l oi | onai | loon | eA) | <u>.</u> | <u>a</u> | 9 | <u>F</u> | <u> </u> | <u>4</u> | l on | Į. | ion | ď. | ion | (PF | ion | <u> </u> | 1 | | | | acid | Perl | P. | Per | sulf | Perl | PE . | Perl | acid | Ped | acid | Per | acid | Per | (PF) | Peri | H) | Peri | acid | Peri | acid | ! | | | | mg/kg | mg/L | RPD | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD | 1 | | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | 1 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.0001 | | <0.00001 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | <0.00001 | | <0.00005 | | <0.00002 | | <0.00002 | | | | <0.00005 | | <0.00002 | | <0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | - | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | RPD | | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | .0.005 | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | | -0.005 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | <0.005 | | | RPD | Tay : | | -0.00001 | 0 | 10.00005 |
10.0050 | 10.00003 | 0 | 10.00003 | 0 0050 | | | 10 00005 | 0 | 10.00003 | 0 | 10.00000 | 0 | 10.00001 | 0 | 10.00001 | 0 | 10.00001 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.00001 | <0.0050 | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | 40.00001 | | <0.00005 | <0.0050 | <0.00002 | <0.0050 | <0.00002 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | <0.0050 | <0.00001 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00001 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | CV ID 20222440 00 07 05 D | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | £0.00001 | | • | | 0 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | <0.00001
<0.00001 | | <0.00005
<0.00005 | | <0.00002
<0.00002 | | <0.00002
<0.00002 | | | | <0.00005
<0.00005 | | <0.00002
<0.00002 | | <0.00002
<0.00002 | | <0.00001
<0.00001 | | <0.00001 | | <0.00001
<0.00001 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | 0.00005 | | 0.00002 | | | | | | l | | <0.00002
0 | | | | 0.00001 | | <0.00001 | | <0.00001 | | RPD | CV ID 20220419 09 07 CC Drimory ALC | | 0
<0.00001 | | <0.00005 | | <0.00002 | | 0
<0.00002 | | | | <0.00005 | | <0.00002 | | 0
<0.00002 | | <0.00001 | | <0.00001 | | <0.00001 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | <0.00001 | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00001
0 | | <0.00005 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | <0.00001 | | RPD | | | l 0 | I | , , , | | U | | U | | | | 1 0 | | | | U | | U | | 0 | | U | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIR | ONMENTAL |------------------|---|--------------|----------|-------------------|----------|-------------|---------------------|--------------|-----------|------------|-----------|------------|-----------|-----------|--------------|----------------|-----------|------------|------------|--|-----------|--|--| Chlorinated I | | | | , | FOS | 3 | | * | | | | | | | | | | ane | 9 | | | ane | | o o | | | | | 2 | AS (F | -
{ | PFAS | FOA) | | | | u u | pane | | ē | 9 | ane |) eth | than | aue | |) eth | | ben | 1 | | | | 1 | 4 | | t t | 4 + S | | | than the | l fen | opro | l than | ropa | ropa | meth | l ve | l om or | oeth | | l je | e e | ropr | hane | | | | É | l Se | i
) * | He He | P | FAS | FAS | oroe | oro |) je | oroe | orop | oro
g | l orol | etrac | Gh5 | ,
Per | Ē | etrac | etha | icho | met | | | | 5 | l | Q Q | Joe | ¥S + | of P | of P | di Gi | l gi | 3-tric | l ŝ | di
E | l ii | l god | 1,2-t | l of ib | 1-tri | rofo | 2,2-t | L C | р-£(1 | o mo | | | | 3 | uns | + | Sun | <u> </u> | Sur | Sur | 1,1 | 1,1 | 1,2, | 1,2- | 1,2- | 1,3- | Bro | 1,1, | Bro | 1,1, | ਝ | 1,1, | ਝੁੱ | cis-1 | l dig | | | | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg | EQL | | 0.005 | 0.00001 | 0.005 | 0.00001 | 0.005 | 0.0001 | 0.05 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Location Code | Field ID | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | CV ID 20220445 45 40 55 Drivery FUE | 0
<0.005 | | 0
<0.005 | | 0
<0.005 | | 0
<0.05 | 0
<0.5 0 | 0 | 0 | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_24_SS_Triplicate_ALS | <0.0050 | | <0.003 | | <0.005 | <0.00010 | <0.0500 | <0.5 | <0.50 | <0.5 | <0.50 | <0.5 | <0.5 | <0.5 | <0.50 | <0.5 | <0.50 | <0.50 | <0.50 | <0.5 | <0.5 | <0.5 | | RPD | 0.7.15_10110 135_10_1 1_05_11 pineate_110 | 0 | | | | | 10.00010 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | <u> </u> | | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | E03.01 | SX_IB_20220416_16_18_33_PTIMATy_EUF | | <0.00001 | + | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | RPD | | | 0 | | 0 | | 0 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | 1 | | | <0.00010 | | | | | | | | | | | | | | | | | | RPD | CV IR 20220416 09 21 CC Drimon, ALC | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | <u> </u> | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | RPD | 912-12-13-13-13-13-13-13-13-13-13-13-13-13-13- | 0 | | | | | 0 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | CV ID 20220445 00 24 55 Drivery ALS | 0 | | 1 | | | <0.00010 | 0
<0.0500 | | 0 | | 0
<0.50 | | | | 0 | | <0.50 | 0
<0.50 | 0 <0.50 | | | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.0050 | <0.00001 | | <0.00001 | | <0.00010
<0.0001 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | RPD | 0.1_15_10110 125_00_00_05p.neatc_101 | | 10.00002 | | 10.00001 | | 0 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | ! | | | RPD | CV ID 20220445 00 24 55 Diimmy ALS | | | 1 | | | <0.00010 | | | | | | | | | | | | | | | <u> </u> ' | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_36_SS_Triplicate_EUF | | <0.00001 | | <0.00001 | | <0.00010 | | | | | | | | | | | + | + | | | | | | RPD | 3A_IB_20220420_00_30_33_TTP://dute_201 | | 10.00001 | | 10.00001 | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD
E05.01 | CV ID 20220447 45 50 00 Drivery 5115 | 0
<0.005 | | 0
<0.005 | | 0
<0.005 | | 0
<0.05 | 0
<0.5 | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.0050 | | <0.003 | | <0.003 | <0.00010 | <0.0500 | <0.5 | <0.50 | <0.5 | <0.50 | <0.5 | <0.5 | <0.5 | <0.50 | <0.5 | <0.50 | <0.50 | <0.50 | <0.5 | ζ0.5 | <0.5 | | RPD | | 0 | | | | | 0.000 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | ! | | | RPD | CV ID 20220447 45 56 66 Drivery 5H5 | | <0.00001 | 1 | <0.00001 | | 0
<0.0001 | | | | | | | | | | | | | | | | \vdash | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | + | + | | | | | | RPD | | | 0 | | 0 | | 0 | | | | | | | | | | | 1 | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | <u> </u> | | | RPD | CV ID 20220447 00 07 CC Drivery ALC | <0.0050 | | 1 | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.F0 | | <0.50 | <0.50 | <0.50 | | | | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50
<0.50 | | <0.50 | <0.50 | <0.50 | | | | | RPD | | 0 | | | | | 0 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
<0.5 | <0.5 | <0.5 | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 0
<0.0050 | | | | | <0.00010 | 0
<0.0500 | | 0
<0.50 | | 0
<0.50 | | - | - | 0
<0.50 | | 0
<0.50 | 0
<0.50 | 0
<0.50 | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS SX_IB_20220417_08_10_SS_Triplicate_EUF | \U.UUJU | <0.00001 | 1 | <0.00001 | | <0.00010 | 10.0300 | | \0.30 | | \U.JU | | 1 | | \0.30 | | \0.30 | \U.JU | \U.JU | | | | | RPD | | | | | 0.0000 | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | <0.00010 | | | - | | | | | | | | 1 | 1 | | | <u> </u> | | | RPD | CV ID 20220447 00 07 00 0 1 | | | | | | 0
<0.00010 | | | | | | | | - | | | | 1 | | | | | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_10_SS_Triplicate_EUF | | <0.00001 | | <0.00001 | | <0.00010 | | | | | | | 1 | | | | + | + | | | | | | RPD | | | 3.0001 | | 3.00001 | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | | | T | | | | 1 | | | | | | | т | 1 | | T | 1 | 1 | | 1 | | Chlorinated I | |--------|--|-----------------------------|--------------------------|----------|----------------------|------------------------|-------------|-------------|--------------------|--------------------|------------------------|--------------------|---------------------|---------------------|--------------------|---------------------------|----------------------|-----------------------|------------|---------------------------|---------------|-------------------------|----------------| | | | סמווו טו דרדואט פוווע דר טט | Sum of US EPA PFAS (PFOS | + PFOA)* | Sum of enHealth PFAS | (PFHxS + PFOS + PFOA)* | Sum of PFAS | Sum of PFAS | 1,1-dichloroethane | 1,1-dichloroethene | 1,2,3-trichloropropane | 1,2-dichloroethane | 1,2-dichloropropane | 1,3-dichloropropane | Bromochloromethane | 1,1,1,2-tetrachloroethane | Bromodichloromethane | 1,1,1-trichloroethane | Chloroform | 1,1,2,2-tetrachloroethane | Chloromethane | cis-1,3-dichloropropene | Dibromomethane | | | | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg | RPD | | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | RPD | | 0 | | | | | | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | RPD | | | 0 | | 0 | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | RPD | | | 0 | | 0 | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | RPD | | | | | | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | RPD | | 0 | | | | | 0 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.005 | | <0.005 | | <0.005 | | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | 0 | | | | | | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.0050 | | | | | <0.00010 | <0.0500 | | <0.50 | | <0.50 | | | | <0.50 | | <0.50 | <0.50 | <0.50 | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | RPD | | | | | | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | RPD | | | | | | | 0 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | <0.00010 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | <0.00001 | | <0.00001 | | <0.0001 | | | | | | | | | | | | | | | | | | RPD | | | 1 | | | | 0 | | | | | | | I | | | 1 | | | 1 | | , , | 1 | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc $[\]ensuremath{^{***}}$ Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIR | ONMENTAL | | | | | | | | | | | | | | | | Т | | | T | | | | |------------------|---|-----------------|---------------------|---------------------------------------|-----------------|------------------------------------|------------------------|-----------------------|--------------------------|----------------|-----------|----------------------|----------------------|--------------|--------------------------|-------------------|---------------------|----------------|------------------|---------------|---------------|--|---------------| | | | lydrocarbons | 1 | 1 | | <u>«</u> | 1 | | u | | | | | | 1 | | | NA | | | 1 | | PC | | | | Dichloromethane | Hexachlorobutadiene | Other chlorinated hydrocarbons EPAVic | Trichloroethene | Chlorinated hydrocarbon:
EPAVic | cis-1,2-dichloroethene | 1,1,2-trichloroethane | trans-1,3-dichloropropen | Vinyl chloride | Bromoform | Carbon tetrachloride | Chlorodibromomethane | Chloroethane | trans-1,2-dichloroethene | Tetrachloroethene | Sum of WA DWER PEAS | (n=10)* | Moisture Content | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | | EQL | | mg/kg UG/KG | μg/L | % | mg/kg | mg/kg | mg/kg | mg/kg | | EQL | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.05 | | 1 | 0.1 | 0.1 | 0.1 | 0.1 | | Location Code | Field ID | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.5
0 <10
0 | | | <0.1 | <0.1
0 | <0.1
0 | <0.1
0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 28.4 | | | | | | RPD | SV ID 20222445 45 40 55 D : FUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | | | | | | | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | | | | | | | | | | | <0.05
<0.05 | | | | | | | | RPD | [| | | | | | | | | | | | | | | | 0 | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | <u> </u> | | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | | + | | | | | | | | | | | | | | <0.05
0 | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | 1 | | | | | | | | | | | | | | <0.05 | | | | | | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | RPD | T | .0.5 | 0.50 | -0.50 | .0.50 | 0.50 | -0.50 | 0.50 | | .0.50 | | .0.50 | | | .0.50 | .0.50 | .40.0 | .0.05 | 24.7 | | | <u> </u> | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | <0.5
<0.5 | <0.50
<0.50 | <0.50
<0.50 | <0.50
<0.50 | <0.50
<0.50 | <0.50
<0.50 | <0.50
<0.50 | | <0.50
<0.50 | | <0.50
<0.50 | | | <0.50
<0.50 | <0.50
<0.50 | <10.0
<10.0 | <0.05
<0.05 | 34.7
35.1 | | | | | | RPD | 5.C.15_10110 .15_05_006_5 apdate15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | 0 | 1 | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 34.7 | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.5
0 | <0.5
0 | <0.5
0 | <0.5
0 | <0.5 | <0.5
0 | <0.5
0 | <0.5 | <0.5 | <0.5 | <0.5
0 | <0.5 | <0.5 | <0.5
0 | <0.5 | <10
0 | | |
<0.1 | <0.1 | <0.1 | <0.1 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | 0
<0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | 0
<0.50 | <10.0 | <0.05 | 34.7 | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | - | | | | | | RPD | | | | | | | | | | | | | | | | | 0 | | | | | | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | | | | | | | | | | | | | | <0.05
<0.05 | | | | <u> </u> | | | RPD | 3A_IB_20220410_00_34_33_Duplicate_AL3 | | | | | | | | | | | | | | | | | 0.03 | | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | <u> </u> | | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | <0.5
<0.5 | <0.5
<0.50 | <0.5
<0.50 | <0.5
<0.50 | <0.5
<0.50 | <0.5
<0.50 | <0.5
<0.50 | <0.5 | <0.5
<0.50 | <0.5 | <0.5
<0.50 | <0.5 | <0.5 | <0.5
<0.50 | <0.5
<0.50 | <10
<10.0 | <0.05 | 30.4 | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | 3A_10_20220417_13_37_33_111pilicate_AL3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | 10.03 | 30.4 | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | <u> </u> | | | RPD
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | | | | | | | | 0
<0.05 | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | RPD | | | | | | | | | | | | | | | | | 0 | | | | | \Box | | | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | | | 1 | | | | | | | | | | | | | <0.05 | <0.05 | | | | | | | RPD | 3A_10_20220417_13_37_33_111pilicate_AL3 | | | | | | | | | | | | | | | | | 10.03 | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 30.0 | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 31.4 | | | <u> </u> | | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | 0
<0.5 | 0
<0.50 | 0
<0.50 | 0
<0.50 | 0
<0.50 | 0
<0.50 | 0
<0.50 | | 0
<0.50 | | 0
<0.50 | | | 0
<0.50 | 0
<0.50 | 0
<10.0 | 0
<0.05 | 5
30.0 | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0
<0.05 | <0.05 | 30.0 | | | | | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | | † | | | | | | | | 1 | 1 | | | | | 0 <0.05 | 1 | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | <u> </u> | | | | | | | | | | | | | | | <0.05 | | | | | | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | + | | | | | | | | | | | | | | - | 0
<0.05 | | | - | | | | E05.01 | SX_IB_20220417_08_07_5S_Primary_ALS
SX_IB_20220417_08_10_SS_Triplicate_EUF | | 1 | | | | | | | | | | | | | | <0.05 | \0.03 | | | | | | | RPD | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | 1 | | <0.1 | <0.1 | <0.1 | <0.1 | | | | lydrocarbons | | | | | | | | | | | | | | | | NA | | | | | PC | |--------|--|-----------------|------------------|---------------------------------------|-----------------|-----------------------------|--------------------|--------------------|-------------------|----------------|-----------|-------------------|----------------|--------------|--------------------|------------------|---------------|---------|------------------|---------------|---------------|---------------|---------------| | | | iyarocarbons | ene | Vic | | carbons | hene | ane | propene | | | ide | ethane | | ethene | ۵ | r PFAS | . NA | | | | | | | | | Dichloromethane | Hexachlorobutadi | Other chlorinated
hydrocarbons EP/ | Trichloroethene | Chlorinated hydro
EPAVic | cis-1,2-dichloroet | 1,1,2-trichloroeth | trans-1,3-dichlor | Vinyl chloride | Bromoform | Carbon tetrachlor | Chlorodibromom | Chloroethane | trans-1,2-dichlorc | Tetrachloroethen | Sum of WA DWE | (n=10)* | Moisture Content | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | | | | mg/kg UG/KG | μg/L | % | mg/kg | mg/kg | mg/kg | mg/kg | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 29.8 | | | | | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | RPD | | | | | | | | | | | | | | | | | 0 | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | RPD | | | | | | | | | | | | | | | | | 0 | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | RPD | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 27.7 | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 27.4 | | | | | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | 0 | 1 | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 27.7 | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <10 | | | <0.1 | <0.1 | <0.1 | <0.1 | | RPD | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 0 | 0 | 0 | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | <0.5 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | <0.50 | | <0.50 | | | <0.50 | <0.50 | <10.0 | <0.05 | 27.7 | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | | | RPD | | | | | | | | | | | | | | | | | 0 | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | RPD | | | | | | | | | | | | | | | | | | 0 | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | | <0.05 | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | <0.05 | | | | | | 1 | | RPD | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | ENVIR | ONMENTAL |------------------|--|---------------|---------------|---------------|---------------------|----------------|------------|--------------|----------------------|--|------------------|-------------------------------------|---------------|------------------------|----------------------|----------------------|---------------------|--------------|-----------------|----------------|--------------|--|--| | | | Bs | | Ι | T | | 1 | T | Inor | ganics | 1 | 1 - | 1 | | 1 | На | logenated Benz | zenes | T | 1 | | Halog | genated Hydroca | | | | Arochlor 1221 |
Arochlor 1260 | Arochlor 1016 | PCBs (Sum of total) | рн (after HCL) | рН (Final) | рН (Initial) | pH of Leaching Fluid | рН (aqueous extract) | Fluoride | Moisture Content (dried @
103°C) | Cyanide Total | 1,2,4-trichlorobenzene | 1,2-dichlor obenzene | 1,3-dichlor obenzene | 1,4-dichlorobenzene | Bromobenzene | 4-chlorotoluene | Chlorobenzene | lodomethane | Bromomethane | 1,2-dibromoethane | | EQL | | mg/kg
0.1 | mg/kg
0.1 | mg/kg
0.1 | mg/kg
0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | mg/kg
100 | %
1 | mg/kg
5 | mg/kg
0.5 | LQL | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 100 | | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Location Code | Field ID | | 1 | T | | | | | | T | | | | T | | | | T | T | | | T | 1 1 | | E03.01
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF
SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.1
<0.1 | <0.1
<0.1 | <0.1
<0.1 | <0.1
<0.1 | | | | | 12
12 | <100
<100 | 35
31 | <5
<5 | <0.5
<0.5 | RPD | 3X_IB_E0EE0410_10_EE_33_Bupileutc_E01 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 12 | <100 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | <0.1 | 1.7 | 9.6 | 11.2 | 5.0 | | 200
67 | | <5
0 | <0.50
0 | <0.50 | | <0.50 | | | <0.50 | | <u> </u> | | | RPD
E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | 0 | | 10 | | 5.0 | | 67 | | 0 | 1 0 | 0 | | 0 | | | 0 | | - | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | 11 | | 5.0 | | | | | | | | | | | | | | | | RPD | | | | | | | 10 | | 0 | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | <u> </u> | | | E03.01
RPD | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | 12
9 | | 6.3
0 | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | | | 11.4 | | | | | | | | | | | | | | | | | | RPD | | | | | -0.1 | 1.2 | 4 | 44.2 | F 0 | | 100 | | | 10.50 | -0.50 | | 10.50 | | | 10.50 | | <u> </u> | | | E03.01
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | <0.1
<0.1 | 1.3 | 8.3
8.7 | 11.3
11.2 | 5.0
5.0 | | 160
160 | | <5
<5 | <0.50
<0.50 | <0.50
<0.50 | | <0.50
<0.50 | | | <0.50
<0.50 | | | | | RPD | 0.1.5_10110 120_00_0 1_00_0 apdate_, 120 | | | | 0 | 0 | 5 | 1 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | | 0 | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | <0.1 | 1.3 | 8.3 | 11.3 | 5.0 | | 160 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 12 | <100 | 40 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | 0
<0.1 | 1.3 | 8.3 | 11.3 | 5.0 | | 46
160 | | 0
<5 | 0
<0.50 | 0
<0.50 | | 0
<0.50 | | | 0
<0.50 | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | 10.2 | | 10 | 11.0 | 5.0 | | 100 | | | 10.50 | 10.50 | | 10.50 | | | 10.50 | | | | | RPD | | | | | | | 19 | | 0 | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | 11.4 | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | E03.01
RPD | SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | | | 11.4
0 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | 11.4 | | | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | | | | RPD | SV ID 2022047 45 55 55 D 515 | 40.1 | 40.1 | 40.1 | 40 1 | | 4 | | | 0.4 | F20 | 21 | ۷. | 40 F | 40.5 | 40 F | E05.01
E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.1
<0.1 | <0.1
<0.1 | <0.1
<0.1 | <0.1
<0.1 | | | | | 9.0 | 520
470 | 31
31 | <5
<5 | <0.5
<0.5 | RPD | | 0 | 0 | 0 | 0 | | | | | 7 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 8.4 | 520 | 31 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01
RPD | SX_IB_20220417_15_57_SS_Triplicate_ALS | | 1 | | <0.1 | 1.1 | 5.0 | 9.5 | 5.0 | | 180
97 | | <5
0 | <0.50
0 | <0.50
0 | | <0.50
0 | | | <0.50
0 | | <u> </u> | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | U | | 5.3 | | 5.0 | | 97 | | 0 | 0 | 0 | | 0 | | | 0 | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | 5.4 | | 5.0 | | | | | | | | | | | | | , | | | RPD | | | | | | | 2 | | 0 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | 9.5 | | 6.3 | | | | | | | | | | | | | <u> </u> | 1 | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | 9.7 | | 6.3
0 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | 9.5 | | 6.3 | | | | | | | | | | | | | , | | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | | | | | | 9.1 | | | | | | | | | | | | | | | | | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | <0.1 | 1.3 | 5.0 | 9.3 | 5.0 | | 170 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | <u> </u> ! | \vdash | | E05.01 | SX_IB_20220417_08_07_33_PTIMARY_ALS SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | <0.1 | 1.3 | 5.0 | 9.6 | 5.0 | | 150 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | | | | RPD | , | | | | 0 | 0 | 0 | 3 | 0 | | 12 | | 0 | 0 | 0 | | 0 | | | 0 | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | <0.1 | 1.3 | 5.0 | 9.3 | 5.0 | | 170 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | | | | E05.01
RPD | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 9.0 | 420
85 | 30 | <5
0 | <0.5
0 | <0.5
0 | <0.5 | <0.5
0 | <0.5 | <0.5 | <0.5
0 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | + | | <0.1 | 1.3 | 5.0 | 9.3 | 5.0 | | 170 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | 5.5 | | 5.0 | | | | | | | | | | | | | | | | RPD | | | | | | | 10 | | 0 | | | | | | | | | | | <u> </u> | | | | | E05.01
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | - | 9.5
9.4 | - | | | | | | 1 | | | | | | 1 | | <u> </u> | | | RPD | 3^_ID_20220417_00_10_33_Duplicate_ALS | <u> </u> | | | <u> </u> | <u> </u> | 9.4 | - | | | - | - | | + | | | | + | | + | | | \vdash | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | 9.5 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | 9.7 | | 6.3 | | | | | | | | | | 1 | | | | \Box | | RPD
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | - | 2 | - | | 10 | 500 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 10 | 450 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | I | | • | | • | | | • | | | | • | | | • | | • | | • | • | • | | | | | | | Bs | | | | | | | Inor | ganics | | | | | ı | Ha | logenated Benze | nes | | | | Halog | enated Hydroca | |--------|--|---------------|---------------|---------------|---------------------|----------------|------------|--------------|----------------------|----------------------|----------|-------------------------------------|---------------|------------------------|---------------------|---------------------|---------------------|--------------|-----------------|---------------|-------------|--------------|-------------------| | | | Arochlor 1221 | Arochlor 1260 | Arochlor 1016 | PCBs (Sum of total) | рН (after HCL) | рн (Final) | рН (Initial) | pH of Leaching Fluid | рН (aqueous extract) | Fluoride | Moisture Content (dried @
103°C) | Cyanide Total | 1,2,4-trichlorobenzene | 1,2-dichlorobenzene | 1,3-dichlorobenzene | 1,4-dichlorobenzene | Bromobenzene | 4-chlorotoluene | Chlorobenzene | lodomethane | Bromomethane | 1,2-dibromoethane | | | | mg/kg | mg/kg | mg/kg | mg/kg | - | - | - | - | - | mg/kg | % | mg/kg | RPD | | 0 | 0 | 0 | 0 | | | | | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 10 | 500 | 35 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | <0.1 | 1.2 | 5.0 | 10.2 | 5.0 | | 190 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | , | | | RPD | | | | | 0 | | | | | | 90 | | 0 | 0 | 0 | | 0 | | | 0 | | , | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | 5.3 | | 5.0 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | 5.2 | | 5.0 | | | | | | | | | | | | | | | | RPD | | | | | | | 2 | | 0 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | | | | RPD | • | | | | | | 0 | | 0 | | | | | | | | | | | | | , | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | 11 | | 6.3 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | 9.9 | | | | | | | | | | | | | | | | | | RPD | | | | | | | 11 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.1 | 1.1 | 5.0 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | |
<0.50 | | , | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | <0.1 | 1.2 | 5.0 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | , | | | RPD | • | | | | 0 | 9 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | | 0 | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.1 | 1.1 | 5.0 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | , | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.1 | <0.1 | <0.1 | <0.1 | | | | | 9.0 | 460 | 29 | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | RPD | | | | | 0 | | | | | | 88 | | 0 | 0 | 0 | | 0 | | | 0 | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.1 | 1.1 | 5.0 | 9.7 | 5.0 | | 180 | | <5 | <0.50 | <0.50 | | <0.50 | | | <0.50 | | , | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | 5.4 | | 5.0 | | | | | | | | | | | | | , | | | RPD | • | | | | | | 8 | | 0 | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | 9.5 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | 9.4 | | | | | | | | | | | | | | | | | | RPD | <u> </u> | | | | | | 1 | | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | 9.5 | | | 1 | | | | | | | 1 | | | | | , , | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | 9.7 | | 6.3 | | | | | | | | | | | | | , | | | RPD | <u> </u> | | | | | | 2 | | | | | | | | | | | | | | | | | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be | LIVVIK | ONMENTAL | | | 1 | | | | | | I | | | | | T spaces | |------------------|---|-------------------------|------------------------|--------------|---|------------------------|--------------|------------------|------------------------|----------------------|--------------|----------------|--------------------|--|------------| | | | rbons | | | | I | AH | | | | | Solvents | <u> </u> | Τ | SPOCAS | | | | Dichlorodifluoromethane | Trichlorofluoromethane | Total MAH | Monocylic aromatic
hydrocarbons EPAVic | 1,3,5-trimethylbenzene | Styrene | Isopropylbenzene | 1,2,4-trimethylbenzene | 4-Methyl-2-pentanone | Acetone | Allyl chloride | . Carbon disulfide | Methyl Ethyl Ketone | рн (сасі2) | | EQL | | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg
0.5 | mg/kg | mg/kg
0.5 | mg/kg | mg/kg | mg/kg
0.5 | mg/kg | mg/kg
0.5 | 0.1 | | EQL | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.1 | | Location Code | Field ID | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.5 | 1 | | <0.5 | 1.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | <0.5 | <0.5 | 3.8 | | <0.5 | 3.8 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | RPD | | 0 | 0 | 117 | | 0 | 117 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | <0.5 | <0.5 | 1 | 2.2 | <0.5 | 1.0
2.3 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 11.2 | | E03.01
RPD | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | 2.3 | | 79 | | | | | | | | 11.3 | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | 73 | | | | | | | | + | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | | | | | | | | | + | | RPD | , = = = = : = | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_22_SS_Duplicate_EUF | | | | | | | | | | | | | <u> </u> | | | RPD | 1 | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_16_18_SS_Primary_EUF | | | - | | | | | | | | | - | | + | | E03.01 | SX_IB_20220416_16_24_SS_Triplicate_ALS | | | | | | | | | | | | | | + | | RPD
E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | + | 11.0 | | E03.01 | SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | 1.2 | | 1.2 | | | | | | | | 11.0 | | RPD | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 82 | | 82 | | | | | | | | 0 | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 11.0 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | RPD | | | | | | | 0 | | | | | | | <u> </u> | | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 11.0 | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | | | | | | | | | + | | RPD
E03.01 | SV IR 20220416 08 21 SS Primary AIS | | | | | | | | | | | | | | + | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS
SX_IB_20220416_08_34_SS_Duplicate_ALS | | | | | | | | | | | | | | + | | RPD | 5.15_10110 :10_00_0 :_00_0 ap.natto | | | | | | | | | | | | | | <u> </u> | | E03.01 | SX_IB_20220416_08_31_SS_Primary_ALS | | | | | | | | | | | | | | | | E03.01 | SX_IB_20220416_08_36_SS_Triplicate_EUF | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | <u> </u> | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | + | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | <0.5
0 | <0.5
0 | <0.5
0 | | <0.5
0 + | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | + | | E05.01 | SX_IB_20220417_15_57_SS_Triplicate_ALS | \0.5 | \0.5 | \0.5 | <0.5 | \0.5 | <0.5 | \0.5 | \0.5 | \0.5 | \0.5 | \0.5 | \(\cdot\) | \(\cdot\) | 7.5 | | RPD | o.c.ib_to120 .1., _10_0., _00p.indate_, 110 | | | | 10.0 | | 0 | | | | | | | | 1.5 | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | - | | | | | | | | | - | | + | | E05.01
RPD | SX_IB_20220417_15_56_SS_Duplicate_EUF | | | | | | | | | | | | | | + | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF | | | | | | | | | | | | | | + | | E05.01 | SX_IB_20220417_15_56_SS_Primary_EUF
SX_IB_20220417_15_57_SS_Triplicate_ALS | | | <u> </u> | | | | | | | | | 1 | | + | | RPD | 1 | | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.9 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.8 | | RPD | | | | | 0 | | 0 | | | | | | | <u> </u> | 1 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | <0.5 | | <0.5 | 2.5 | 2.5 | 2.5 | | | | | 7.9 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | + | | RPD
E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | - | <0.5 | | 0
<0.5 | | | | | | - | | 7.9 | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS
SX_IB_20220417_08_10_SS_Triplicate_EUF | | | - | \U.J | | , vo.3 | | | | | | - | + | 1.3 | | RPD | JN_10_E02E0417_00_10_33_111piicate_EUF | | | | | | | | | | | | | | + | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | 1 | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220417_08_10_SS_Duplicate_ALS | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220417_08_07_SS_Primary_ALS | | | | | | | | | | | | | | 1 | | E05.01 | SX_IB_20220417_08_10_SS_Triplicate_EUF | | | | | | | | | | | | | | | | RPD | CV ID 20220449 46 00 00 0 0 0 0 0 0 0 | -0 F | -0 F | -0. F | | √0 F | -0 F | √0 F | 20 F | -0 F | + | | E05.01
E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF
SX_IB_20220418_16_09_SS_Duplicate_EUF | <0.5
<0.5 | <0.5
<0.5 | <0.5
<0.5 | | <0.5
<0.5 + | | F03.01 | 3v_ip_50550410_10_03_32_Dribitcate_ERL | \U.3 | \U.3 | \U.3 | I . | \0.5 | \U.3 | \U.3 | \0.3 | \0.3 | \0.5 | \0.5 | \0.5 | \0.5 | | | | | rbons | | | | M | IAH | | | | | Solvents | | | SPOCAS | |--------|--|--------------------------|------------------------|-----------|---|------------------------|---------|-------------------|------------------------|----------------------|---------|----------------|------------------|---------------------|------------| | | | Dichloro difluoromethane | Trichlorofluoromethane | Total MAH | Monocylic aromatic
hydrocarbons EPAVic | 1,3,5-trimethylbenzene | Styrene | Iso propylbenzene | 1,2,4-trimethylbenzene | 4-Methyl-2-pentanone | Acetone | Allyl chloride | Carbon disulfide | Methyl Ethyl Ketone | рн (caci2) | | | | mg/kg - | | RPD | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | E05.01 | SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | <0.5 | | <0.5 | | | | | | | | 8.8 | | RPD | | | | | | | 0 | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_09_SS_Duplicate_EUF | | | | | | | | | | | | | | | | RPD | • | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_16_08_SS_Primary_EUF | | | | | | | | | | | | | | | | E05.01 |
SX_IB_20220418_16_10_SS_Triplicate_ALS | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.9 | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.7 | | RPD | | | | | 0 | | 0 | | | | | | | | 3 | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.9 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | <0.5 | <0.5 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | RPD | | | | | | | 0 | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | <0.5 | | <0.5 | | | | | | | | 7.9 | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Duplicate_ALS | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_07_SS_Primary_ALS | | | | | | | | | | | | | | | | E05.01 | SX_IB_20220418_08_08_SS_Triplicate_EUF | | | | | | | | | | | | | | | | RPD | | | | | | | | | | | | | | | | ^{*}RPDs have only been considered where a concentration is greater than 1 times t ^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs fc ^{***}Interlab Duplicates are matched on a per compound basis as methods vary be ## **TBM Spoil Waste Categorisation Report** | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | ATTACHMENT B: 95% UCL AVE CALCULATIONS | | A B C | D E | F | G H I J K | L | |--|--------------------------------|---|---|---|-------------------------| | 1 | | UCL Statis | tics for Data | Sets with Non-Detects | | | 2 | | T | | | | | 3 | User Selected Options | | 00.47 DM | | | | 4 | Date/Time of Computation | ProUCL 5.16/05/2022 4:3 | 38:17 PW | | | | 5 | From File
Full Precision | WorkSheet.xls OFF | | | | | 6 | Confidence Coefficient | 95% | | | | | 7 | | | | | | | 8 | Number of Bootstrap Operations | 2000 | | | | | 9 | | | | | | | 10 | Arsenic | | | | | | 11 | Alsonic | | | | | | 12 | | | General | Statistics | | | 13 | Total | Number of Observations | 29 | Number of Distinct Observations | 21 | | 14 | | | | Number of Missing Observations | 0 | | 15 | | Minimum | 15 | Mean | 30.24 | | 16 | | Maximum | 120 | Median | 27 | | 17 | | SD | 19.39 | Std. Error of Mean | 3.601 | | 18
19 | | Coefficient of Variation | 0.641 | Skewness | 3.793 | | 20 | | | | <u> </u> | | | 21 | | | Normal C | GOF Test | | | 22 | S | hapiro Wilk Test Statistic | 0.595 | Shapiro Wilk GOF Test | | | 23 | 5% S | hapiro Wilk Critical Value | 0.926 | Data Not Normal at 5% Significance Level | | | 24 | | Lilliefors Test Statistic | 0.271 | Lilliefors GOF Test | | | 25 | 5 | % Lilliefors Critical Value | 0.161 | Data Not Normal at 5% Significance Level | | | 26 | | Data Not | Normal at 5 | % Significance Level | | | 27 | | | | | | | 28 | | As | suming Norr | nal Distribution | | | 29 | 95% No | ormal UCL | | 95% UCLs (Adjusted for Skewness) | | | 30 | | 95% Student's-t UCL | 36.37 | 95% Adjusted-CLT UCL (Chen-1995) | 38.87 | | 31 | | | | 95% Modified-t UCL (Johnson-1978) | 36.79 | | 32 | | | | | | | 33 | | | | GOF Test | | | 34 | | A-D Test Statistic | 1.362 | Anderson-Darling Gamma GOF Test | | | 35 | | 5% A-D Critical Value | 0.748 | Data Not Gamma Distributed at 5% Significance Leve | l | | 36 | | K-S Test Statistic | 0.192 | Kolmogorov-Smirnov Gamma GOF Test | | | 37 | | 5% K-S Critical Value | 0.163 | Data Not Gamma Distributed at 5% Significance Leve | | | 38 | | Data Not Gamr | na Distribute | ed at 5% Significance Level | | | 39 | | | 0 | Chatlatia | | | 40 | | | | Statistics | 4 0 4 7 | | 41 | | k hat (MLE) Theta hat (MLE) | 4.789
6.314 | k star (bias corrected MLE) Theta star (bias corrected MLE) | 4.317
7.005 | | 42 | | | v.ə14 | meta star (bias corrected MLE) | 7.005 | | | | ` ′ | | nu star /higa garrastad) | 250.4 | | 43 | h.a. | nu hat (MLE) | 277.8 | nu star (bias corrected) | 250.4 | | 43
44 | M | ` ′ | | MLE Sd (bias corrected) | 14.55 | | 43
44
45 | | nu hat (MLE) LE Mean (bias corrected) | 277.8
30.24 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) | 14.55
214.7 | | 43
44
45
46 | | nu hat (MLE) | 277.8 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) | 14.55 | | 43
44
45
46
47 | | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance | 277.8
30.24
0.0407 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value | 14.55
214.7 | | 43
44
45
46
47
48 | Adjus | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance | 277.8
30.24
0.0407 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value | 14.55
214.7 | | 43
44
45
46
47
48
49 | | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance | 277.8
30.24
0.0407 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value | 14.55
214.7
212.8 | | 43
44
45
46
47
48
49 | Adjus | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance | 277.8
30.24
0.0407
suming Gam
35.26 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) | 14.55
214.7
212.8 | | 43
44
45
46
47
48
49
50 | Adjus
95% Approximate Gamma | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance | 277.8
30.24
0.0407
suming Gam
35.26 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value Ima Distribution 95% Adjusted Gamma UCL (use when n<50) | 14.55
214.7
212.8 | | 43
44
45
46
47
48
49
50
51
52 | 95% Approximate Gamma | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance Ass UCL (use when n>=50)) | 277.8 30.24 0.0407 suming Gam 35.26 Lognormal | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) | 14.55
214.7
212.8 | | 43
44
45
46
47
48
49
50 | 95% Approximate Gamma | nu hat (MLE) LE Mean (bias corrected) sted Level of Significance Ass UCL (use when n>=50)) | 277.8 30.24 0.0407 suming Gam 35.26 Lognormal 0.889 | MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test | 14.55
214.7
212.8 | | | A B C D E | F | G H I J K | L | |----------|--|-----------------|---|----------------| | 55 | 5% Lilliefors Critical Value | 0.161 | Data appear Lognormal at 5% Significance Level | | | 56 | Data appear Approx | ximate Logn | ormal at 5% Significance Level | | | 57 | | | | | | 58 | | Lognorma | | | | 59 | Minimum of Logged Data | 2.708 | Mean of logged Data | 3.301 | | 60 | Maximum of Logged Data | 4.787 | SD of logged Data | 0.421 | | 61 | | | | | | 62 | | | ormal Distribution | | | 63 | 95% H-UCL | 34.46 | 90% Chebyshev (MVUE) UCL | 36.71 | | 64 | 95% Chebyshev (MVUE) UCL | 39.95 | 97.5% Chebyshev (MVUE) UCL | 44.45 | | 65 | 99% Chebyshev (MVUE) UCL | 53.28 | | | | 66 | | | | | | 67 | | | tion Free UCL Statistics | | | 68 | Data appear to follow a I | Discernible I | Distribution at 5% Significance Level | | | 69 | N | | | | | 70 | • | | tribution Free UCLs | 20.27 | | 71 | 95% CLT UCL | 36.16 | 95% Jackknife UCL | 36.37
43.74 | | 72 | 95% Standard Bootstrap UCL
95% Hall's Bootstrap UCL | 36.05
61.2 | 95% Bootstrap-t UCL
95% Percentile Bootstrap UCL | 36.62 | | 73 | 95% BCA Bootstrap UCL | 39.48 | 95% Percentile Bootstrap OCL | 30.02 | | 74 | 90% Chebyshev(Mean, Sd) UCL | 41.04 | 95% Chebyshev(Mean, Sd) UCL | 45.94 | | 75 | 97.5% Chebyshev(Mean, Sd) UCL | 52.73 | 99% Chebyshev(Mean, Sd) UCL | 66.07 | | 76 | 97.5% Chebyshev(weah, 3u) OCL | 32.73 | 99 % Chebyshev(Mean, Su) OCL | 00.07 | | 77 | | Suggested | UCL to Use | | | 78 | 95% Student's-t UCL | 36.37 | or 95% Modified-t UCL | 36.79 | | 79 | or 95% H-UCL | 34.46 | of 35 % Modifica-t GGE | 30.73 | | 80 | 01 00% 11 002 | 01.10 | | | | 81 | Note: Suggestions regarding the selection of a 95% | UCL are pro | ovided to help the user to select the most appropriate 95% UCL. | | | 82 | | | a size, data distribution, and skewness. | | | 83 | | | ulation studies summarized in Singh, Maichle, and Lee (2006). | | | 84
85 | However, simulations results will not cover all Real W | orld data set | ts; for additional insight the user may want to consult a statisticia | ın. | | 86 | | | <u> </u> | | | 87 | ProUCL computes and outpu | ts H-statistic | c based UCLs for historical reasons only. | | | 88 | H-statistic often results in unstable (both high a | nd low) valu | es of UCL95 as shown in examples in the Technical Guide. | | | 89 | It is therefore recommende | ed to avoid the | he use of H-statistic based 95% UCLs. | | | 90 | Use of nonparametric methods are preferred to com | pute UCL95 | for skewed data sets which do not follow a gamma distribution | n. | | 91 | | | | | | 92 | | | | | | |
Nickel | | | | | 94 | | | | | | 95 | | General | Statistics | | | 96 | Total Number of Observations | 29 | Number of Distinct Observations | 21 | | 97 | | | Number of Missing Observations | 0 | | 98 | Minimum | 148 | Mean | 180.2 | | 99 | Maximum | 270 | Median | 172 | | 100 | SD | 27.79 | Std. Error of Mean | 5.16 | | 101 | Coefficient of Variation | 0.154 | Skewness | 1.426 | | 102 | | | | | | 103 | | | GOF Test | | | 104 | Shapiro Wilk Test Statistic | 0.874 | Shapiro Wilk GOF Test | | | 105 | 5% Shapiro Wilk Critical Value | 0.926 | Data Not Normal at 5% Significance Level | | | 106 | Lilliefors Test Statistic | 0.189 | Lilliefors GOF Test | | | 107 | 5% Lilliefors Critical Value | 0.161 | Data Not Normal at 5% Significance Level | | | | Data Not | Normal at 5 | % Significance Level | | | | A B C D E | F | G H I J K | L | |------------|--|------------------|--|----------------| | 109 | | | | | | 110 | | suming Norr | nal Distribution | | | 111 | 95% Normal UCL | 100 | 95% UCLs (Adjusted for Skewness) | 100.0 | | 112 | 95% Student's-t UCL | 189 | 95% Adjusted-CLT UCL (Chen-1995) | 190.2 | | 113 | | | 95% Modified-t UCL (Johnson-1978) | 189.2 | | 114 | | Commo | GOF Test | | | 115 | A-D Test Statistic | 0.86 | Anderson-Darling Gamma GOF Test | | | 116 | 5% A-D Critical Value | 0.744 | Data Not Gamma Distributed at 5% Significance Leve | اد | | 117 | K-S Test Statistic | 0.179 | Kolmogorov-Smirnov Gamma GOF Test | - | | 118 | 5% K-S Critical Value | 0.162 | Data Not Gamma Distributed at 5% Significance Leve | <u> </u> | | 119 | | | ed at 5% Significance Level | | | 120 | | | | | | 121 | | Gamma | Statistics | | | 122 | k hat (MLE) | 48.26 | k star (bias corrected MLE) | 43.29 | | 123 | Theta hat (MLE) | 3.735 | Theta star (bias corrected MLE) | 4.163 | | 124
125 | nu hat (MLE) | 2799 | nu star (bias corrected) | 2511 | | 126 | MLE Mean (bias corrected) | 180.2 | MLE Sd (bias corrected) | 27.39 | | 127 | | | Approximate Chi Square Value (0.05) | 2396 | | 128 | Adjusted Level of Significance | 0.0407 | Adjusted Chi Square Value | 2389 | | 129 | | | 1 | | | 130 | Ass | suming Gam | ma Distribution | | | 131 | 95% Approximate Gamma UCL (use when n>=50)) | 188.9 | 95% Adjusted Gamma UCL (use when n<50) | 189.5 | | 132 | | | | | | 133 | | Lognorma | GOF Test | | | 134 | Shapiro Wilk Test Statistic | 0.916 | Shapiro Wilk Lognormal GOF Test | | | 135 | 5% Shapiro Wilk Critical Value | 0.926 | Data Not Lognormal at 5% Significance Level | | | 136 | Lilliefors Test Statistic | 0.171 | Lilliefors Lognormal GOF Test | | | 137 | 5% Lilliefors Critical Value | 0.161 | Data Not Lognormal at 5% Significance Level | | | 138 | Data Not L | ognormal at | 5% Significance Level | | | 139 | | | 10 | | | 140 | Minimum of Logged Data | • | I Statistics | F 101 | | 141 | Maximum of Logged Data Maximum of Logged Data | 4.997
5.598 | Mean of logged Data SD of logged Data | 5.184
0.143 | | 142 | Maximum of Logged Data | 5.596 | SD of logged Data | 0.143 | | 143 | Δεςι | ımina Loana | ormal Distribution | | | 144 | 95% H-UCL | 188.9 | 90% Chebyshev (MVUE) UCL | 194.6 | | 145 | 95% Chebyshev (MVUE) UCL | 201.2 | 97.5% Chebyshev (MVUE) UCL | 210.2 | | 146 | 99% Chebyshev (MVUE) UCL | 228.1 | 57.5% Shooyanev (WVSE) 00E | | | 147 | 20% 225,2 (22, 002 | | | | | 148 | Nonparame | tric Distribu | tion Free UCL Statistics | | | 149
150 | · | | ernible Distribution (0.05) | | | 151 | | | - * | | | 152 | Nonpar | ametric Dis | tribution Free UCLs | | | 153 | 95% CLT UCL | 188.7 | 95% Jackknife UCL | 189 | | 154 | 95% Standard Bootstrap UCL | 188.5 | 95% Bootstrap-t UCL | 190.8 | | 155 | 95% Hall's Bootstrap UCL | 191.8 | 95% Percentile Bootstrap UCL | 188.8 | | 156 | 95% BCA Bootstrap UCL | 190.7 | | | | 157 | 90% Chebyshev(Mean, Sd) UCL | 195.7 | 95% Chebyshev(Mean, Sd) UCL | 202.7 | | 158 | 97.5% Chebyshev(Mean, Sd) UCL | 212.5 | 99% Chebyshev(Mean, Sd) UCL | 231.6 | | | | | | | | 159 | | | | | | 159
160 | | Suggested | UCL to Use | | | | 95% Student's-t UCL | Suggested
189 | UCL to Use
or 95% Modified-t UCL | 189.2 | | | A B C D E | F | G H I J K | L | |------------|---|--------------|--|---------| | 163 | | | ovided to help the user to select the most appropriate 95% UCL. | | | 164 | | • | a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). | | | 165 | • | | turation studies summarized in Singh, Malchie, and Lee (2006).
ts; for additional insight the user may want to consult a statisticia | .n | | 166 | nowever, simulations results will not cover all Real vi | vonu uata se | is, for additional insignt the user may want to consult a statisticia | III. | | 167 | Fluoride | | | | | 108 | i luolide | | | | | 169 | | General | Statistics | | | 170 | Total Number of Observations | 29 | Number of Distinct Observations | 17 | | 171 | Number of Detects | 27 | Number of Non-Detects | 2 | | 172 | Number of Distinct Detects | 16 | Number of Distinct Non-Detects | 1 | | 173
174 | Minimum Detect | 150 | Minimum Non-Detect | 100 | | 175 | Maximum Detect | 680 | Maximum Non-Detect | 100 | | 176 | Variance Detects | 30501 | Percent Non-Detects | 6.897% | | 177 | Mean Detects | 333.7 | SD Detects | 174.6 | | 178 | Median Detects | 190 | CV Detects | 0.523 | | 179 | Skewness Detects | 0.31 | Kurtosis Detects | -1.612 | | 180 | Mean of Logged Detects | 5.669 | SD of Logged Detects | 0.548 | | 181 | | | 1 | | | 182 | Norn | nal GOF Tes | t on Detects Only | | | 183 | Shapiro Wilk Test Statistic | | Shapiro Wilk GOF Test | | | 184 | 5% Shapiro Wilk Critical Value | | Detected Data Not Normal at 5% Significance Level | | | 185 | Lilliefors Test Statistic | | Lilliefors GOF Test | | | 186 | 5% Lilliefors Critical Value | | Detected Data Not Normal at 5% Significance Level | | | 187 | Detected Date | a Not Norma | l at 5% Significance Level | | | 188 | Mandan Maion (MM) Obskistics and | N | all de la companya | | | 189 | Kapian-Meier (KM) Statistics usi KM Mean | | ritical Values and other Nonparametric UCLs KM Standard Error of Mean | 33.24 | | 190 | KM SD | | 95% KM (BCA) UCL | 373.4 | | 191 | 95% KM (t) UCL | | 95% KM (Percentile Bootstrap) UCL | 370.7 | | 192 | 95% KM (z) UCL | | 95% KM Bootstrap t UCL | 377.4 | | 193 | 90% KM Chebyshev UCL | | 95% KM Chebyshev UCL | 462.5 | | 194 | 97.5% KM Chebyshev UCL | | 99% KM Chebyshev UCL | 648.3 | | 195
196 | | | <u> </u> | | | 197 | Gamma GOF | Tests on De | etected Observations Only | | | 198 | A-D Test Statistic | 2.883 | Anderson-Darling GOF Test | | | 199 | 5% A-D Critical Value | 0.75 | Detected Data Not Gamma Distributed at 5% Significance | Level | | 200 | K-S Test Statistic | 0.309 | Kolmogorov-Smirnov GOF | | | 201 | 5% K-S Critical Value | 0.169 | Detected Data Not Gamma Distributed at 5% Significance | Level | | 202 | Detected Data Not | Gamma Dist | ributed at 5% Significance Level | | | 203 | | | | | | 204 | | | Detected Data Only | | | 205 | k hat (MLE) | | k star (bias corrected MLE) | 3.308 | | 206 | Theta hat (MLE) | | Theta star (bias corrected MLE) | 100.9 | | 207 | nu hat (MLE) | | nu star (bias corrected) | 178.6 | | 208 | Mean (detects) | 333.7 | | | | 209 | Oamer: BOO | Ctotletics | sing Imputed Non Detects | | | 210 | | | sing Imputed Non-Detects NDs with many tied observations at multiple DLs | | | 211 | | | s <1.0, especially when the sample size is small (e.g., <15-20) | | | 212 | | | yield incorrect values of UCLs and BTVs | | | 213 | | | on the sample size is small. | | | 214 | | - | y be computed using gamma distribution on KM estimates | | | 215 | Minimum | | Mean | 314.8 | | 216 | William | .0.20 | Weart | J . 1.J | | | Α | В | С | D E | F | G | Н | I | J | K | L | |-------------------|-----|-----------|---------------
-----------------------------|----------------|-----------------------------|---------------|-------------------|------------|-----------------|-------| | 217 | | | | Maximum | 680 | | | | | Mediar | | | 218 | | | | SD | 182.5 | | | | | C\ | 0.58 | | 219 | | | | k hat (MLE) | 2.747 | | | k sta | ır (bias d | orrected MLE | 2.486 | | 220 | | | | Theta hat (MLE) | 114.6 | | | Theta sta | ır (bias d | corrected MLE | 126.7 | | 221 | | | | nu hat (MLE) | 159.3 | | | r | nu star (| pias corrected | 144.2 | | 222 | | | Adjusted | Level of Significance (β) | 0.0407 | | | | | | | | 223 | | Appr | oximate Chi S | Square Value (144.17, α) | 117.4 | | P | Adjusted Chi Sq | uare Va | lue (144.17, β | 116 | | 224 | | 95% Gamma | Approximate | e UCL (use when n>=50) | 386.6 | | 95% Ga | amma Adjusted | UCL (u | se when n<50 | 391.4 | | 225 | | | | | | | | | | | | | 226 | | | | Estimates of G | amma Parai | meters using | y KM Estima | ites | | | | | 227 | | | | Mean (KM) | 317.6 | | | | | SD (KM | 175.6 | | 228 | | | | Variance (KM) | 30853 | | | | SE | of Mean (KM | 33.24 | | 229 | | | | k hat (KM) | 3.269 | | | | | k star (KM | 2.954 | | 230 | | | | nu hat (KM) | 189.6 | | | | | nu star (KM | 171.3 | | 231 | | | | theta hat (KM) | 97.15 | | | | | theta star (KM | 107.5 | | 232 | | | 80% | gamma percentile (KM) | 453.8 | | | 90% g | jamma p | percentile (KM | 565.3 | | 233 | | | 95% | gamma percentile (KM) | 669.5 | | | 99% g | jamma p | ercentile (KM | 895.4 | | 234 | | | | | | | | | | | | | 235 | | | | Gamm | a Kaplan-M | eier (KM) Sta | atistics | | | | | | 236 | | Appr | oximate Chi S | Square Value (171.33, α) | 142.1 | | P | Adjusted Chi Sq | uare Va | lue (171.33, β | 140.5 | | 237 | 95% | Gamma App | proximate KM | I-UCL (use when n>=50) | 383 | | 95% Gamm | na Adjusted KM | -UCL (u | se when n<50 | 387.4 | | 238 | | | | | | Į. | | | | | 1 | | 239 | | | | Lognormal GO | F Test on D | etected Obs | ervations O | nly | | | | | 240 | | | SI | napiro Wilk Test Statistic | 0.778 | | | Shapiro Wilk | GOF Te | est | | | 241 | | | 5% Sh | napiro Wilk Critical Value | 0.923 | De | etected Data | Not Lognorma | l at 5% S | Significance Le | evel | | 242 | | | | Lilliefors Test Statistic | 0.298 | | | Lilliefors Go | OF Test | | | | 243 | | | 50 | % Lilliefors Critical Value | 0.167 | De | etected Data | Not Lognorma | l at 5% S | Significance Le | evel | | 244 | | | | Detected Data | Not Lognorm | nal at 5% Sig | gnificance Le | evel | | | | | 245 | | | | | | | | | | | | | 246 | | | | Lognormal RO | S Statistics (| Using Impute | ed Non-Dete | ects | | | | | 247 | | | | Mean in Original Scale | 316.7 | | | | Mea | n in Log Scale | 5.586 | | 248 | | | | SD in Original Scale | 179.9 | | | | S | D in Log Scale | 0.612 | | 249 | | 95% t U | JCL (assume: | s normality of ROS data) | 373.6 | | | 95% Pe | rcentile | Bootstrap UCL | . 370 | | 250 | | | | 95% BCA Bootstrap UCL | 375.8 | | | | 95% B | ootstrap t UCI | 374.9 | | 251 | | | | 95% H-UCL (Log ROS) | 407.4 | | | | | | | | 252 | | | | | | Į. | | | | | | | 253 | | | Statis | tics using KM estimates | on Logged [| Data and Ass | suming Logr | normal Distribu | tion | | | | 254 | | | | KM Mean (logged) | 5.595 | | | | | KM Geo Mear | 269.2 | | 255 | | | | KM SD (logged) | 0.584 | | | 95% Cri | tical H V | alue (KM-Log | 2.019 | | 256 | | | KM Standar | d Error of Mean (logged) | 0.111 | | | ! | 95% H-I | JCL (KM -Log | 399.1 | | 257 | | | | KM SD (logged) | 0.584 | | | 95% Cri | tical H V | 'alue (KM-Log | 2.019 | | 258 | | | KM Standar | d Error of Mean (logged) | 0.111 | | | | | | | | 259 | | | | | | <u>I</u> | | | | | 1 | | 260 | | | | | DL/2 S | tatistics | | | | | | | 261 | | | DL/2 N | lormal | | | | DL/2 Log-Tra | nsforme | ed | | | 262 | | | | Mean in Original Scale | 314.1 | | | | Mea | n in Log Scale | 5.548 | | 263 | | | | SD in Original Scale | 183.5 | | | | S | D in Log Scale | 0.696 | | 264 | | | 95% t U | ICL (Assumes normality) | 372.1 | | | | 95 | 5% H-Stat UCL | 432.1 | | 265 | | | DL/2 i | s not a recommended me | ethod, provid | ded for comp | oarisons and | d historical reas | sons | | 1 | | 266 | | | | | | | | | | | | | 267 | | | | Nonparame | etric Distribu | tion Free UC | CL Statistics | | | | | | | | | | • | | | | | | | | | 268 | | | | Data do not follow a Di | iscernible Di | stribution at | 5% Signific | ance Level | | | | | 268
269 | | | | Data do not follow a Di | iscernible Di | stribution at | 5% Signific | ance Level | | | | | 268
269
270 | | | | Data do not follow a Di | | stribution at
UCL to Use | 5% Signific | ance Level | | | | | | Α | В | С | D | Е | F | G | Н | I | J | K | L | | | | |-----|---|---|-------------|-------------|--------------|-----------------|---------------|-------------|---------------|--------------|---------------|---|--|--|--| | 271 | | | 95 | % KM (Cheb | yshev) UCL | 462.5 | | | | | | | | | | | 272 | | | | | | | | | | | | | | | | | 273 | | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. | | | | | | | | | | | | | | | 274 | | Recommendations are based upon data size, data distribution, and skewness. | | | | | | | | | | | | | | | 275 | | These recom | nmendations | are based ι | pon the resu | ılts of the sim | ulation studi | es summariz | zed in Singh, | Maichle, and | d Lee (2006). | | | | | | 276 | Н | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. | | | | | | | | | | | | | | | 277 | | | | | | | | | | | | | | | | ### **TBM Spoil Waste Categorisation Report** | TBM Spoil Waste | E05.0120220427101753_03 | This report is attached as part of a WCR form | |-----------------|-------------------------|--| | Cat Report No: | | referencing <u>WGT-302-000-WKN-CJH-105-SWI-0001_01</u> | ATTACHMENT C: LABORATORY CERTIFICATES Sydney Laboratory Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 Brisbane Laboratory Perth Laboratory Melbourne Laboratory 6 Monterey Road Dandenong South VIC 3175 CHAIN OF CUSTODY RECORD nit 2 91 Leach Highway Kewdale WA 6105 it 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com 03 8564 5000 EnviroSampleVic@eurofins.com Emma.S - EP Risk Project Manager Company Proiect № Sampler(s) AGON Environmental - Tunnel Spoil Testing Craig Trimbur LR - EP RISK WGTP-Tunnel Ref: 20220419042301-Eurofin-21 Handed over by Project Name Esdat Address Unit H76, 63-85 Turner St, Port Melbourne VIC 3207 Email for Invoic LabReports.TST@agonenviro.com.au LabReports.TST@agonenviro.com.au Craig Trimbur David Lawson agonenvironmental@esdat.com.au motherhublabresults1@wgtp.com.au Email for Results Fluordef pH PFAS Extended Suite - 0.1- 5ug/kg ASLP PH 5 - PFAS 0.01-0.05 ug/l Amrit.Kaur@agile-analytics.com.au PFAS 0.01-0.05ug/l +61 400 826 907 (Craig) +61 490 411 004 (David) Please provide an interim lab report if finalised report has not been provided by 14 days from sample receipt. S ☐ Overnight (reporting by 9am) ◆ Spoil Sample Pre Please provide eSRN along with oter sample recipt ASLP I Agon WGTP TST Client Sample ID SX_20220416_08_36_SS_Triplicate_EUF XXXXX XXXX SX_20220416_08_44_SS_Primary_EUF 16/04/22 XXXXX SX IB 20220416 12 10 SS Primary EUF 16/04/22 XXXX SX IB 20220416 16 18 SS Primary EUF 16/04/22 S XXXXX SX_IB_20220416_16_22_SS_Duplicate_EUF 16/04/22 SX IB 20220416 16 49 SR Rinsate EUF 16/04/22 s SX IB 20220416 16 50 SB Blank EUF X 16/04/22 S SX_IB_20220416_20_02_SS_Primary_EUF s XXXXX SX_IB_20220417_00_01_SS_Primary_EUF 17/04/22 XXXX SX IB 20220417 03 57 SS Primary EUF 17/04/22 s XXXXX XXXXX SX IB 20220417 08 05 SS Primary EUF 17/04/22 SX_IB_20220417_08_10_SS_Triplicate_EUF 17/04/22 XXXXX XXXXX SX_IB_20220417_12_28_SS_Primary_EUF 17/04/22 SX_IB_20220417_15_56_SS_Primary_EUF XXXXX 17/04/22 S XXXXX SX_IB_20220417_15_56_SS_Duplicate_EUF XXXX SX_IB_20220417_20_03_SS_Primary_EUF 17/04/22 S SX_IB_20220418_00_05_SS_Primary_EUF 18/04/22 s XXXXX X X X X X SX_IB_20220418_04_01_SS_Primary_EUF 18/04/22 S SX_IB_20220418_08_08_SS_Triplicate_EUF 18/04/22 XXXXX XXXXX SX_IB_20220418_08_09_SS_Primary_EUF 18/04/22 S s | X | X | X | X SX IB 20220418 11 57 SS Primary EUF 18/04/22 SX_IB_20220418_16_08_SS_Primary_EUF 18/04/22 XXXX XXXXX SX_IB_20220418_16_09_SS_Duplicate_EUF 18/04/22 SX IB 20220418 19 59 SS Primary EUF X X X X X 18/04/22 S XXXXX SX IB 20220419 00 03 SS Primary EUF 19/04/22 S X X X X X SX_IB_20220419_03_57_SS_Primary_EUF 19/04/22 S 24 24 26 24 24 Method of Shipment Courier (#) Hand Delivered Postal Name Signature Date SYD | BNE | MEL | PER | ADL | NTL | DRW Received By Signature Date Temperature Laboratory Use Only Received By SYD | BNE | MEL | PER | ADL | NTL | DRW Date Signature Time Report № Eurofins Environment Testing Australia Ptv Ltd | Jaconity | Received By | | | | _ | PER AL | DL NTL | DRW S | ignature | - | | | Dute | 19412 | 22 | Time | | 7 | 30 | | | erature
ort No | 12- | 20 | |--------------------|--|---|-----------------------|---------------|---|--|---------------------------------|----------------------|----------|-------|-------------------|------------|------|-------|------|---------------|---------------|--------------------|---------------------|--|-------------------------|---------------------------------------|--------------------|-----------| | ory Use Only | | m. Mi | | | Pos
MEL | | Name
DL [NTL] | | ignature | sa | - | nature | Date | | | Date | _ | | | | | íme | | | | od of | Courier (# |
Total Count | and Delivered | 24 | 24 | 26 | | 24 | | | | | | | | | | | | 1 | 5 | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | | | | | SX_IB_20220419 | L03_57_SS_Primary_EUF | 19/04/22 | S | X | X | × | X | × | | | | | | | | | | | | | | | | | | | 0_00_03_SS_Primary_EUF | 19/04/22 | S | X | × | X | X | × | | | | | | | | | | | | | | | | | | | 3_19_59_SS_Primary_EUF | 18/04/22 | S | X | X | × | X | × | | | | | | | | | | | F | | | | | T | | | _16_09_SS_Duplicate_EUF | 18/04/22 | S | X | X | × | × | × | | | | | | | | | | | | | | | | | | | 8_16_08_SS_Primary_EUF | 18/04/22 | S | X | × | × | | × | | | | | | | | | | | | | | | | | | | 8_11_57_SS_Primary_EUF | 18/04/22 | 8 | X | X | × | | X | | | | | | | | | | | | | | | | | | | 8_08_09_SS_Primary_EUF | 18/04/22 | S | X | X | × | X | × | | | | | | | | | | | | | | | | | | | 3_08_08_SS_Triplicate_EUF | 18/04/22 | S | X | X | | × | × | | | | | | | | | | | | | | | | | | | 8_04_01_SS_Primary_EUF | 18/04/22 | S | X | X | | X | × | | | | | | | | | | | | | | | | | | | 18_00_05_SS_Primary_EUF | 18/04/22 | s | X | | | X | × | | | | | | | | | | | | | | | | | | | 17_20_03_SS_Primary_EUF | 17/04/22 | S | × | X | × | X | × | | | | | | | | | | | | | | | | | | | 7_15_56_S\$_Duplicate_EUF | 17/04/22 | S | X | | | × | X | | | | | | | | | | | | | A | - 9 | | | | | 17_15_56_SS_Primery_EUF | 17/04/22 | S | X | - | _ | X | × | | | | | | | | | | | | | 1 | | | | | | 17_12_28_SS_Primary_EUF | 17/04/22 | S | X | X | × | × | × | | | | | | | | | | | | | 1 | | | | | | 17_08_10_\$S_Triplicate_EUF | 17/04/22 | S | X | X | × | × | × | | | | | | | | | | | | | 1 | | | | | | 17_08_05_SS_Primary_EUF | 17/04/22 | S | X | X | X | X | X | | | | | | | | | | | | | t | | | | | | 117_03_57_SS_Primary_EUF | 17/04/22 | s | X | × | X | × | X | | | | | | | | | | | | | 1 | | | | | | 117_00_01_SS_Primary_EUF | 17/04/22 | s | X | X | X | × | × | | | | | | | NI I | | | | | | 1 | | | | | | 416_20_02_\$\$_Primary_EUF | 16/04/22 | s | X | | X | × | × | | | | | | | | | | | | | 1 | | | | | | 0416_16_50_SB_Blank_EUF | 16/04/22 | 8 | | | × | | | | | | | | | | | | | | | 1 | | | | | | 416_16_49_SR_Rinsate_EUF | 16/04/22 | S | | | × | | | | | | | | | | | | | | | 1 | | | | | | H6_16_22_SS_Duplicate_EUF | 16/04/22 | ŝ | > | (> | (X | × | X | | | | | | | | | | | | | 4 | | | | | | 416_16_18_S\$_Primary_EUF | 16/04/22 | S | × | () | (X | × | × | | | | | | | | | | | | | ā | | | | | | 9416_12_10_SS_Primary_EUF | 16/04/22 | S | > | () | (X | × | × | | | | | | | | | | | | | 1 | | | | | | 116_08_44_SS_Primary_EUF | 16/04/22 | s | > | () | K X | × | × | | | | | | | | | | | | | 1 | | | | | SX_202204 | 16_08_36_SS_Triplicate_EUF | 16/04/22 | \$ | > | () | K X | × | X | | | | | | | | | 1 | | | | 1 | | - | | | Ρ, | Client Sample (D | Date/Time
ddmmlyy hti mm | Solid (S)
Water (W | | Suite WG | (As, Cd, C | | | | | | | | | | | | | | | - S | Sar.
Dangerous | ple Com
Goods F | me
laz | | | | Sampled | Matrix | | TP-R1-TR | Cr, Cu, Ni, | | | | | | | | | | 500mL Plastic | 125mL | 200mL Amber Glass | 40mL VOA vial | 500mL PFAS Bottle | /Ashestos AS4 | Other(| | | | se Order
e ID № | Agon WGTP TST | | | Sull | ods
H/PAH/P | Pb,Hg, Ag | ASLP P | ASLP Reag | | | | | | | | 500mL Plastic | 125mL Plastic | ber Glass | DA vial | AS Bottle | 264, WA G. | 2 days (| Œ | 1 | | | Please provide eSRN along w documentation. | rith oter sample recip | ot | TE code mus | Sample
henols/O | Sn, Mo, | 15-PFAS | e t | | | | | | | | | | | | | 3 5 | Overnigi
Same da | | ngi | | Directions | +61 490 411 004 (David) Please provide an interim lab not been provided by 14 days | report if finalised rep
from sample receip | port has t. | to used to at | Spoil Sample Preparation H/ Phenols/ OCP/ PCR/ V/ | Ni, Pb,Hg, Ag, Sn, Mo, Se, Zny Gr64 CN/ Total Fluoride/ pH PFAS Extended Suite - 0.1. Fluotice | ASLP PH 5 - PFAS 0.01-0.05 ug/l | - PFAS 0.01-0.05ugil | | | | | | | | Cr | nange con | Conta
lamer typ | ainers
>e & size | if necess | ary. | Required
Default | Mill be 5 day | rs d r | | one Ne | +61 400 826 907 (Cralg) | | | rect SUITE p | C/ Vind | H/CN/Tot | F6 |)Sugil | | | | | | | | Emai | l for Re | sults | | agoner
mother | ivironmeni
hublabres | el@esdat.d
lits1@wgt
analytics. | om.au
o.com.au | | | act Name | Craig Trimbur
David Lawson | | | or "Faltered" | Phoridal I. | tal Fluoride | | | | | | | | | | Emai | l for In | voice | H | LabRe _i
LabRe _i | orts.TST@
ports.TST@ | gagonenvii
Qagonenvii | o.com.au | | | idress | Unit H76, 63-85 Turner St, I | Port Melbourne VIC | 3207 | Ī | | | 22041904 | 2301-Eurofi | n-21 | ESdat | EQuIS etc | Esdat | | | | | ded ov | | H | finance | enone@e | viro.com.a | | | | | | | | oject Na | | WGTP | Tunnel | | | _ | Manager
Format | Cralg Trin | nbur | | | s | ampler | (s) | п | LR - E | | | | | | | | inel Spoil Testing | | Project N | ₩. | JC092 | 7 | | | | Marine Street | | | | | | | | | | S - EP Ris | 6 | | | #### **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 84 NATA # 1261 Site # 1254 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 #### Sample Receipt Advice Company name: Contact name: Agon Environmental Pty Ltd - VIC Agon Lab Reports (Spoil Project) 20220419042301-Eurofin-21 Project name: Project ID: Turnaround time: JC0927 3 Day Date/Time received **Eurofins reference** Apr 19, 2022 3:30 PM 880891 #### Sample Information - A detailed list of analytes logged into our LIMS, is included in the attached summary table. - All samples have been received as described on the above COC. - COC has been completed correctly. - Attempt to chill was evident. - Appropriately preserved sample containers have been used. - All samples were received in good condition. - Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times. - Appropriate sample containers have been used. - Sample containers for volatile analysis received with zero headspace. - Split sample sent to requested external lab. - Some samples have been subcontracted. - N/A Custody Seals intact (if used). #### **Notes** #### Contact If you have any questions with respect to these samples, please contact your Analytical Services Manager: Michael Cassidy on phone: +61 3 8564 5000 or by email: Michael Cassidy@eurofins.com Results will be delivered electronically via email to Agon Lab Reports (Spoil Project) - labreports.TST@agonenviro.com.au. Note: A copy of these results will also be delivered to the general Agon Environmental Pty Ltd - VIC email address. Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|-------------------|--------|-------------------|------------------------|--------------|---|---------------------| | | ourne Laborato | | | 4 | | Х | Χ | Х | Х | | | ney Laboratory | | | | | | | | | | Bris | bane Laborator | y - NATA # 1261 | Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | Exte | rnal Laboratory | | | | i | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036819 | | Х | х | Х | | 2 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036820 | | Х | Х | х | | 3 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | M22-
Ap0036821 | | Х | Х | Х | | | | 4 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036822 | | Х | Х | х | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO
Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Received: Due: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Phone: Fax: 179 Magowar Road **Eurofins Environment Testing Australia Pty Ltd** Sydney 08 8338 1009 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) Apr 21, 2022 Apr 19, 2022 3:30 PM | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | |-------|---|-----------------|---------------|-------|-------------------|------------------------|--------------|---|---------------------|--| | Melb | ourne Laborato | ry - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | Sydr | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | | Brisl | oane Laboratory | / - NATA # 1261 | Site # 20794 | ļ. | | | | | | | | Mayt | ield Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | | Perti | n Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 5 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | Soil | M22-
Ap0036823 | | x | x | x | | | 6 | SX_IB_202204
16_16_49_SR
_Rinsate_EUF | Apr 16, 2022 | | Water | M22-
Ap0036824 | | | Х | | | | 7 | SX_IB_202204
16_16_50_SB
_Blank_EUF | Apr 16, 2022 | | Water | M22-
Ap0036825 | | | Х | | | | 8 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036826 | | Х | Х | Х | | | 9 | SX_IB_202204 | Apr 17, 2022 | | Soil | M22- | | Х | Х | Х | | Melbourne 6 Monterey Road ABN: 50 005 085 521 Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 Phone: Fax: 08 8338 1009 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sam | nple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-------------------|---------------|------|-------------------|------------------------|--------------|---|---------------------| | Mel | bourne Laborato | ory - NATA # 126 | 1 Site # 1254 | | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 Si | ite # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 1261 | Site # 20794 | | | | | | | | May | field Laboratory | - NATA # 1261 S | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Site | # 2370 | | | | | | | | Exte | rnal Laboratory | , | | | | | | | | | 9 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | S | Soil | M22-
Ap0036827 | | | | | | 10 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | S | Soil | M22-
Ap0036828 | | х | Х | х | | 11 | SX_IB_202204
17_08_05_SS
_Primary_EUF | M22-
Ap0036829 | | х | х | х | | | | | 12 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | S | Soil | M22-
Ap0036830 | | х | х | х | | 13 | SX_IB_202204 | Apr 17, 2022 | 5 | Soil | M22- | | Х | Х | Х | Melbourne Sydney 6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217 ABN: 50 005 085 521 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: email: EnviroSales@eurofins.com 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: 08 8338 1009 880891 Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | |------|---|-----------------------------|-------------------|------|-------------------|------------------------|--------------|---|---------------------|--| | Mell | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 4 | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | | Exte | rnal Laboratory | , | | | | | | | | | | | 17_12_28_SS
_Primary_EUF | | | | Ap0036831 | | | | | | | 14 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036832 | | х | х | х | | | 15 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | | M22-
Ap0036833 | | х | х | х | | | | | 16 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036834 | | Х | Х | х | | | 17 | SX_IB_202204
18_00_05_SS | Apr 18, 2022 | | Soil | M22-
Ap0036835 | | Х | Х | х | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Received: Perth 46-48 Banksia Road Welshpool WA 6106 Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------|--------------|------|-------------------|------------------------|--------------|---|---------------------| | | oourne Laborato | - | | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | , | i | | | | | | | 18_00_05_SS
_Primary_EUF | | | | Ap0036835 | | | | | | 18 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036836 | | х | х | х | | 19 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036837 | | х | x | х | | 20 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036838 | | х | х | х | | 21 | SX_IB_202204
18_11_57_SS | Apr 18, 2022 | | Soil | M22-
Ap0036839 | | Х | Х | Х | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road
Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: 880891 08 8338 1009 Fax: **Eurofins Environment Testing Australia Pty Ltd** Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------|-------------------|------------------------|--------------|---|---------------------| | Melk | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 126 ² | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 |) | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | | | | | | | | | _Primary_EUF | | | | | | | | | | 22 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036840 | | х | х | х | | 23 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036841 | | х | х | х | | 24 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036842 | | х | х | х | | 25 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036843 | | х | х | х | email: EnviroSales@eurofins.com **Environment Testing** Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 **Company Name:** Address: web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) IANZ # 1327 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 [,] | Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | • | 1 | | | | | | 26 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036844 | | х | х | х | | 27 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036845 | Х | | Х | | | 28 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036846 | х | | х | | | 29 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036847 | х | | Х | | | 30 | SX_IB_202204
16_16_18_SS | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036848 | Х | | Х | | email: EnviroSales@eurofins.com ### **Environment Testing** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Brisbane 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Newcastle 1/21 Smallwood Place 4/52 Industrial Drive Mayfield East NSW 2304 Murarrie QLD 4172 Phone: +61 7 3902 4600 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** Project ID: 20220419042301-Eurofin-21 JC0927 Order No.: Report #: 880891 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** 08 8338 1009 **Priority: Contact Name:** Received: Due: Agon Lab Reports (Spoil Project) Apr 19, 2022 3:30 PM Apr 21, 2022 3 Day | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Χ | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | bane Laboratory | * | | | | | | | | | | field Laboratory | | | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | r | r | r | | | | | | | _Primary_EUF | | | | | | | | | | 31 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036849 | Х | | х | | | 32 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036850 | Х | | Х | | | 33 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036851 | Х | | Х | | | 34 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036852 | Χ | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth NZBN: 9429046024954 Apr 19, 2022 3:30 PM Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Due: **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) Apr 21, 2022 | | | Saı | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|------------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 126 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory - | - NATA # 1261 S | Site # 18217 | | | | | | | | Bris | bane Laboratory | / - NATA # 1261 | Site # 20794 | ı | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 35 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036853 | Х | | х | | | 36 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036854 | Х | | х | | | 37 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036855 | Х | | х | | | 38 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036856 | Х | | Х | | | 39 | SX_IB_202204 | Apr 17, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA #
1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Apr 19, 2022 3:30 PM NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Phone: Fax: Due: 08 8338 1009 **Priority:** 3 Day ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth **Contact Name:** Agon Lab Reports (Spoil Project) Apr 21, 2022 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-------------------|--------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | | ourne Laborato | | Х | Х | Х | Х | | | | | Syd | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | | bane Laborator | | | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | , | <u> </u> | | | | | | | | | 17_15_56_SS
_Duplicate_EU
F | | | - pH 5.0 | Ap0036857 | | | | | | 40 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036858 | Х | | х | | | 41 | SX_IB_202204
18_00_05_SS
_Primary_EUF | M22-
Ap0036859 | Х | | х | | | | | | 42 | SX_IB_202204
18_04_01_SS
_Primary_EUF | M22-
Ap0036860 | Х | | х | | | | | | 43 | SX_IB_202204
18_08_08_SS | M22-
Ap0036861 | Х | | Х | | | | | ABN: 50 005 085 521 Melbourne Sydney 6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) Apr 19, 2022 3:30 PM | | | Sa | ımple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | |------|---|--|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------|--| | Mell | bourne Laborato | ourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | Bris | bane Laborator | y - NATA # 126 | 1 Site # 2079 | 4 | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | | Pert | h Laboratory - N | NATA # 2377 Si | te # 2370 | | | | | | | | | Exte | rnal Laboratory | 1 | , | 1 | | | | | | | | | 18_08_08_SS
_Triplicate_EU
F | | | - pH 5.0 | Ap0036861 | | | | | | | 44 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036862 | х | | х | | | | 45 | SX_IB_202204
18_11_57_SS
_Primary_EUF | M22-
Ap0036863 | х | | х | | | | | | | 46 | SX_IB_202204
18_16_08_SS
_Primary_EUF | M22-
Ap0036864 | х | | х | | | | | | | 47 | SX_IB_202204
18_16_09_SS | M22-
Ap0036865 | Х | | Х | | | | | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail Sample Detail | | | | | | | | IWRG 621 WGTP Suite | |------|---|-------------------|----------------|--------------------------|-------------------|---|---|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Duplicate_EU
F | | | | | | | | | | 48 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036866 | х | | х | | | 49 | SX_IB_202204
19_00_03_SS
_Primary_EUF | х | | х | | | | | | | 50 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036868 | Х | | Х | | | 51 | SX2022041
6_08_36_SS_
Triplicate_EUF | M22-
Ap0036869 | Х | | х | | | | | Melbourne 6 Monterey Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290 Apr 19, 2022 3:30 PM 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Phone: 08 8338 1009 Fax: Due: Apr 21, 2022 Perth 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | IWRG 621 WGTP Suite | |------|---|-------------------|---------------|------------------------------------|-------------------|---|---|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 | Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | l . | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | , | | | | | | | | | 52 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036870 | Х | | Х | | | 53 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036871 | Х | | Х | | | 54 | SX_IB_202204
16_16_18_SS
_Primary_EUF | M22-
Ap0036872 | Х | | Х | | | | | | 55 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | M22-
Ap0036873 | х | | х | | | | | | 56 | SX_IB_202204 | Apr 16, 2022 | | AUS Leachate | M22- | Χ | | Х | | ABN: 50 005 085 521 **Eurofins Environment Testing Australia Pty Ltd** Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 IANZ # 1327 NZBN: 9429046024954 Auckland 35 O'Rorke Road Apr 19, 2022 3:30 PM Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 Order No.: Report #:
880891 08 8338 1009 Phone: Fax: Received: ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) **Eurofins Analytical Services Manager: Michael Cassidy** | Company | Mama: | Aa | |------------|---------|----| | CUIIIDAIIV | maille. | Au | agon Environmental Pty Ltd - VIC Fullarton SA 5063 **Project Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com 20220419042301-Eurofin-21 3/224 Glen Osmond Road Project ID: Address: JC0927 | | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | | | | |------|---|-----------------------------|------------------------|------------------------------------|---|---------------------|---|---|--|---| | Mel | bourne Laborato | ory - NATA # 12 | | Х | Х | Х | Х |] | | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 [,] | 1 Site # 20794 | 1 | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | | Per | th Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | | Exte | ernal Laboratory | | ī | ı | • | | | | | 1 | | | 16_20_02_SS
_Primary_EUF | | | - Reagent
Water | Ap0036874 | | | | | | | 57 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036875 | х | | х | | | | 58 | SX_IB_202204
17_03_57_SS
_Primary_EUF | M22-
Ap0036876 | х | | х | | | | | | | 59 | SX_IB_202204
17_08_05_SS
_Primary_EUF | M22-
Ap0036877 | Х | | х | | | | | | | 60 | SX_IB_202204
17_08_10_SS
_Triplicate_EU | M22-
Ap0036878 | х | | х | | | | | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | Sample Detail elbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | IWRG 621 WGTP Suite | |------|---|-------------------|---------------|------------------------------------|-------------------|---|---|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 | 1 Site # 2079 | 4 | | | | | | | | field Laboratory | | | | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | Exte | ernal Laboratory | I | | 1 | | | | | | | | _Triplicate_EU
F | | | Water | | | | | | | 61 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036879 | Х | | х | | | 62 | | | | | | | | х | | | 63 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | M22-
Ap0036881 | х | | х | | | | | | 64 | SX_IB_202204
17_20_03_SS | M22-
Ap0036882 | Х | | Х | | | | | Melbourne 6 Monterey Road Phone: +61 3 8564 5000 ABN: 50 005 085 521 NATA # 1261 Site # 1254 Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: 880891 08 8338 1009 Fax: Received: 46-48 Banksia Road Welshpool WA 6106 Perth Due: Apr 19, 2022 3:30 PM Apr 21, 2022 **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |-------|--|-------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | | Х | Х | Х | Х | | | | Sydr | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | l . | | | | | | | Perti | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Primary_EUF | | | Water | | | | | | | 65 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036883 | х | | х | | | 66 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036884 | х | | х | | | 67 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | M22-
Ap0036885 | х | | х | | | | | | 68 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036886 | Х | | Х | | email: EnviroSales@eurofins.com #### **Environment Testing** Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 NZBN: 9429046024954 Apr 21, 2022 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney Due: **Priority: Contact Name:** Received: Perth ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 3 Day Agon Lab Reports (Spoil Project) Apr 19, 2022 3:30 PM | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|---|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | urne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | / - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 69 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036887 | х | | х | | | 70 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036888 | х | | х | | | 71 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | M22-
Ap0036889 | х | | х | | | | | | 72 | SX_IB_202204
18_19_59_SS
_Primary_EUF | M22-
Ap0036890 | х | | х | | | | | | 73 | SX_IB_202204 | Apr 19, 2022 | | AUS Leachate | M22- | Х | | Х | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC > 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address:
JC0927 Order No.: Report #: Phone: 880891 08 8338 1009 Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Day **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail | | | | | | | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|---------------------------------------|---------------|----|----|----|---|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | ey Laboratory | | | | | | | | | | | pane Laboratory | | | | | | | | | | | ield Laboratory | | | | | | | | | | | Laboratory - N | | e # 2370 | | | | | | | | Exte | rnal Laboratory | · · · · · · · · · · · · · · · · · · · | | 1 | | | | | | | | 19_00_03_SS
_Primary_EUF | Ap0036891 | | | | | | | | | 74 | SX_IB_202204
19_03_57_SS
_Primary_EUF | M22-
Ap0036892 | Х | | Х | | | | | | Test | Counts | | 48 | 24 | 74 | 24 | | | | Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 NATA Accredited Accreditation Number 1261 Site Number 1254 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Agon Lab Reports (Spoil Project) Report 880891-L Project name 20220419042301-Eurofin-21 Project ID JC0927 Received Date Apr 19, 2022 | | ı | 1 | 1 | 1 | 1 | 1 | |--|------|----------|--|---|---|---| | Client Sample ID | | | SX20220416
_08_36_SS_Tri
plicate_EUF | SX20220416
_08_44_SS_Pri
mary_EUF | SX_IB_202204
16_12_10_SS_
Primary_EUF | SX_IB_202204
16_16_18_SS_
Primary_EUF | | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036845 | M22-
Ap0036846 | M22-
Ap0036847 | M22-
Ap0036848 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 10 | 10 | 5.6 | 10 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 72 | 80 | 78 | 86 | | 13C5-PFPeA (surr.) | 1 | % | 78 | 84 | 83 | 96 | | 13C5-PFHxA (surr.) | 1 | % | 63 | 65 | 75 | 73 | | 13C4-PFHpA (surr.) | 1 | % | 79 | 94 | 83 | 101 | | 13C8-PFOA (surr.) | 1 | % | 69 | 83 | 73 | 86 | | 13C5-PFNA (surr.) | 1 | % | 70 | 86 | 78 | 91 | | 13C6-PFDA (surr.) | 1 | % | 77 | 101 | 74 | 88 | | 13C2-PFUnDA (surr.) | 1 | % | 61 | 88 | 62 | 82 | | 13C2-PFDoDA (surr.) | 1 | % | 53 | 79 | 60 | 73 | | 13C2-PFTeDA (surr.) | 1 | % | - | 73 | 51 | 78 | | Perfluoroalkyl sulfonamido substances | · | т | | | | | | Perfluorooctane sulfonamide (FOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Client Sample ID | | | SX_20220416
_08_36_SS_Tri
plicate_EUF
AUS_Leachate | mary_EUF AUS Leachate | Primary_EUF AUS Leachate | SX_IB_202204
16_16_18_SS_
Primary_EUF
AUS_Leachate | |---|------|------|---|-----------------------|--------------------------|---| | Sample Matrix | | | - pH 5.0
M22- | - pH 5.0
M22- | - pH 5.0
M22- | - pH 5.0
M22- | | Eurofins Sample No. | | | Ap0036845 | Ap0036846 | Ap0036847 | Ap0036848 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonamido substances | | | | | | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 82 | 103 | 80 | 93 | | D3-N-MeFOSA (surr.) | 1 | % | 121 | 174 | 127 | 100 | | D5-N-EtFOSA (surr.) | 1 | % | 130 | 184 | 141 | 99 | | D7-N-MeFOSE (surr.) | 1 | % | 67 | 85 | 73 | 73 | | D9-N-EtFOSE (surr.) | 1 | % | 65 | 89 | 74 | 72 | | D5-N-EtFOSAA (surr.) | 1 | % | 97 | 137 | 107 | 102 | | D3-N-MeFOSAA (surr.) | 1 | % | 89 | 145 | 114 | 117 | | Perfluoroalkyl sulfonic acids (PFSAs) | | 1 | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01
68 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.)
18O2-PFHxS (surr.) | 1 | % | 63 | 74
65 | 87
53 | 81
70 | | 13C8-PFOS (surr.) | 1 | % | 77 | 91 | 73 | 82 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | ı | /0 | 11 | 91 | 73 | 02 | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 63 | 68 | 69 | 70 | | 13C2-6:2 FTSA (surr.) | 1 | % | 112 | 141 | 130 | 133 | | 13C2-8:2 FTSA (surr.) | 1 | % | 65 | 80 | 68 | 70 | | 13C2-10:2 FTSA (surr.) | 1 | % | 43 | 77 | 68 | 74 | | PFASs Summations | | T | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID Sample Matrix | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF
AUS Leachate
- pH 5.0
M22- | SX_IB_202204
16_20_02_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22- | SX_IB_202204
17_00_01_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22- | SX_IB_202204
17_03_57_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22- | |--|------|----------|---|---|---|---| | Eurofins Sample No. | | | Ap0036849 | Ap0036850 | Ap0036851 | Ap0036852 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 11 | 9.4 | 7.4 | 5.7 | | Perfluoroalkyl carboxylic acids
(PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 86 | 83 | 85 | 88 | | 13C5-PFPeA (surr.) | 1 | % | 94 | 84 | 97 | 99 | | 13C5-PFHxA (surr.) | 1 | % | 96 | 74 | 90 | 91 | | 13C4-PFHpA (surr.) | 1 | % | 105 | 93 | 93 | 89 | | 13C8-PFOA (surr.) | 1 | % | 95 | 80 | 78 | 77 | | 13C5-PFNA (surr.) | 1 | % | 95 | 85 | 81 | 84 | | 13C6-PFDA (surr.) | 1 | % | 88 | 88 | 71 | 85 | | 13C2-PFUnDA (surr.) | 1 | % | 71 | 79 | 66 | 71 | | 13C2-PFDoDA (surr.) | 1 | % | 59 | 67 | 54 | 58 | | 13C2-PFTeDA (surr.) | 1 | % | 61 | 74 | 49 | 49 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 96 | 98 | 92 | 82 | | D3-N-MeFOSA (surr.) | 1 | % | 99 | 98 | 71 | 83 | | D5-N-EtFOSA (surr.) | 1 | % | 96 | 97 | 73 | 84 | | D7-N-MeFOSE (surr.) | 1 | % | 64 | 69 | 67 | 73 | | D9-N-EtFOSE (surr.) | 1 | % | 66 | 70 | 65 | 72 | | D5-N-EtFOSAA (surr.) | 1 | % | 99 | 105 | 92 | 95 | | D3-N-MeFOSAA (surr.) | 1 | % | 111 | 112 | 111 | 104 | | Client Sample ID Sample Matrix Eurofins Sample No. | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF
AUS Leachate
- pH 5.0
M22-
Ap0036849 | SX_IB_202204
16_20_02_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22-
Ap0036850 | SX_IB_202204
17_00_01_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22-
Ap0036851 | SX_IB_202204
17_03_57_SS_
Primary_EUF
AUS Leachate
- pH 5.0
M22-
Ap0036852 | |---|------|------|--|--|--|--| | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 93 | 73 | 93 | 96 | | 18O2-PFHxS (surr.) | 1 | % | 90 | 63 | 78 | 62 | | 13C8-PFOS (surr.) | 1 | % | 82 | 80 | 77 | 79 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 65 | 75 | 76 | 67 | | 13C2-6:2 FTSA (surr.) | 1 | % | 81 | 125 | 69 | 100 | | 13C2-8:2 FTSA (surr.) | 1 | % | 61 | 69 | 54 | 59 | | 13C2-10:2 FTSA (surr.) | 1 | % | 56 | 66 | 55 | 46 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |-------------------------------|-----|----------|---|--|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036853 | M22-
Ap0036854 | M22-
Ap0036855 | M22-
Ap0036856 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 7.6 | 5.5 | 5.4 | 5.3 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |--|------|------|---|--|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0
M22- | | Eurofins Sample No. | | | Ap0036853 | Ap0036854 | Ap0036855 | Ap0036856 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 85 | 82 | 59 | 95 | | 13C5-PFPeA (surr.) | 1 | % | 93 | 96 | 62 | 93 | | 13C5-PFHxA (surr.) | 1 | % | 91 | 84 | 58 | 82 | | 13C4-PFHpA (surr.) | 1 | % | 93 | 89 | 60 | 89 | | 13C8-PFOA (surr.) | 1 | % | 85 | 81 | 97 | 88 | | 13C5-PFNA (surr.) | 1 | % | 87 | 86 | 53 | 92 | | 13C6-PFDA (surr.) | 1 | % | 80 | 87 | 95 | 97 | | 13C2-PFUnDA (surr.) | 1 | % | 76 | 82 | 78 | 82 | | 13C2-PFDoDA (surr.) | 1 | % | 61 | 76 | 68 | 75 | | 13C2-PFTeDA (surr.) | 1 | % | 57 | 81 | 14 | 95 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L
| < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 91 | 89 | 51 | 96 | | D3-N-MeFOSA (surr.) | 1 | % | 77 | 86 | 40 | 105 | | D5-N-EtFOSA (surr.) | 1 | % | 78 | 101 | 49 | 116 | | D7-N-MeFOSE (surr.) | 1 | % | 66 | 71 | 43 | 81 | | D9-N-EtFOSE (surr.) | 1 | % | 68 | 72 | 43 | 81 | | D5-N-EtFOSAA (surr.) | 1 | % | 144 | 119 | 36 | 68 | | D3-N-MeFOSAA (surr.) | 1 | % | 127 | 115 | 51 | 108 | | Perfluoroalkyl sulfonic acids (PFSAs) | I | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |---|------|------|---|--|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036853 | M22-
Ap0036854 | M22-
Ap0036855 | M22-
Ap0036856 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | • | | | | | | | Perfluorooctanesulfonic acid (PFOS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 97 | 86 | 31 | 92 | | 18O2-PFHxS (surr.) | 1 | % | 91 | 61 | 22 | 61 | | 13C8-PFOS (surr.) | 1 | % | 82 | 82 | 27 | 88 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 71 | 63 | 24 | 77 | | 13C2-6:2 FTSA (surr.) | 1 | % | 59 | 98 | 50 | 154 | | 13C2-8:2 FTSA (surr.) | 1 | % | 52 | 62 | 35 | 81 | | 13C2-10:2 FTSA (surr.) | 1 | % | 54 | 58 | 34 | 68 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | | | | | | | | Client Sample ID | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF | | SX_IB_202204
18_00_05_SS_
Primary_EUF | SX_IB_202204
18_04_01_SS_
Primary_EUF | |--|------|----------|---|--------------------------|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036857 | M22-
Ap0036858 | M22-
Ap0036859 | M22-
Ap0036860 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 5.4 | 5.3 | 5.3 | 5.4 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Olivert Overville ID | | | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | |--|------|------|-------------------------------|-----------------------------|-----------------------------|-----------------------------| | Client Sample ID | | | 17_15_56_SS_
Duplicate_EUF | 17_20_03_SS_
Primary EUF | 18_00_05_SS_
Primary_EUF | 18_04_01_SS_
Primary_EUF | | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036857 | M22-
Ap0036858 | M22-
Ap0036859 | M22-
Ap0036860 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | 1 | | | | | | Perfluorododecanoic acid (PFDoDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 83 | 81 | 89 | 90 | | 13C5-PFPeA (surr.) | 1 | % | 78 | 92 | 95 | 98 | | 13C5-PFHxA (surr.) | 1 | % | 89 | 86 | 80 | 87 | | 13C4-PFHpA (surr.) | 1 | % | 90 | 85 | 92 | 96 | | 13C8-PFOA (surr.) | 1 | % | 84 | 74 | 81 | 85 | | 13C5-PFNA (surr.) | 1 | % | 88 | 78 | 86 | 89 | | 13C6-PFDA (surr.) | 1 | % | 81 | 77 | 92 | 95 | | 13C2-PFUnDA (surr.) | 1 | % | 76 | 71 | 88 | 78 | | 13C2-PFDoDA (surr.) | 1 | % | 65 | 65 | 88 | 71 | | 13C2-PFTeDA (surr.) | 1 | % | 58 | 61 | 95 | 62 | | Perfluoroalkyl sulfonamido substances | | • | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 83 | 84 | 103 | 97 | | D3-N-MeFOSA (surr.) | 1 | % | 74 | 89 | 125 | 86 | | D5-N-EtFOSA (surr.) | 1 | % | 75 | 102 | 138 | 89 | | D7-N-MeFOSE (surr.) | 1 | % | 64 | 71 | 79 | 74 | | D9-N-EtFOSE (surr.) | 1 | % | 66 | 71 | 83 | 75 | | D5-N-EtFOSAA (surr.) | 1 | % | 140 | 86 | 139 | 116 | | D3-N-MeFOSAA (surr.) | 1 | % | 141 | 111 | 135 | 116 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 89 | 94 | 89 | 95 | | 18O2-PFHxS (surr.) | 1 | % | 72 | 62 | 63 | 78 | | 13C8-PFOS (surr.) | 1 | % | 78 | 74 | 90 | 89 | | Client Sample ID | | | SX_IB_202204
17_15_56_SS_ | SX_IB_202204
17_20_03_SS_ | SX_IB_202204
18_00_05_SS_ | SX_IB_202204
18_04_01_SS_ | |---|------|------|------------------------------|------------------------------|------------------------------|------------------------------| | | | | Duplicate_EUF | - | Primary_EUF | Primary_EUF | | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036857 | M22-
Ap0036858 | M22-
Ap0036859 | M22-
Ap0036860 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid
(6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 65 | 59 | 73 | 70 | | 13C2-6:2 FTSA (surr.) | 1 | % | 70 | 84 | 122 | 75 | | 13C2-8:2 FTSA (surr.) | 1 | % | 62 | 60 | 71 | 65 | | 13C2-10:2 FTSA (surr.) | 1 | % | 55 | 42 | 77 | 70 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | | | ı | 1 | 1 | 1 | |--|------|----------|--|---|---|---| | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036861 | M22-
Ap0036862 | M22-
Ap0036863 | M22-
Ap0036864 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 5.4 | 5.5 | 5.3 | 5.3 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 85 | 89 | 84 | 82 | | 13C5-PFPeA (surr.) | 1 | % | 90 | 98 | 100 | 86 | | 13C5-PFHxA (surr.) | 1 | % | 78 | 94 | 88 | 84 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |---|------|--------------|--|---|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036861 | M22-
Ap0036862 | M22-
Ap0036863 | M22-
Ap0036864 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | 13C4-PFHpA (surr.) | 1 | % | 86 | 94 | 90 | 88 | | 13C8-PFOA (surr.) | 1 | % | 75 | 87 | 76 | 81 | | 13C5-PFNA (surr.) | 1 | % | 81 | 92 | 88 | 87 | | 13C6-PFDA (surr.) | 1 | % | 81 | 87 | 79 | 83 | | 13C2-PFUnDA (surr.) | 1 | % | 74 | 85 | 75 | 75 | | 13C2-PFDoDA (surr.) | 1 | % | 57 | 62 | 69 | 66 | | 13C2-PFTeDA (surr.) | 1 | % | 52 | 53 | 66 | 69 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) $^{\rm N11}$ | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 85 | 99 | 87 | 87 | | D3-N-MeFOSA (surr.) | 1 | % | 72 | 108 | 117 | 111 | | D5-N-EtFOSA (surr.) | 1 | % | 76 | 112 | 131 | 112 | | D7-N-MeFOSE (surr.) | 1 | % | 70 | 80 | 76 | 72 | | D9-N-EtFOSE (surr.) | 1 | % | 69 | 78 | 76 | 73 | | D5-N-EtFOSAA (surr.) | 1 | % | 74 | 146 | 95 | 98 | | D3-N-MeFOSAA (surr.) | 1 | % | 110 | 136 | 89 | 127 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoronexanesulfonic acid (PFHxS)**** Perfluoroneptanesulfonic acid (PFHxS)*** Perfluoronexanesulfonic acid (PFHxS)*** | 0.01 | ug/L | < 0.01
< 0.01 | < 0.01
< 0.01 | < 0.01
< 0.01 | < 0.01
< 0.01 | | Perfluorooctanesulfonic acid (PFHpS)*** Perfluorooctanesulfonic acid (PFOS)**1 | 0.01 | ug/L
ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L
ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | wg/L | 88 | 99 | 96 | 91 | | 1802-PFHxS (surr.) | 1 | % | 64 | 84 | 64 | 73 | | 13C8-PFOS (surr.) | 1 | % | 73 | 85 | 91 | 77 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | ,,, | | | | | | 1H 1H 2H 2H-perfluorohexanesulfonic acid (4·2 | | | | | | | | FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | FTSA) ^{N11} ` | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 67 | 66 | 61 | 63 | | 13C2-6:2 FTSA (surr.) | 1 | % | 99 | 76 | 130 | 71 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |--|------|------|--|---|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036861 | M22-
Ap0036862 | M22-
Ap0036863 | M22-
Ap0036864 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 13C2-8:2 FTSA (surr.) | 1 | % | 57 | 62 | 61 | 56 | | 13C2-10:2 FTSA (surr.) | 1 | % | 61 | 67 | 55 | 62 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF | - | SX_IB_202204
19_00_03_SS_
Primary_EUF | SX_IB_202204
19_03_57_SS_
Primary_EUF | |---|------|----------|---|--------------------------|---|---| | Sample Matrix | | | AUS Leachate
- pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036865 | M22-
Ap0036866 | M22-
Ap0036867 | M22-
Ap0036868 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 1.0 | 1.0 | 1.0 | 1.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 5.0 | 5.0 | 5.0 | 5.0 | | pH (off) | 0.1 | pH Units | 5.2 | 5.0 | 5.1 | 5.1 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 |
< 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 89 | 83 | 83 | 88 | | 13C5-PFPeA (surr.) | 1 | % | 89 | 77 | 83 | 83 | | 13C5-PFHxA (surr.) | 1 | % | 89 | 88 | 90 | 90 | | 13C4-PFHpA (surr.) | 1 | % | 91 | 86 | 91 | 91 | | 13C8-PFOA (surr.) | 1 | % | 81 | 78 | 81 | 83 | | 13C5-PFNA (surr.) | 1 | % | 87 | 79 | 78 | 90 | | 13C6-PFDA (surr.) | 1 | % | 88 | 83 | 75 | 93 | | 13C2-PFUnDA (surr.) | 1 | % | 78 | 79 | 74 | 86 | | 13C2-PFDoDA (surr.) | 1 | % | 73 | 63 | 64 | 76 | | 13C2-PFTeDA (surr.) | 1 | % | 70 | 65 | 57 | 71 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF
AUS Leachate | SX_IB_202204
18_19_59_SS_
Primary_EUF
AUS Leachate | SX_IB_202204
19_00_03_SS_
Primary_EUF
AUS Leachate | SX_IB_202204
19_03_57_SS_
Primary_EUF
AUS Leachate | |--|------|------|---|---|---|---| | Sample Matrix | | | - pH 5.0 | - pH 5.0 | - pH 5.0 | - pH 5.0 | | Eurofins Sample No. | | | M22-
Ap0036865 | M22-
Ap0036866 | M22-
Ap0036867 | M22-
Ap0036868 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | • | | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N- | 0.00 | ug/L | 10.00 | 1 0.00 | 7 0.00 | 7 0.00 | | MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N- | 0.05 | // | .0.05 | .005 | .005 | .005 | | MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 91 | 85
84 | 86
74 | 97
89 | | D3-N-MeFOSA (surr.) | 1 | % | 116 | 82 | 84 | 97 | | D5-N-EtFOSA (surr.) D7-N-MeFOSE (surr.) | 1 | % | 75 | 72 | 71 | 72 | | D9-N-EtFOSE (surr.) | 1 | % | 80 | 71 | 68 | 81 | | D5-N-EtFOSAA (surr.) | 1 | % | 95 | 70 | 100 | 180 | | D3-N-MeFOSAA (surr.) | 1 | % | 130 | 103 | 123 | 150 | | Perfluoroalkyl sulfonic acids (PFSAs) | ı | /0 | 130 | 103 | 123 | 130 | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 95 | 90 | 96 | 94 | | 18O2-PFHxS (surr.) | 1 | % | 74 | 76 | 68 | 56 | | 13C8-PFOS (surr.) | 1 | % | 79 | 77 | 76 | 90 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | ,,, | , , , | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 65 | 61 | 64 | 70 | | 13C2-6:2 FTSA (surr.) | 1 | % | 73 | 63 | 68 | 138 | | 13C2-8:2 FTSA (surr.) | 1 | % | 61 | 54 | 65 | 75 | | 13C2-10:2 FTSA (surr.) | 1 | % | 76 | 64 | 60 | 77 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID Sample Matrix Eurofins Sample No. | | | SX_20220416
_08_36_SS_Tri
plicate_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036869 | SX_20220416
_08_44_SS_Pri
mary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036870 | SX_IB_202204
16_12_10_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036871 | SX_IB_202204
16_16_18_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036872 | |--|------|---|--|---|--|--| | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | l | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 11 | 11 | 9.6 | 11 | | Perfluoroalkyl carboxylic acids (PFCAs) | | 111111111111111111111111111111111111111 | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.03 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 78 | 87 | 76 | 81 | | 13C5-PFPeA (surr.) | 1 | % | 86 | 91 | 76 | 83 | | 13C5-PFHxA (surr.) | 1 | % | 64 | 63 | 63 | 65 | | 13C4-PFHpA (surr.) | 1 | % | 85 | 92 | 77 | 86 | | 13C8-PFOA (surr.) | 1 | % | 81 | 80 | 62 | 75 | | 13C5-PFNA (surr.) | 1 | % | 83 | 84 | 70 | 77 | | 13C6-PFDA (surr.) | 1 | % | 83 | 79 | 74 | 74 | | 13C2-PFUnDA (surr.) | 1 | % | 72 | 69 | 71 | 64 | | 13C2-PFDoDA (surr.) | 1 | % | 66 | 68 | 66 | 61 | | 13C2-PFTeDA (surr.) | 1 | % | 82 | 77 | 84 | 65 | | Perfluoroalkyl sulfonamido substances | | ,,, | 02 | | 0. | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N- | 0.00 | ug/L | \ 0.00 | \ 0.00 | \ 0.00 | \ \ 0.03 | | MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 88 | 94 | 81 | 88 | | D3-N-MeFOSA (surr.) | 1 | % | 101 | 125 | 106 | 105 | | D5-N-EtFOSA (surr.) | 1 | % | 109 | 131 | 109 | 117 | | D7-N-MeFOSE (surr.) | 1 | % | 69 | 76 | 60 | 68 | | D9-N-EtFOSE (surr.) | 1 |
% | 71 | 73 | 60 | 68 | | D5-N-EtFOSAA (surr.) | 1 | % | 104 | 74 | 137 | 90 | | D3-N-MeFOSAA (surr.) | 1 | % | 88 | 75 | 135 | 104 | | Client Sample ID | | | SX_20220416
_08_36_SS_Tri
plicate_EUF
AUS Leachate | SX20220416
_08_44_SS_Pri
mary_EUF
AUS Leachate | SX_IB_202204
16_12_10_SS_
Primary_EUF
AUS Leachate | SX_IB_202204
16_16_18_SS_
Primary_EUF
AUS Leachate | |---|------|------|---|---|---|---| | Sample Matrix | | | - Reagent
Water | - Reagent
Water | - Reagent
Water | - Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036869 | M22-
Ap0036870 | M22-
Ap0036871 | M22-
Ap0036872 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | | • | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 74 | 68 | 81 | 71 | | 18O2-PFHxS (surr.) | 1 | % | 64 | 62 | 51 | 69 | | 13C8-PFOS (surr.) | 1 | % | 85 | 82 | 82 | 83 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 65 | 68 | 62 | 57 | | 13C2-6:2 FTSA (surr.) | 1 | % | 112 | 146 | 106 | 119 | | 13C2-8:2 FTSA (surr.) | 1 | % | 64 | 69 | 52 | 55 | | 13C2-10:2 FTSA (surr.) | 1 | % | 57 | 56 | 72 | 56 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | | SX_IB_202204
16_20_02_SS_
Primary_EUF | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |-------------------------------|-----|----------|------------------------------------|---|---|---| | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036873 | M22-
Ap0036874 | M22-
Ap0036875 | M22-
Ap0036876 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 12 | 11 | 11 | 10.0 | | | | | SX IB 202204 | SX IB 202204 | SX IB 202204 | SX IB 20220 | |---|------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Client Sample ID | | | 16_16_22_SS_ | 16_20_02_SS_ | 17_00_01_SS_ | 17_03_57_SS | | | | | Duplicate_EUF | - | Primary_EUF | Primary_EUF | | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036873 | M22-
Ap0036874 | M22-
Ap0036875 | M22-
Ap0036876 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | • | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 79 | 85 | 76 | 82 | | 13C5-PFPeA (surr.) | 1 | % | 85 | 99 | 88 | 87 | | 13C5-PFHxA (surr.) | 1 | % | 87 | 60 | 69 | 82 | | 13C4-PFHpA (surr.) | 1 | % | 87 | 101 | 82 | 78 | | 13C8-PFOA (surr.) | 1 | % | 84 | 90 | 72 | 69 | | 13C5-PFNA (surr.) | 1 | % | 82 | 98 | 82 | 64 | | 13C6-PFDA (surr.) | 1 | % | 76 | 100 | 75 | 64 | | 13C2-PFUnDA (surr.) | 1 | % | 62 | 89 | 67 | 67 | | 13C2-PFDoDA (surr.) | 1 | % | 50 | 80 | 59 | 59 | | 13C2-PFTeDA (surr.) | 1 | % | 42 | 86 | 64 | 52 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-
MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol
(N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-
EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-
EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-
MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 88 | 104 | 87 | 74 | | D3-N-MeFOSA (surr.) | 1 | % | 57 | 132 | 101 | 91 | | D5-N-EtFOSA (surr.) | 1 | % | 59 | 133 | 92 | 91 | | D7-N-MeFOSE (surr.) | 1 | % | 57 | 78 | 69 | 57 | | D9-N-EtFOSE (surr.) | 1 | % | 54 | 72 | 61 | 60 | | D5-N-EtFOSAA (surr.) | 1 | % | 79 | 63 | 71 | 113 | | D3-N-MeFOSAA (surr.) | 1 | % | 74 | 115 | 85 | 102 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | | | | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | |---|------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Client Sample ID | | | 16_16_22_SS_
Duplicate_EUF | 16_20_02_SS_
Primary_EUF | 17_00_01_SS_
Primary_EUF | 17_03_57_SS_
Primary_EUF | | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036873 | M22-
Ap0036874 | M22-
Ap0036875 | M22-
Ap0036876 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorooctanesulfonic acid (PFOS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 80 | 68 | 85 | 97 | | 18O2-PFHxS (surr.) | 1 | % | 79 | 73 | 78 | 63 | | 13C8-PFOS (surr.) | 1 | % | 77 | 94 | 80 | 72 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | <
0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 53 | 72 | 56 | 62 | | 13C2-6:2 FTSA (surr.) | 1 | % | 61 | 148 | 72 | 76 | | 13C2-8:2 FTSA (surr.) | 1 | % | 56 | 67 | 59 | 48 | | 13C2-10:2 FTSA (surr.) | 1 | % | 45 | 64 | 45 | 63 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |--|------|----------|---|--|---|---| | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036877 | M22-
Ap0036878 | M22-
Ap0036879 | M22-
Ap0036880 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 10 | 9.7 | 9.4 | 9.5 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Client Sample ID Sample Matrix | | | SX_IB_202204
17_08_05_SS_
Primary_EUF
AUS Leachate
- Reagent
Water | SX_IB_202204
17_08_10_SS_
Triplicate_EUF
AUS Leachate
- Reagent
Water | SX_IB_202204
17_12_28_SS_
Primary_EUF
AUS Leachate
- Reagent
Water | SX_IB_202204
17_15_56_SS_
Primary_EUF
AUS Leachate
- Reagent
Water | |--|------|------|---|--|---|---| | Eurofins Sample No. | | | M22-
Ap0036877 | M22-
Ap0036878 | M22-
Ap0036879 | M22-
Ap0036880 | | • | | | 1 - | 1 - | · - | • | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 83 | 79 | 79 | 83 | | 13C5-PFPeA (surr.) | 1 | % | 80 | 88 | 88 | 84 | | 13C5-PFHxA (surr.) | 1 | % | 86 | 71 | 89 | 63 | | 13C4-PFHpA (surr.) | 1 | % | 96 | 83 | 84 | 75 | | 13C8-PFOA (surr.) | 1 | % | 85 | 77 | 71 | 74 | | 13C5-PFNA (surr.) | 1 | % | 86 | 76 | 69 | 84 | | 13C6-PFDA (surr.) | 1 | % | 91 | 81 | 70 | 90 | | 13C2-PFUnDA (surr.) | 1 | % | 89 | 77 | 68 | 88 | | 13C2-PFDoDA (surr.) | 1 | % | 81 | 82 | 67 | 80 | | 13C2-PFTeDA (surr.) | 1 | % | 66 | 113 | 71 | 96 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 91 | 83 | 77 | 88 | | D3-N-MeFOSA (surr.) | 1 | % | 122 | 87 | 80 | 111 | | D5-N-EtFOSA (surr.) | 1 | % | 128 | 95 | 86 | 112 | | D7-N-MeFOSE (surr.) | 1 | % | 78 | 66 | 68 | 75 | | D9-N-EtFOSE (surr.) | 1 | % | 74 | 69 | 65 | 70 | | D5-N-EtFOSAA (surr.) | 1 | % | 115 | 144 | 140 | 162 | | D3-N-MeFOSAA (surr.) | 1 | % | 129 | 116 | 134 | 118 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 103 | 81 | 97 | 80 | | 18O2-PFHxS (surr.) | 1 | % | 100 | 65 | 57 | 50 | | 13C8-PFOS (surr.) | 1 | % | 92 | 81 | 73 | 91 | | | | | | | 1 | |------|--|---|---|---|---| | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | | | M22-
Ap0036877 | M22-
Ap0036878 | M22-
Ap0036879 | M22-
Ap0036880 | | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | LOR | Unit | | | | | | | | | | | | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1 | % | 67 | 64 | 60 | 64 | | 1 | % | 57 | 94 | 92 | 121 | | 1 | % | 64 | 55 | 55 | 73 | | 1 | % | 71 | 67 | 67 | 73 | | | | | | | | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | 0.01
0.05
0.01
1
1
1
1
0.01
0.01
0.01
0.01
0.01 | 0.01 ug/L 0.05 ug/L 0.01 ug/L 0.01 ug/L 1 % 1 % 1 % 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L 0.01 ug/L | 17_08_05_SS_ Primary_EUF AUS Leachate - Reagent Water M22- Ap0036877 Apr 17, 2022 LOR Unit 0.01 ug/L < 0.01 0.05 ug/L < 0.01 1 % 67 1 % 57 1 % 64 1 % 71 0.01 ug/L < 0.01 0.01 cos | 17_08_05_SS_Primary_EUF | 17_08_05_SS_Primary_EUF | | Client Sample ID Sample Matrix Eurofins Sample No. | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036881 | SX_IB_202204
17_20_03_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036882 | SX_IB_202204
18_00_05_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036883 | SX_IB_202204
18_04_01_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036884 | |---|------|----------|--
--|--|--| | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | · | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 9.7 | 9.5 | 9.5 | 9.6 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 79 | 81 | 66 | 72 | | 13C5-PFPeA (surr.) | 1 | % | 82 | 90 | 73 | 82 | Report Number: 880891-L | Client Semale ID | | | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | SX_IB_202204 | |--|------|------|-------------------------------|-----------------------------|-----------------------------|-----------------------------| | Client Sample ID | | | 17_15_56_SS_
Duplicate EUF | 17_20_03_SS_
Primary EUF | 18_00_05_SS_
Primary_EUF | 18_04_01_SS_
Primary EUF | | | | | AUS Leachate | AUS Leachate | AUS Leachate | AUS Leachate | | Sample Matrix | | | - Reagent
Water | - Reagent
Water | - Reagent
Water | - Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036881 | M22-
Ap0036882 | M22-
Ap0036883 | M22-
Ap0036884 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | • | • | | | | | | 13C5-PFHxA (surr.) | 1 | % | 69 | 85 | 54 | 63 | | 13C4-PFHpA (surr.) | 1 | % | 91 | 89 | 74 | 79 | | 13C8-PFOA (surr.) | 1 | % | 83 | 72 | 71 | 77 | | 13C5-PFNA (surr.) | 1 | % | 91 | 77 | 73 | 83 | | 13C6-PFDA (surr.) | 1 | % | 88 | 84 | 76 | 95 | | 13C2-PFUnDA (surr.) | 1 | % | 91 | 76 | 55 | 63 | | 13C2-PFDoDA (surr.) | 1 | % | 84 | 75 | 37 | 41 | | 13C2-PFTeDA (surr.) | 1 | % | 125 | 83 | 121 | 100 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 90 | 86 | 67 | 76 | | D3-N-MeFOSA (surr.) | 1 | % | 104 | 100 | 70 | 76 | | D5-N-EtFOSA (surr.) | 1 | % | 101 | 102 | 66 | 66 | | D7-N-MeFOSE (surr.) | 1 | % | 75 | 70 | 42 | 41 | | D9-N-EtFOSE (surr.) | 1 | % | 70 | 69 | 42 | 43 | | D5-N-EtFOSAA (surr.) | 1 | % | 182 | 142 | 18 | 24 | | D3-N-MeFOSAA (surr.) | 1 | % | 147 | 118 | 29 | 34 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 85 | 95 | 59 | 82 | | 18O2-PFHxS (surr.) | 1 | % | 76 | 70 | 49 | 69 | | 13C8-PFOS (surr.) | 1 | % | 91 | 81 | 80 | 75 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | Г | T | | | | - | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Client Sample ID | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF | | SX_IB_202204
18_00_05_SS_
Primary_EUF | SX_IB_202204
18_04_01_SS_
Primary_EUF | |--|------|------|---|------------------------------------|---|---| | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036881 | M22-
Ap0036882 | M22-
Ap0036883 | M22-
Ap0036884 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 13C2-4:2 FTSA (surr.) | 1 | % | 65 | 64 | 43 | 46 | | 13C2-6:2 FTSA (surr.) | 1 | % | 93 | 80 | 121 | 108 | | 13C2-8:2 FTSA (surr.) | 1 | % | 62 | 54 | 68 | 65 | | 13C2-10:2 FTSA (surr.) | 1 | % | 75 | 58 | 45 | 40 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |--|------|----------|--|-----------------------------------|---|---| | Sample Matrix | | | AUS Leachate
- Reagent
Water
M22- | AUS Leachate - Reagent Water M22- | AUS Leachate - Reagent Water M22- | AUS Leachate - Reagent Water M22- | | Eurofins Sample No. | | | Ap0036885 | Ap0036886 | Ap0036887 | Ap0036888 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 9.7 | 9.8 | 9.4 | 11 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA)N11 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 80 | 74 | 74 | 74 | | 13C5-PFPeA (surr.) | 1 | % | 97 | 73 | 85 | 80 | | 13C5-PFHxA (surr.) | 1 | % | 76 | 70 | 75 | 72 | | 13C4-PFHpA (surr.) | 1 | % | 94 | 87 | 88 | 88 | | 13C8-PFOA (surr.) | 1 | % | 82 | 85 | 80 | 78 | | 13C5-PFNA (surr.) | 1 | % | 92 | 86 | 85 | 88 | | 13C6-PFDA (surr.) | 1 | % | 105 | 96 | 85 | 89 | | 13C2-PFUnDA
(surr.) | 1 | % | 71 | 60 | 65 | 60 | | 13C2-PFDoDA (surr.) | 1 | % | 46 | 42 | 40 | 34 | | 13C2-PFTeDA (surr.) | 1 | % | 100 | 152 | 93 | 83 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF
AUS Leachate
- Reagent | SX_IB_202204
18_08_09_SS_
Primary_EUF
AUS Leachate
- Reagent | SX_IB_202204
18_11_57_SS_
Primary_EUF
AUS Leachate
- Reagent | SX_IB_202204
18_16_08_SS_
Primary_EUF
AUS Leachate
- Reagent | |--|--------------|--------------|---|--|--|--| | Sample Matrix | | | Water | Water | Water | Water | | Eurofins Sample No. | | | M22-
Ap0036885 | M22-
Ap0036886 | M22-
Ap0036887 | M22-
Ap0036888 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 91 | 78 | 77 | 83 | | D3-N-MeFOSA (surr.) | 11 | % | 78 | 87 | 45 | 110 | | D5-N-EtFOSA (surr.) | 11 | % | 74 | 73 | 41 | 125 | | D7-N-MeFOSE (surr.) | 1 | % | 58 | 43 | 44 | 41 | | D9-N-EtFOSE (surr.) | 1 | % | 57 | 40 | 48 | 37 | | D5-N-EtFOSAA (surr.) | 1 | % | 29 | 27 | 24 | 22 | | D3-N-MeFOSAA (surr.) | 1 | % | 33 | 34 | 30 | 23 | | Perfluoroalkyl sulfonic acids (PFSAs) | | Ι | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01
0.01 | ug/L
ug/L | < 0.01
< 0.01 | < 0.01
< 0.01 | < 0.01
< 0.01 | < 0.01
< 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | %
% | 95 | 80 | 83 | 79 | | 18O2-PFHxS (surr.) |
1 | % | 78 | 74 | 59 | 76 | | 13C8-PFOS (surr.) | 1 | % | 91 | 84 | 81 | 85 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | 1 | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 51 | 51 | 49 | 50 | | 13C2-6:2 FTSA (surr.) | 1 | % | 132 | 111 | 137 | 102 | | 13C2-8:2 FTSA (surr.) | 1 | % | 78 | 70 | 70 | 71 | | 13C2-10:2 FTSA (surr.) | 11 | % | 52 | 35 | 44 | 35 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | | 0.04 | 1/1 | 0 01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* Sum of WA DWER PFAS (n=10)* | 0.01
0.05 | ug/L
ug/L | < 0.01
< 0.05 | < 0.05 | < 0.01 | < 0.01 | Report Number: 880891-L | Client Sample ID Sample Matrix Eurofins Sample No. | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036889 | SX_IB_202204
18_19_59_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036890 | SX_IB_202204
19_00_03_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036891 | SX_IB_202204
19_03_57_SS_
Primary_EUF
AUS Leachate
- Reagent
Water
M22-
Ap0036892 | |--|------|----------|--|--|--|--| | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | AUS Leaching Procedure | | | | | | | | Leachate Fluid ^{C01} | | comment | 4.0 | 4.0 | 4.0 | 4.0 | | pH (initial) | 0.1 | pH Units | N/A | N/A | N/A | N/A | | pH (Leachate fluid) | 0.1 | pH Units | 6.3 | 6.3 | 6.3 | 6.3 | | pH (off) | 0.1 | pH Units | 11 | 9.5 | 9.7 | 9.5 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA)N15 | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 72 | 77 | 72 | 76 | | 13C5-PFPeA (surr.) | 1 | % | 77 | 92 | 89 | 83 | | 13C5-PFHxA (surr.) | 1 | % | 69 | 86 | 86 | 70 | | 13C4-PFHpA (surr.) | 1 | % | 85 | 94 | 88 | 87 | | 13C8-PFOA (surr.) | 1 | % | 77 | 86 | 79 | 82 | | 13C5-PFNA (surr.) | 1 | % | 83 | 92 | 85 | 89 | | 13C6-PFDA (surr.) | 1 | % | 84 | 104 | 80 | 101 | | 13C2-PFUnDA (surr.) | 1 | % | 62 | 63 | 57 | 72 | | 13C2-PFDoDA (surr.) | 1 | % | 43 | 38 | 38 | 53 | | 13C2-PFTeDA (surr.) | 1 | % | 105 | 125 | 98 | 139 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 78 | 85 | 82 | 83 | | D3-N-MeFOSA (surr.) | 1 | % | 67 | 54 | 52 | 79 | | D5-N-EtFOSA (surr.) | 1 | % | 72 | 50 | 40 | 77 | | D7-N-MeFOSE (surr.) | 1 | % | 41 | 42 | 42 | 62 | | D9-N-EtFOSE (surr.) | 1 | % | 44 | 38 | 43 | 62 | | D5-N-EtFOSAA (surr.) | 1 | % | 20 | 33 | 27 | 36 | | D3-N-MeFOSAA (surr.) | 1 | % | 31 | 37 | 29 | 41 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF | | SX_IB_202204
19_00_03_SS_
Primary_EUF | SX_IB_202204
19_03_57_SS_
Primary_EUF | |---|------|------|---|------------------------------------|---|---| | Sample Matrix | | | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | AUS Leachate
- Reagent
Water | | Eurofins Sample No. | | | M22-
Ap0036889 | M22-
Ap0036890 | M22-
Ap0036891 | M22-
Ap0036892 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoropentanesulfonic
acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 80 | 93 | 89 | 80 | | 18O2-PFHxS (surr.) | 1 | % | 81 | 84 | 79 | 57 | | 13C8-PFOS (surr.) | 1 | % | 82 | 97 | 83 | 89 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 47 | 50 | 45 | 52 | | 13C2-6:2 FTSA (surr.) | 1 | % | 88 | 93 | 64 | 145 | | 13C2-8:2 FTSA (surr.) | 1 | % | 71 | 75 | 69 | 91 | | 13C2-10:2 FTSA (surr.) | 1 | % | 46 | 45 | 43 | 62 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | < 0.1 | < 0.1 | Report Number: 880891-L #### **Sample History** Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |--|--------------|--------------|---------------------| | AUS Leaching Procedure | | | | | pH (initial) | Melbourne | Apr 20, 2022 | 0 Days | | - Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes | | | | | pH (Leachate fluid) | Melbourne | Apr 20, 2022 | 0 Days | | - Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes | | | | | pH (off) | Melbourne | Apr 20, 2022 | 0 Days | | - Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes | | | | | Per- and Polyfluoroalkyl Substances (PFASs) | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonamido substances | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | PFASs Summations | Melbourne | Apr 19, 2022 | | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | Report Number: 880891-L #### **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Perth NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail | | | | | | | | IWRG 621 WGTP Suite | |------|---|-----------------|------------------|----------|-------------------|---|---|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 1261 | 1 Site # 20794 | 4 | | | | | | | | field Laboratory | | | <u> </u> | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | , | - | 1 | _ | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036819 | | х | х | х | | 2 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036820 | | х | х | х | | 3 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036821 | | х | х | х | | 4 | 4 SX_IB_202204 Apr 16, 2022 Soil M22-
16_16_18_SS
_Primary_EUF Apr 16, 2022 Soil M22- | | | | | | | x | х | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: Phone: 880891 08 8338 1009 Fax: 179 Magowar Road Sydney Received: Apr 19, 2022 3:30 PM Apr 21, 2022 NZBN: 9429046024954 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sar | nple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-------------------|--------------|-------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | Х | Х | Х | Х | | | | | | Sydı | ney Laboratory | - NATA # 1261 S | Site # 18217 | | | | | | | | Bris | bane Laboratory | / - NATA # 1261 | Site # 20794 | ı | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 5 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | Soil | M22-
Ap0036823 | | x | x | x | | 6 | SX_IB_202204
16_16_49_SR
_Rinsate_EUF | Apr 16, 2022 | | Water | M22-
Ap0036824 | | | х | | | 7 | SX_IB_202204
16_16_50_SB
_Blank_EUF | M22-
Ap0036825 | | | х | | | | | | 8 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036826 | | х | х | х | | 9 | SX_IB_202204 | Apr 17, 2022 | | Soil | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Apr 19, 2022 3:30 PM Perth Due: 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |----|--|--------------|-------------|------|-------------------|------------------------|--------------|---|---------------------| | | oourne Laborato | | | 4 | | Х | Х | X | Х | | | ney Laboratory | | | | | | | | | | | bane
Laboratory
field Laboratory | | | | | | | | | | | h Laboratory - N | | | | | | | | | | | rnal Laboratory | | 20.0 | | | | | | | | 9 | SX_IB_202204
17_00_01_SS
_Primary_EUF | I | | Soil | M22-
Ap0036827 | | | | | | 10 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036828 | | х | Х | х | | 11 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036829 | | х | х | х | | 12 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | Soil | M22-
Ap0036830 | | х | х | х | | 13 | SX_IB_202204 | Apr 17, 2022 | | Soil | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|----------------|------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 17_12_28_SS
_Primary_EUF | | | | Ap0036831 | | | | | | 14 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036832 | | х | х | х | | 15 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | ' ' | | Soil | M22-
Ap0036833 | | х | х | х | | 16 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036834 | | Х | Х | х | | 17 | SX_IB_202204
18_00_05_SS | Apr 18, 2022 | | Soil | M22-
Ap0036835 | | х | х | х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: 880891 08 8338 1009 Fax: 179 Magowar Road Received: 46-48 Banksia Road Welshpool WA 6106 Perth Apr 19, 2022 3:30 PM Apr 21, 2022 NZBN: 9429046024954 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|--------------|-------------|----------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | Х | Х | Х | Х | | | | | | | ney Laboratory | | | | | | | | | | | bane Laboratory | | | | | | | | | | | field Laboratory | | | <u> </u> | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | 1 | | | | | | | | 18_00_05_SS
_Primary_EUF | | | | Ap0036835 | | | | | | 18 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036836 | | х | х | Х | | 19 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036837 | | х | x | х | | 20 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036838 | | х | х | х | | 21 | SX_IB_202204
18_11_57_SS | Apr 18, 2022 | | Soil | M22-
Ap0036839 | | Х | Х | х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: Phone: 880891 08 8338 1009 Fax: 179 Magowar Road Due: **Priority:** Perth 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Apr 21, 2022 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) Apr 19, 2022 3:30 PM | | Sample Detail | | | | | | | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | |------|---|-----------------------------|----------------|------|--------------|-------|---|--------------|---|---------------------|--| | Melk | ourne Laborato | ory - NATA # 12 | .61 Site # 125 | 54 | | | Х | Х | Х | Х | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | | Bris | bane Laborator | y - NATA # 126 ⁻ | 1 Site # 2079 | 4 | | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 |) | | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | | | Exte | rnal Laboratory | | 1 | | | | | | | | | | | _Primary_EUF | | | | | | | | | | | | 22 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap00 | 36840 | | х | х | х | | | 23 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap00 | 36841 | | х | x | х | | | 24 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap00 | 36842 | | х | х | Х | | | 25 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap00 | 36843 | | х | х | х | | Melbourne ABN: 50 005 085 521 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Apr 19, 2022 3:30 PM Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC > 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Received: Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydi | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | bane Laboratory | | | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | 1 | | | | | | | 26 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036844 | | х | х | х | | 27 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0
| M22-
Ap0036845 | Х | | Х | | | 28 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036846 | Х | | х | | | 29 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036847 | Х | | х | | | 30 | SX_IB_202204
16_16_18_SS | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036848 | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com Address: **Company Name:** 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** Project ID: JC0927 Agon Environmental Pty Ltd - VIC 20220419042301-Eurofin-21 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Sydney 179 Magowar Road Received: Perth 46-48 Banksia Road Welshpool WA 6106 Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Primary_EUF | | | | | | | | | | 31 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036849 | Х | | Х | | | 32 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036850 | Х | | х | | | 33 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036851 | Х | | Х | | | 34 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036852 | X | | х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 3 Dav **Priority: Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | ney Laboratory | | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | _ | field Laboratory | | | | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | | rnal Laboratory | | Г | Г | T | | | | | | 35 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036853 | х | | х | | | 36 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036854 | х | | Х | | | 37 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036855 | Х | | Х | | | 38 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036856 | Х | | Х | | | 39 | SX_IB_202204 | Apr 17, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Phone: Fax: 179 Magowar Road 08 8338 1009 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ⁻ | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | 1 | 1 | | | | | | | 17_15_56_SS
_Duplicate_EU
F | | | - pH 5.0 | Ap0036857 | | | | | | 40 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036858 | х | | х | | | 41 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036859 | х | | х | | | 42 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036860 | х | | х | | | 43 | SX_IB_202204
18_08_08_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036861 | Х | | х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 Sydney 179 Magowar Road 880891 08 8338 1009 Phone: Fax: Received: 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Perth Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ⁻ | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T |
 1 | 1 | | | | | | | 18_08_08_SS
_Triplicate_EU
F | | | - pH 5.0 | Ap0036861 | | | | | | 44 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036862 | х | | х | | | 45 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036863 | х | | х | | | 46 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036864 | х | | х | | | 47 | SX_IB_202204
18_16_09_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036865 | х | | х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road **Eurofins Environment Testing Australia Pty Ltd** Sydney Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Duplicate_EU
F | | | | | | | | | | 48 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036866 | х | | х | | | 49 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036867 | х | | х | | | 50 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036868 | х | | х | | | 51 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036869 | х | | х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ⁻ | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | | 1 | | | | | | 52 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036870 | х | | х | | | 53 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036871 | х | | х | | | 54 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036872 | х | | х | | | 55 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036873 | х | | х | | | 56 | SX_IB_202204 | Apr 16, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Sydney Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | 1 | | | | | | | 16_20_02_SS
_Primary_EUF | | | - Reagent
Water | Ap0036874 | | | | | | 57 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036875 | х | | х | | | 58 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036876 | х | | х | | | 59 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036877 | х | | х | | | 60 | SX_IB_202204
17_08_10_SS
_Triplicate_EU | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036878 | х | | х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Perth 46-48 Banksia Road Welshpool WA 6106 Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---
---------------------| | Mell | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | l | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | T | 1 | 1 | | | | | | | _Triplicate_EU
F | | | Water | | | | | | | 61 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036879 | х | | х | | | 62 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036880 | Х | | x | | | 63 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036881 | х | | х | | | 64 | SX_IB_202204
17_20_03_SS | Apr 17, 2022 | | AUS Leachate - Reagent | M22-
Ap0036882 | Х | | х | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 **Eurofins Environment Testing Australia Pty Ltd** Sydney Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: email: EnviroSales@eurofins.com 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ⁻ | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | 1 | 1 | | | | | | | _Primary_EUF | | | Water | | | | | | | 65 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036883 | х | | х | | | 66 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036884 | Х | | х | | | 67 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036885 | х | | х | | | 68 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036886 | х | | х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | , | | | | | | | 69 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036887 | X | | Х | | | 70 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036888 | X | | х | | | 71 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036889 | X | | х | | | 72 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036890 | Х | | Х | | | 73 | SX_IB_202204 | Apr 19, 2022 | | AUS Leachate | M22- | Χ | | Х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 **Eurofins Environment Testing Australia Pty Ltd** Sydney Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Address: Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: 46-48 Banksia Road Welshpool WA 6106 Perth Apr 19, 2022 3:30 PM NZBN: 9429046024954 Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |--|---------|-----------------|---------------|--------------------|-----------|------------------------|--------------|---|---------------------| | Melbourne Lak | orato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydney Labora | atory · | - NATA # 1261 S | Site # 18217 | | | | | | | | Brisbane Labo | ratory | / - NATA # 1261 | Site # 20794 | ļ | | | | | | | Mayfield Labor | ratory | - NATA # 1261 | Site # 25079 | | | | | | | | Perth Laborato | ory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | External Labor | ratory | | | | | | | | | | 19_00_03
Primary | | | | - Reagent
Water | Ap0036891 | | | | | | 74 SX_IB_202204 Apr 19, 2022 Apr 19, 2022 Apr 19_03_57_SS Primary_EUF Apr 2022 Apr 2036892 Apr 2036892 | | | | | | Х | | Х | | | Test Counts | | | | | | | 24 | 74 | 24 | #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt
deadlines as stated on the SRA If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. #### Units mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre **ppm:** parts per million **ppb:** parts per billion %: Percentage org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres #### **Terms** APHA American Public Health Association COC Chain of Custody CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery. Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. LOR Limit of Reporting. Laboratory Control Sample - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. RPD Relative Percent Difference between two Duplicate pieces of analysis. SPIKE Addition of the analyte to the sample and reported as percentage recovery. SRA Sample Receipt Advice Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TCLP Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence QSM US Department of Defense Quality Systems Manual Version 5.4 US EPA United States Environmental Protection Agency WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### QC - Acceptance Criteria The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected. #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte. - 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample. - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. Report Number: 880891-L #### **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---|----------|----------|----------------------|----------------|--| | Method Blank | | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | Perfluorobutanoic acid (PFBA) | ug/L | < 0.05 | 0.05 | Pass | | | Perfluoropentanoic acid (PFPeA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorohexanoic acid (PFHxA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroheptanoic acid (PFHpA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorooctanoic acid (PFOA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorononanoic acid (PFNA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorodecanoic acid (PFDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorododecanoic acid (PFDoDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | ug/L | < 0.01 | 0.01 | Pass | | | Method Blank | <u> </u> | 1 0.0 . | 9.01 | 1 455 | | | Perfluoroalkyl sulfonamido substances | | Т | | T | | | Perfluorooctane sulfonamide (FOSA) | ug/L | < 0.05 | 0.05 | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | ug/L | < 0.05 | 0.05 | Pass | + | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | ug/L | < 0.05 | 0.05 | Pass | | | | ug/L | < 0.03 | 0.03 | Fass | + | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | ug/L | < 0.05 | 0.05 | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | ug/L | < 0.05 | 0.05 | Pass | | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) | ug/L | < 0.05 | 0.05 | Pass | | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ug/L | < 0.05 | 0.05 | Pass | | | Method Blank | | | | 1 | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | T | 1 | | Perfluorobutanesulfonic acid (PFBS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorononanesulfonic acid (PFNS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | | < 0.01 | 0.01 | Pass | + | | | ug/L | | | | | | Perfluoroctanesulfonic acid (PFOS) | ug/L | < 0.01 | 0.01 | Pass | + | | Perfluorodecanesulfonic acid (PFDS) | ug/L | < 0.01 | 0.01 | Pass | | | Method Blank | | Т | | T | 1 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | + | + | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | - | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) | ug/L | < 0.05 | 0.05 | Pass | - | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | 1 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | | | LCS - % Recovery | | | | <u> </u> | ļ | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | Perfluorobutanoic acid (PFBA) | % | 90 | 50-150 | Pass | | | Perfluoropentanoic acid (PFPeA) | % | 115 | 50-150 | Pass | | | Perfluorohexanoic acid (PFHxA) | % | 98 | 50-150 | Pass | | | Perfluoroheptanoic acid (PFHpA) | % | 87 | 50-150 | Pass | | | Perfluorooctanoic acid (PFOA) | % | 94 | 50-150 | Pass | | | Perfluorononanoic acid (PFNA) | % | 104 | 50-150 | Pass | | | Perfluorodecanoic acid (PFDA) | % | 98 | 50-150 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | % | 106 | 50-150 | Pass | | | Perfluorododecanoic acid (PFDoDA) | % | 104 | 50-150 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | % | 132 | 50-150 | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | % | 90 | 50-150 | Pass | | | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---|---------------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | LCS - % Recovery | | | | , | | | | | | | Perfluoroalkyl sulfonamido substa | nces | | | | | | | | | | Perfluorooctane sulfonamide (FOSA | A) | | % | 90 | | | 50-150 | Pass | | | N-methylperfluoro-1-octane sulfonar | mide (N-MeFOSA) | | % | 114 | | | 50-150 | Pass | | | N-ethylperfluoro-1-octane sulfonamie | de (N-EtFOSA) | | % | 125 | | | 50-150 | Pass | | | 2-(N-methylperfluoro-1-octane sulfor MeFOSE) | namido)-ethanol (N | - | % | 112 | | | 50-150 | Pass | | | 2-(N-ethylperfluoro-1-octane sulfona | mido)-ethanol (N-E | tFOSE) | % | 104 | | | 50-150 | Pass | | | N-ethyl-perfluorooctanesulfonamidoa | acetic acid (N-EtFC | OSAA) | % | 105 | | | 50-150 | Pass | | | N-methyl-perfluorooctanesulfonamid | doacetic acid (N-Me | FOSAA) | % | 91 | | | 50-150 | Pass | | | LCS - % Recovery | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS) | As) | | | | | | | | | | Perfluorobutanesulfonic acid (PFBS) |) | | % | 92 | | | 50-150 | Pass | | | Perfluorononanesulfonic acid (PFNS | S) | | % | 118 | | | 50-150 | Pass | | | Perfluoropropanesulfonic acid (PFPr | rS) | | % | 102 | | | 50-150 | Pass | | | Perfluoropentanesulfonic acid (PFPe | | | % | 100 | | | 50-150 | Pass | | | Perfluorohexanesulfonic
acid (PFHx | | | % | 99 | | | 50-150 | Pass | | | Perfluoroheptanesulfonic acid (PFH) | | | % | 103 | | | 50-150 | Pass | | | Perfluorooctanesulfonic acid (PFOS) |) | | % | 106 | | | 50-150 | Pass | | | Perfluorodecanesulfonic acid (PFDS | | | % | 98 | | | 50-150 | Pass | | | LCS - % Recovery | , | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (r | n:2 FTSAs) | | | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfon | | | % | 109 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorooctanesulfoni | | | % | 89 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorodecanesulfon | | | % | 86 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorododecanesul | | SA) | % | 89 | | | 50-150 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Perfluoroalkyl carboxylic acids (PF | FCAs) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroundecanoic acid | , | | | | | | | | | | (PFUnDA) Perfluorododecanoic acid | M22-Ap0036857 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | (PFDoDA) | M22-Ap0036857 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid | M22-Ap0036857 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | (PFTeDA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | I | 1 | | | | | | Perfluoroalkyl sulfonamido substa | nces | 1 | | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide (FOSA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dunlicate | | | | | | | | | | |---|--------------------------------|----------|--------------|-----------|-----------|----------|-----|--------------|--| | Duplicate Perfluereally autonomide autore | | | | Dog::lt 4 | Dog::lk C | DDD | | | | | Perfluoroalkyl sulfonamido substa | inces | | 1 | Result 1 | Result 2 | RPD | | + - | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | | Result 1 | Result 2 | RPD | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036857 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2
FTSA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036857 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl carboxylic acids (Pl | FCAs) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036868 | CP | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036868
M22-Ap0036868 | CP
CP | ug/L
ug/L | < 0.01 | < 0.01 | <1
<1 | 30% | Pass
Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | Report Number: 880891-L | Dunlicato | | | | | | | | | | |---|---------------|-----|----------|----------|----------|-----|------|------|--| | Duplicate | | | | D 11.4 | D 11.0 | DDD | | | | | Perfluoroalkyl sulfonamido substa
Perfluorooctane sulfonamide | inces | | | Result 1 | Result 2 | RPD | | | | | (FOSA) N-methylperfluoro-1-octane | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | sulfonamide (N-MeFOSA) | M22-Ap0036868 | CP | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane
sulfonamide (N-EtFOSA) | M22-Ap0036868 | CP | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | ı | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | 1 | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | <u> </u> | | | | | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | | Result 1 | Result 2 | RPD | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2 | | 0.0 | 4 | | 0.04 | _ | 000/ | | | | FTSA) | M22-Ap0036868 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036868 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 1H.1H.2H.2H- | · | | | | | | | | | | perfluorodecanesulfonic acid (8:2 FTSA) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036868 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl carboxylic acids (Pl | FCAs) | | ı | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036879 | CP | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036879 | CP | ug/L | < 0.01 | <
0.01 | <1 | 30% | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036879 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | |---|---------------|----|------|----------|----------|-----|-----|------|--| | Perfluoroalkyl sulfonamido substa | nces | | | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide (FOSA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | T | 1 | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | ī | 1 | | | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | 1 | Result 1 | Result 2 | RPD | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036879 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2
FTSA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036879 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl carboxylic acids (Pl | CAs) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | (PFUnDA) Perfluorododecanoic acid | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | (PFDoDA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036890 | CP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | Report Number: 880891-L | Duplicate | | | | | | | | | | |---|---------------|-----|----------|----------|----------|-----|------|------|--| | Perfluoroalkyl sulfonamido substances | | | | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide | | 0.0 | | | | | 000/ | D | | | (FOSA) N-methylperfluoro-1-octane | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | sulfonamide (N-MeFOSA) | M22-Ap0036890 | CP | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | Result 1 | Result 2 | RPD | | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036890 | СР | ug/L | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2
FTSA) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036890 | СР | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### **Qualifier Codes/Comments** Code Description C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11 Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15 #### Authorised by: Catherine Wilson Analytical Services Manager Emily Rosenberg Senior Analyst (NSW) Alex Petridis Senior Analyst (NSW) Joseph Edouard Senior Analyst (VIC) Glenn Jackson **General Manager** Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 NATA Accredited Accreditation Number 1261 Site Number 1254 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Agon Lab Reports (Spoil Project) Report 880891-S Project name 20220419042301-Eurofin-21 Project ID JC0927 Received Date Apr 19, 2022 | | | | | | | 1 | |---------------------------------------
-----|-------|--|---|---|---| | Client Sample ID | | | SX20220416
_08_36_SS_Tri
plicate_EUF | SX20220416
_08_44_SS_Pri
mary_EUF | SX_IB_202204
16_12_10_SS_
Primary_EUF | SX_IB_202204
16_16_18_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036819 | M22-
Ap0036820 | M22-
Ap0036821 | M22-
Ap0036822 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | L | • | | | | | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1)N04 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C10-C16 less Naphthalene (F2)N01 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | | | | | | | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | | | | | | | | 1.1-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX20220416
08 36 SS Tri | SX20220416
08_44_SS_Pri | SX_IB_202204 | SX_IB_202204
16 16 18 SS | |---|------------|----------------|---|---|---|-----------------------------| | onen cumple is | | | plicate_EUF | mary_EUF | Primary_EUF | Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036819 | M22-
Ap0036820 | M22-
Ap0036821 | M22-
Ap0036822 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | , | , | , | , , , , , , , , , , , , | | Volatile Organics | LOIK | Onit | | | | | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromodichloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Ethylbenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Iodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Methylene Chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | o-Xylene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | 1.0 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vilonga Total* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* Vic EPA IWRG 621 CHC (Total)* | 0.5
0.5 | mg/kg
mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5 | | Vic EPA IWRG 621 Other CHC (Total)* | 0.5 | | < 0.5 | | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | mg/kg
% | < 0.5
81 | < 0.5
78 | < 0.5
78 | < 0.5
86 | | Toluene-d8 (surr.) | 1 | % | 91 | 83 | 87 | 104 | | Polycyclic Aromatic Hydrocarbons | | 1 /0 | 31 | 0.5 | 07 | 104 | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | ma/ka | - 0 F | < 0.5 | - 0 F | < 0.5 | | Benzo(a)pyrene TEQ (nedium bound) * | 0.5 | mg/kg | < 0.5 | 0.6 | < 0.5 | 0.6 | | Benzo(a)pyrene TEQ (medium bound) * Benzo(a)pyrene TEQ (upper bound) * | 0.5 | mg/kg
mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Acenaphthylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX20220416
_08_36_SS_Tri
plicate_EUF | SX20220416
_08_44_SS_Pri
mary_EUF | SX_IB_202204
16_12_10_SS_
Primary_EUF | SX_IB_202204
16_16_18_SS_
Primary_EUF | |---------------------------------------|----------|-------|--|---|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036819 | Ap0036820 | Ap0036821 | Ap0036822 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Polycyclic Aromatic Hydrocarbons | <u> </u> | · | | | | | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benz(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(b&j)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(k)fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chrysene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 64 | 62 | 76 | 70 | | p-Terphenyl-d14 (surr.) | 1 | % | 77 | 69 | 80 | 76 | | Organochlorine Pesticides | | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | <
0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Toxaphene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 105 | 84 | 67 | 93 | | Tetrachloro-m-xylene (surr.) | 1 | % | 124 | 89 | 93 | 116 | | | 1 | 1 | | 1 | 1 | 1 | |--|----------|----------|--|---|---|---| | Client Sample ID | | | SX20220416
_08_36_SS_Tri
plicate_EUF | SX20220416
_08_44_SS_Pri
mary_EUF | SX_IB_202204
16_12_10_SS_
Primary_EUF | SX_IB_202204
16_16_18_SS_
Primary_EUF | | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036819 | Ap0036820 | Ap0036821 | Ap0036822 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Polychlorinated Biphenyls | <u>'</u> | | | | | | | Aroclor-1016 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1221 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1232 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1242 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1248 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1254 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1260 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total PCB* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 105 | 84 | 67 | 93 | | Tetrachloro-m-xylene (surr.) | 1 | % | 124 | 89 | 93 | 116 | | Phenols (Halogenated) | • | • | | | | | | 2-Chlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4.5-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4.6-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.6-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chloro-3-methylphenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Pentachlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Tetrachlorophenols - Total | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Total Halogenated Phenol* | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Phenols (non-Halogenated) | | | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | 2-Methyl-4.6-dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Nitrophenol | 1.0 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4-Dimethylphenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Methylphenol (o-Cresol) | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | 3&4-Methylphenol (m&p-Cresol) | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Total cresols* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Nitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Dinoseb | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Phenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenol-d6 (surr.) | 1 | % | 60 | 41 | 98 | 31 | | Total Non-Halogenated Phenol* | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | | ı | | | | | | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 12 | 12 | 8.5 | 12 | | % Moisture | 1 | % | 40 | 40 | 36 | 35 | | Heavy Metals | I | T | | | | | | Arsenic | 2 | mg/kg | 57 | 27 | 24 | 23 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 140 | 140 | 130 | 120 | | Copper | 5 | mg/kg | 60 | 68 | 66 | 50 | | Lead | 5 | mg/kg | 8.1 | 5.9 | < 5 | 5.5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Client Sample ID | | | SX20220416
_08_36_SS_Tri
plicate_EUF | SX20220416
_08_44_SS_Pri
mary_EUF | SX_IB_202204
16_12_10_SS_
Primary_EUF
Soil | SX_IB_202204
16_16_18_SS_
Primary_EUF | |--|-----|-------|--|---|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036819 | Ap0036820 | Ap0036821 | Ap0036822 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 150 | 180 | 190 | 130 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc | 5 | mg/kg | 120 | 130 | 120 | 100 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanoic acid (PFOA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanoic acid (PFDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C4-PFBA (surr.) | 1 | % | 96 | 97 | 99 | 97 | | 13C5-PFPeA (surr.) | 1 | % | 109 | 103 | 97 | 103 | | 13C5-PFHxA (surr.) | 1 | % | 85 | 84 | 84 | 86 | | 13C4-PFHpA (surr.) | 1 | % | 83 | 80 | 83 | 87 | | 13C8-PFOA (surr.) | 1 | % | 68 | 70 | 89 | 73 | | 13C5-PFNA (surr.) | 1 | % | 75 | 58 | 91 | 70 | | 13C6-PFDA (surr.) | 1 | % | 100 | 71 | 112 | 93 | | 13C2-PFUnDA (surr.) | 1 | % | 101 | 110 | 108 | 92 | | 13C2-PFDoDA (surr.) | 1 | % | 84 | 89 | 84 | 81 | | 13C2-PFTeDA (surr.) | 1 | % | 66 | 81 | 100 | 76 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 97 | 100 | 107 | 86 | | D3-N-MeFOSA (surr.) | 1 | % | 139 | 112 | 121 | 127 | | D5-N-EtFOSA (surr.) | 1 | % | 129 | 139 | 141 | 120 | | D7-N-MeFOSE (surr.) | 1 | % | 79 | 68 | 87 | 75 | | D9-N-EtFOSE (surr.) | 1 | % | 84 | 81 | 96 | 80 | | D5-N-EtFOSAA (surr.) | 1 | % | 103 | 96 | 95 | 83 | | D3-N-MeFOSAA (surr.) | 1 | % | 69 | 89 | 99 | 70 | | Client Sample ID Sample Matrix Eurofins Sample No. | | | SX_20220416
_08_36_SS_Tri
plicate_EUF
Soil
M22-
Ap0036819 | SX _20220416
_08_44_SS_Pri
mary_EUF
Soil
M22-
Ap0036820 | SX_IB_202204
16_12_10_SS_
Primary_EUF
Soil
M22-
Ap0036821 | SX_IB_202204
16_16_18_SS_
Primary_EUF
Soil
M22-
Ap0036822 | |---|-----|-------|--|--|--|--| | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 64 | 60 | 65 | 65 | | 18O2-PFHxS (surr.) | 1 | % | 82 | 82 | 96 | 87 | | 13C8-PFOS (surr.) | 1 | % | 84 | 90 | 105 | 83 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | |
| | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 68 | 67 | 73 | 73 | | 13C2-6:2 FTSA (surr.) | 1 | % | 82 | 73 | 76 | 77 | | 13C2-8:2 FTSA (surr.) | 1 | % | 112 | 101 | 133 | 139 | | 13C2-10:2 FTSA (surr.) | 1 | % | 60 | 75 | 69 | 70 | | PFASs Summations | 1 | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |--------------------------------|-----|-------|---|-------------------|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036823 | M22-
Ap0036826 | M22-
Ap0036827 | M22-
Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | | | | | | | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1)N04 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | SX_IB_202204
16_20_02_SS_
Primary_EUF | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |---|-----|-------|---|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036823 | M22-
Ap0036826 | M22-
Ap0036827 | M22-
Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | | | | | | | | TRH >C10-C16 less Naphthalene (F2) ^{N01} | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | 100 | mg/kg | V 100 | V 100 | V 100 | 100 | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | 0.5 | mg/kg | V 0.5 | V 0.5 | V 0.5 | V 0.5 | | 1.1-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | ma/ka | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromodichloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | | | | | | | | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | SX_IB_202204
16_20_02_SS_
Primary_EUF | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |---------------------------------------|------|-------|---|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036823 | M22-
Ap0036826 | M22-
Ap0036827 | M22-
Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | , | 11,0110, 2022 | 745. 11, 2022 | 7.0-11, 2022 | | Volatile Organics | LOIC | Offic | | | | | | Iodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Methylene Chloride | 0.2 | mg/kg | < 0.5 | < 0.2 | < 0.2 | < 0.2 | | o-Xylene | 0.3 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.1 | mg/kg | 3.8 | < 0.5 | < 0.5 | < 0.5 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.1 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vinyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* | 0.5 | mg/kg | 3.8 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 Other CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | % | 73 | 67 | 74 | 88 | | Toluene-d8 (surr.) | 1 | % | 80 | 73 | 81 | 101 | | Polycyclic Aromatic Hydrocarbons | | 70 | 00 | 7.0 | 0. | | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6 | 0.6 | 0.6 | 0.6 | | Benzo(a)pyrene TEQ (upper bound) * | 0.5 | mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Acenaphthylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benz(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(b&j)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(k)fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chrysene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 58 | 97 | 64 | 66 | | p-Terphenyl-d14 (surr.) | 1 | % | 96 | 120 | 59 | 77 | | Organochlorine Pesticides | • | • | | | | | | Chlordanes - Total | 0.1 |
mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | _ | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |-------------------------------------|------|-------|---|--------------|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036823 | Ap0036826 | Ap0036827 | Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | | | | | | | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Toxaphene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 102 | 57 | 75 | 85 | | Tetrachloro-m-xylene (surr.) | 1 | % | 95 | 91 | 83 | 90 | | Polychlorinated Biphenyls | | | | | | | | Aroclor-1016 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1221 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1232 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1242 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1248 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1254 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1260 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total PCB* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 102 | 57 | 75 | 85 | | Tetrachloro-m-xylene (surr.) | 1 | % | 95 | 91 | 83 | 90 | | Phenols (Halogenated) | | | | | | | | 2-Chlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4.5-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4.6-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.6-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chloro-3-methylphenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Pentachlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Tetrachlorophenols - Total | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Total Halogenated Phenol* | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | SX_IB_202204
16_20_02_SS_
Primary_EUF | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |---|--------|----------------|---|---|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036823 | Ap0036826 | Ap0036827 | Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Phenols (non-Halogenated) | | | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | 2-Methyl-4.6-dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Nitrophenol | 1.0 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4-Dimethylphenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Methylphenol (o-Cresol) | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | 3&4-Methylphenol (m&p-Cresol) | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Total cresols* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Nitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Dinoseb | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Phenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenol-d6 (surr.) | 1 | % | 39 | 90 | 57 | 65 | | Total Non-Halogenated Phenol* | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | | | | | | | | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | 1.3 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | | 11 | 11 | 9.4 | | % Moisture | 1 | % | 31 | 35 | 34 | 30 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 20 | 24 | 29 | 30 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 76 | 130 | 130 | 140 | | Copper | 5 | mg/kg | 38 | 54 | 57 | 65 | | Lead | 5 | mg/kg | 5.7 | 6.6 | < 5 | < 5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 90 | 160 | 160 | 210 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc | 5 | mg/kg | 91 | 110 | 110 | 130 | | Perfluoroalkyl carboxylic acids (PFCAs) | | D | - | - | _ | | | Perfluorobutanoic acid (PFBA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorontennic acid (PFHpA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanoic acid (PFOA) ^{N11} Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanoic acid (PFNA)*** Perfluorodecanoic acid (PFDA)**1 | 5
5 | ug/kg | < 5
< 5 | < 5 | < 5
< 5 | < 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg | < 5
< 5 | < 5 | < 5
< 5 | < 5 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | | < 5 | < 5
< 5 | < 5 | | Perfluorotridecanoic acid (PFDoDA) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5
< 5 | < 5 | | Perfluorotetradecanoic acid (PFTdA) ^{N11} | 5 | ug/kg
ug/kg | < 5
< 5 | < 5
< 5 | < 5
< 5 | < 5
< 5 | | 13C4-PFBA (surr.) | 1 | ug/kg
% | 97 | 96 | 95 | 101 | | 13C4-PFBA (surr.) | 1 | % | 106 | 100 | 95 | 97 | | 13C5-PFPeA (surr.) | 1 | % | 87 | 84 | 81 | 88 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | 1 | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |--|--------|----------------|---|--------------|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036823 | Ap0036826 | Ap0036827 | Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | • | | | | | | 13C4-PFHpA (surr.) | 1 | % | 86 | 88 | 79 | 82 | | 13C8-PFOA (surr.) | 1 | % | 82 | 81 | 92 | 90 | | 13C5-PFNA (surr.) | 1 | % | 86 | 76 | 69 | 60 | | 13C6-PFDA (surr.) | 1 | % | 103 | 103 | 73 | 63 | | 13C2-PFUnDA (surr.) | 1 | % | 99 | 111 | 101 | 101 | | 13C2-PFDoDA (surr.) | 1 | % | 80 | 89 | 85 | 91 | | 13C2-PFTeDA (surr.) | 1 | % | 77 | 109 | 69 | 77 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{M1} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-
EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 97 | 97 | 106 | 100 | | D3-N-MeFOSA (surr.) | 1 | % | 139 | 127 | 111 | 73 | | D5-N-EtFOSA (surr.) | 1 | % | 136 | 147 | 125 | 125 | | D7-N-MeFOSE (surr.) | 1 | % | 82 | 87 | 75 | 66 | | D9-N-EtFOSE (surr.) | 1 | % | 89 | 103 | 81 | 73 | | D5-N-EtFOSAA (surr.) | 1 | % | 106 | 134 | 94 | 133 | | D3-N-MeFOSAA (surr.) | 1 | % | 67 | 83 | 99 | 112 | | Perfluoroalkyl sulfonic acids (PFSAs) | _ | | _ | _ | _ | _ | | Perfluorobutanesulfonic acid (PFBS) ^{N11} |
5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5
5 | ug/kg
ug/kg | < 5
< 5 | < 5
< 5 | < 5
< 5 | < 5
< 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg
ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 70 | 58 | 68 | 76 | | 1802-PFHxS (surr.) | 1 | % | 57 | 96 | 105 | 79 | | 13C8-PFOS (surr.) | 1 | % | 99 | 99 | 92 | 93 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | - | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 | | | | | | | | FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | FTSA) ^{N11} 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | FTSA) ^{N11} 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 73 | 74 | 68 | 75 | | 13C2-6:2 FTSA (surr.) | 1 | % | 88 | 72 | 67 | 87 | | Client Sample ID | | | SX_IB_202204
16_16_22_SS_
Duplicate_EUF | SX_IB_202204
16_20_02_SS_
Primary_EUF | SX_IB_202204
17_00_01_SS_
Primary_EUF | SX_IB_202204
17_03_57_SS_
Primary_EUF | |--|-----|-------|---|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036823 | M22-
Ap0036826 | M22-
Ap0036827 | M22-
Ap0036828 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 13C2-8:2 FTSA (surr.) | 1 | % | 127 | 110 | 86 | 99 | | 13C2-10:2 FTSA (surr.) | 1 | % | 51 | 110 | 82 | 115 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | | Client Sample ID Sample Matrix | | | SX_IB_202204
17_08_05_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
17_08_10_SS_
Triplicate_EUF
Soil
M22- | SX_IB_202204
17_12_28_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
17_15_56_SS_
Primary_EUF
Soil
M22- | |---------------------------------------|-----|-------|---|--|---|---| | Eurofins Sample No. | | | Ap0036829 | Ap0036830 | Ap0036831 | Ap0036832 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | | | | | | | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1)N04 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C10-C16 less Naphthalene (F2)N01 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | | | | | | | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | | | | | | | | 1.1-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |--|------------|--|---|--|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036829 | Ap0036830 | Ap0036831 | Ap0036832 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | . , | | | | | Volatile Organics | LOIK | - Oille | | | | | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromodichloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Ethylbenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Iodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Methylene Chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | o-Xylene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vilonea Total* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* Vic EPA IWRG 621 CHC (Total)* | 0.5
0.5 | mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | | Vic EPA IWRG 621 CHC (Total)* | 0.5 | mg/kg
mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | // // // // // // // // // // // // // | 81 | 66 | 60 | 82 | | Toluene-d8 (surr.) | 1 | % | 89 | 76 | 67 | 102 | | Client Sample ID Sample Matrix | | | SX_IB_202204
17_08_05_SS_
Primary_EUF
Soil | SX_IB_202204
17_08_10_SS_
Triplicate_EUF
Soil | SX_IB_202204
17_12_28_SS_
Primary_EUF
Soil | SX_IB_202204
17_15_56_SS_
Primary_EUF
Soil | |---|------|----------------|---|--|---|---| | Eurofins Sample No. | | | M22-
Ap0036829 |
M22-
Ap0036830 | M22-
Ap0036831 | M22-
Ap0036832 | | • | | | i - | • | • | • | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Polycyclic Aromatic Hydrocarbons | | T | | | | | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6 | 0.6 | 0.6 | 0.6 | | Benzo(a)pyrene TEQ (upper bound) * | 0.5 | mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Acenaphthylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benz(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(b&j)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(k)fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chrysene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene Fluoranthene | 0.5 | mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg
mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 66 | 82 | 53 | 65 | | p-Terphenyl-d14 (surr.) | 1 | % | 76 | 108 | 58 | 73 | | Organochlorine Pesticides | ' | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Toxaphene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Aldele and District (Tarable | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin and Dieldrin (Total)" | | | | | | | | Aldrin and Dieldrin (Total)* DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | | | | SX IB 202204 | SX IB 202204 | SX IB 202204 | SX IB 202204 | |--|----------|----------|-----------------------------|--------------------------------|-----------------------------|-----------------------------| | Client Sample ID | | | 17_08_05_SS_
Primary_EUF | 17_08_10_SS_
Triplicate_EUF | 17_12_28_SS_
Primary_EUF | 17_15_56_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036829 | M22-
Ap0036830 | M22-
Ap0036831 | M22-
Ap0036832 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Organochlorine Pesticides | <u> </u> | | | | | | | Dibutylchlorendate (surr.) | 1 | % | 82 | 112 | 87 | 92 | | Tetrachloro-m-xylene (surr.) | 1 | % | 114 | 79 | 100 | 95 | | Polychlorinated Biphenyls | , , | 1 | | | | | | Aroclor-1016 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1221 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1232 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1242 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1248 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1254 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1260 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total PCB* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 82 | 112 | 87 | 92 | | Tetrachloro-m-xylene (surr.) | 1 | % | 114 | 79 | 100 | 95 | | Phenois (Halogenated) | I | 1 | | | | | | 2-Chlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4.5-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4.6-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.6-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chloro-3-methylphenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Pentachlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Tetrachlorophenols - Total | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Total Halogenated Phenol* | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Phenois (non-Halogenated) | | 199 | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | 2-Methyl-4.6-dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Nitrophenol | 1.0 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4-Dimethylphenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Methylphenol (o-Cresol) | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | 3&4-Methylphenol (m&p-Cresol) | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Total cresols* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Nitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Dinoseb | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Phenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenol-d6 (surr.) | 1 | % | 56 | 32 | 45 | 56 | | Total Non-Halogenated Phenol* | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | 1.2 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | 680 | 420 | 540 | 520 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 10 | 9.0 | 8.4 | 8.4 | | % Moisture | 1 | % | 35 | 30 | 28 | 31 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |--|--------|----------------|---|--|---|---| | Sample Matrix | | | Soil
M22- | Soil
M22- | Soil
M22- | Soil
M22- | | Eurofins Sample No. | | | Ap0036829 | Ap0036830 | Ap0036831 | Ap0036832 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 18 | 38 | 28 | 27 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 120 | 130 | 140 | 140 | | Copper | 5 | mg/kg | 42 | 63 | 70 | 66 | | Lead | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 150 | 190 | 210 | 210 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc | 5 | mg/kg | 81 | 130 | 130 | 130 | | Perfluoroalkyl carboxylic acids (PFCAs) | | T ,, | _ | _ | _ | _ | | Perfluorobutanoic acid (PFBA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanoic acid (PFOA) ^{N11} Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanoic acid (PFNA) ^{M1} | 5
5 | ug/kg | < 5
< 5 | < 5
< 5 | < 5
< 5 | < 5
< 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg
ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C4-PFBA (surr.) | 1 | % | 111 | 101 | 104 | 103 | | 13C5-PFPeA (surr.) | 1 | % | 108 | 92 | 105 | 93 | | 13C5-PFHxA (surr.) | 1 | % | 94 | 87 | 92 | 84 | | 13C4-PFHpA (surr.) | 1 | % | 93 | 85 | 87 | 83 | | 13C8-PFOA (surr.) | 1 | % | 100 | 90 | 93 | 66 | | 13C5-PFNA (surr.) | 1 | % | 53 | 53 | 55 | 85 | | 13C6-PFDA (surr.) | 1 | % | 85 | 72 | 75 | 104 | | 13C2-PFUnDA (surr.) | 1 | % | 129 | 108 | 134 | 122 | | 13C2-PFDoDA (surr.) | 1 | % | 122 | 82 | 90 | 89 | | 13C2-PFTeDA (surr.) | 1 | % | 98 | 91 | 88 | 88 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} N-methylperfluoro-1-octane sulfonamide (N- | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane
sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 123 | 113 | 98 | 97 | | D3-N-MeFOSA (surr.) | 1 | % | 136 | 143 | 116 | 114 | | Client Sample ID | | | SX_IB_202204
17_08_05_SS_
Primary_EUF | SX_IB_202204
17_08_10_SS_
Triplicate_EUF | SX_IB_202204
17_12_28_SS_
Primary_EUF | SX_IB_202204
17_15_56_SS_
Primary_EUF | |---|----------|-------|---|--|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036829 | M22-
Ap0036830 | M22-
Ap0036831 | M22-
Ap0036832 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | Apr 17, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl sulfonamido substances | 1 | | | | | | | D5-N-EtFOSA (surr.) | 1 | % | 147 | 134 | 143 | 138 | | D7-N-MeFOSE (surr.) | 1 | % | 97 | 70 | 83 | 80 | | D9-N-EtFOSE (surr.) | 1 | % | 107 | 89 | 92 | 88 | | D5-N-EtFOSAA (surr.) | 1 | % | 122 | 131 | 116 | 98 | | D3-N-MeFOSAA (surr.) | 1 | % | 143 | 101 | 132 | 109 | | Perfluoroalkyl sulfonic acids (PFSAs) | <u>'</u> | • | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 85 | 70 | 70 | 69 | | 18O2-PFHxS (surr.) | 1 | % | 114 | 90 | 109 | 96 | | 13C8-PFOS (surr.) | 1 | % | 76 | 86 | 81 | 99 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | • | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 77 | 73 | 75 | 78 | | 13C2-6:2 FTSA (surr.) | 1 | % | 81 | 80 | 70 | 69 | | 13C2-8:2 FTSA (surr.) | 1 | % | 77 | 71 | 74 | 98 | | 13C2-10:2 FTSA (surr.) | 1 | % | 99 | 89 | 103 | 112 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | | Client Sample ID | | | SX_IB_202204
17_15_56_SS_
Duplicate EUF | SX_IB_202204
17_20_03_SS_
Primary_EUF | SX_IB_202204
18_00_05_SS_
Primary_EUF | SX_IB_202204
18_04_01_SS_
Primary_EUF | |---|------------|----------------|---|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036833 | M22-
Ap0036834 | M22-
Ap0036835 | M22-
Ap0036836 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | 745. 17, 2022 | 740. 11, 2022 | 7451 10, 2022 | 7.45. 10, 2022 | | Total Recoverable Hydrocarbons | LOIX | Offic | | | | | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg
mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1) ^{N04} | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C10-C16 less Naphthalene (F2) ^{N01} | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | 100 | ilig/kg | V 100 | < 100 | V 100 | V 100 | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | 0.5 | ilig/kg | < 0.5 | ₹ 0.5 | < 0.5 | V 0.3 | | | 0.5 | | . O F | . O F | . O F | . O F | | 1.1-Dichloroethane | 0.5
0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | | 1.1.1-Dichloroethene 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2Thermoroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg
mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Diofinoetriarie 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromobenzene | 0.5 | mg/kg | < 0.5 | < 0.1 | < 0.5 | < 0.5 | | Bromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromodichloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | Date Reported: Apr 22, 2022 ### **Environment Testing** | | | 1 | T | 1 | 1 | 1 | |--|----------|----------------|---|---|---|---| | Client Sample ID | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF | SX_IB_202204
17_20_03_SS_
Primary_EUF | SX_IB_202204
18_00_05_SS_
Primary_EUF | SX_IB_202204
18_04_01_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036833 | M22-
Ap0036834 | M22-
Ap0036835 | M22-
Ap0036836 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Volatile Organics | <u> </u> | | | | | | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Ethylbenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Iodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Methylene Chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | o-Xylene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5
| < 0.5 | < 0.5 | < 0.5 | | Vinyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 Other CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | % | 83 | 79 | 79 | 73 | | Toluene-d8 (surr.) | 1 | % | 92 | 89 | 89 | 80 | | Polycyclic Aromatic Hydrocarbons | | T " | | | | | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6 | 0.6 | 0.6 | 0.6 | | Benzo(a)pyrene TEQ (upper bound) * | 0.5 | mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Actions | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benza(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene Benzo(b&i)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg
mg/kg | < 0.5
< 0.5 | < 0.5 | < 0.5 | < 0.5
< 0.5 | | Benzo(g.n.i)peryiene Benzo(k)fluoranthene | 0.5 | mg/kg
mg/kg | < 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5 | | Chrysene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | Page 19 of 74 | | | 1 | | <u> </u> | 1 | | |-------------------------------------|------|----------------|---|---|---|---| | Client Sample ID | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF | SX_IB_202204
17_20_03_SS_
Primary_EUF | SX_IB_202204
18_00_05_SS_
Primary_EUF | SX_IB_202204
18_04_01_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036833 | M22-
Ap0036834 | M22-
Ap0036835 | M22-
Ap0036836 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | 7.4, 2022 | 140. 11, 2022 | 745. 10, 2022 | 7.6. 10, 2022 | | Polycyclic Aromatic Hydrocarbons | LOR | Offic | | | | | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 67 | 64 | 62 | 78 | | p-Terphenyl-d14 (surr.) | 1 | % | 79 | 71 | 79 | 141 | | Organochlorine Pesticides | ı | /0 | 79 | / 1 | 79 | 141 | | Chlordanes - Total | 0.1 | ma/ka | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.1 | < 0.15 | < 0.1 | < 0.1 | | 4.4'-DDE | 0.05 | mg/kg
mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | a-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Toxaphene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 74 | 76 | 71 | 85 | | Tetrachloro-m-xylene (surr.) | 1 | % | 103 | 108 | 85 | 104 | | Polychlorinated Biphenyls | | | | | | | | Aroclor-1016 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1221 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1232 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1242 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1248 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1254 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1260 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total PCB* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 74 | 76 | 71 | 85 | | Tetrachloro-m-xylene (surr.) | 1 | % | 103 | 108 | 85 | 104 | | Phenols (Halogenated) | | | | | | | | 2-Chlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4.5-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4.6-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | | | | SX IB 202204 | SX_IB_202204 | SX IB 202204 | SX_IB_202204 | |--|------|----------|-------------------------------|---|-----------------------------|---| | Client Sample ID | | | 17_15_56_SS_
Duplicate_EUF | 17_20_03_SS_ | 18_00_05_SS_
Primary_EUF | 18_04_01_SS_
Primary EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036833 | M22-
Ap0036834 | M22-
Ap0036835 | M22-
Ap0036836 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | , , , , , , , , , , , , | , | , , , , , , , , , | , | | Phenols (Halogenated) | LOIN | Offic | | | | | | 2.6-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chloro-3-methylphenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Pentachlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Tetrachlorophenols - Total | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Total Halogenated Phenol* | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Phenols (non-Halogenated) | | 199 | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | 2-Methyl-4.6-dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Nitrophenol | 1.0 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4-Dimethylphenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Methylphenol (o-Cresol) | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | 3&4-Methylphenol (m&p-Cresol) | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Total cresols* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Nitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Dinoseb | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Phenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenol-d6 (surr.) | 1 | % | 50 | 47 | 59 | 63 | | Total Non-Halogenated Phenol* | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | 470 | 560 | 500 | 490 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 9.0 | 8.7 | 8.6 | 9.0 | | % Moisture | 1 | % | 31 | 30 | 30 | 32 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 27 | 32 | 33 | 120 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 130 | 150 | 140 | 140 | | Copper | 5 | mg/kg | 54 | 75 | 74 | 58 | | Lead | 5 | mg/kg | < 5 | < 5 | < 5 | 5.6 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 160 | 230 | 210 | 180 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc | 5 | mg/kg | 100 | 140 | 140 | 130 | | Perfluoroalkyl carboxylic acids (PFCAs) | ı | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanoic acid (PFOA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanoic acid (PFDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Client Sample ID | | | SX_IB_202204
17_15_56_SS_ | SX_IB_202204
17_20_03_SS_ | SX_IB_202204
18_00_05_SS_ | SX_IB_202204
18_04_01_SS_ | |--|-----|-------|------------------------------|------------------------------|------------------------------|------------------------------| | Sample Matrix | | | Duplicate_EUF Soil | Primary_EUF
Soil | Primary_EUF
Soil | Primary_EUF
Soil | | Eurofins Sample No. | | |
M22-
Ap0036833 | M22-
Ap0036834 | M22-
Ap0036835 | M22-
Ap0036836 | | Date Sampled | | | Apr 17, 2022 | Apr 17, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C4-PFBA (surr.) | 1 | % | 98 | 98 | 95 | 104 | | 13C5-PFPeA (surr.) | 1 | % | 92 | 95 | 90 | 98 | | 13C5-PFHxA (surr.) | 1 | % | 84 | 83 | 81 | 92 | | 13C4-PFHpA (surr.) | 1 | % | 83 | 85 | 77 | 88 | | 13C8-PFOA (surr.) | 1 | % | 80 | 82 | 72 | 89 | | 13C5-PFNA (surr.) | 1 | % | 64 | 66 | 70 | 58 | | 13C6-PFDA (surr.) | 1 | % | 78 | 69 | 70 | 89 | | 13C2-PFUnDA (surr.) | 1 | % | 110 | 85 | 116 | 119 | | 13C2-PFDoDA (surr.) | 1 | % | 95 | 102 | 88 | 100 | | 13C2-PFTeDA (surr.) | 1 | % | 82 | 77 | 78 | 95 | | Perfluoroalkyl sulfonamido substances | | ' | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 97 | 100 | 102 | 112 | | D3-N-MeFOSA (surr.) | 1 | % | 110 | 114 | 105 | 118 | | D5-N-EtFOSA (surr.) | 1 | % | 129 | 138 | 129 | 141 | | D7-N-MeFOSE (surr.) | 1 | % | 76 | 74 | 73 | 90 | | D9-N-EtFOSE (surr.) | 1 | % | 84 | 73 | 88 | 96 | | D5-N-EtFOSAA (surr.) | 1 | % | 125 | 124 | 134 | 120 | | D3-N-MeFOSAA (surr.) | 1 | % | 131 | 108 | 117 | 148 | | Perfluoroalkyl sulfonic acids (PFSAs) | | 1 | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 73 | 70 | 71 | 73 | | 18O2-PFHxS (surr.) | 1 | % | 118 | 96 | 81 | 89 | | 13C8-PFOS (surr.) | 1 | % | 81 | 76 | 88 | 83 | | Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled | | | SX_IB_202204
17_15_56_SS_
Duplicate_EUF
Soil
M22-
Ap0036833
Apr 17, 2022 | | SX_IB_202204
18_00_05_SS_
Primary_EUF
Soil
M22-
Ap0036835
Apr 18, 2022 | SX_IB_202204
18_04_01_SS_
Primary_EUF
Soil
M22-
Ap0036836
Apr 18, 2022 | |---|-----|-------|--|------|--|--| | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 67 | 69 | 68 | 76 | | 13C2-6:2 FTSA (surr.) | 1 | % | 66 | 72 | 72 | 81 | | 13C2-8:2 FTSA (surr.) | 1 | % | 86 | 88 | 90 | 79 | | 13C2-10:2 FTSA (surr.) | 1 | % | 100 | 106 | 98 | 112 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | | | | 1 | | | | | |---------------------------------------|-----|-------|--|---|---|---| | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036837 | M22-
Ap0036838 | M22-
Ap0036839 | M22-
Ap0036840 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | · | • | | | | | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1)N04 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C10-C16 less Naphthalene (F2)N01 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | | | | | | | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | | | | | | | | 1.1-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID Sample Matrix | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF
Soil
M22- | SX_IB_202204
18_08_09_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
18_11_57_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
18_16_08_SS_
Primary_EUF
Soil
M22- | |--------------------------------|------------|----------------|--|---|---|---| | Eurofins Sample No. | | | Ap0036837 | Ap0036838 | Ap0036839 | Ap0036840 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Volatile Organics | | | | | | | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene Bromobenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromochloromethane | 0.5
0.5 | mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | < 0.5
< 0.5 | | Bromodichloromethane | 0.5 | mg/kg
mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | ma/ka | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5
| mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Ethylbenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | lodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Methylene Chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | o-Xylene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vinyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |---------------------------------------|------|-------|--|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036837 | M22-
Ap0036838 | M22-
Ap0036839 | M22-
Ap0036840 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | | | | | | Volatile Organics | | | | | | | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 Other CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | % | 83 | 75 | 65 | 69 | | Toluene-d8 (surr.) | 1 | % | 101 | 83 | 72 | 76 | | Polycyclic Aromatic Hydrocarbons | | ,,, | | - 55 | | | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6 | 0.6 | 0.6 | 0.6 | | Benzo(a)pyrene TEQ (incaram bound) * | 0.5 | mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Acenaphthylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benz(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(b&j)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(k)fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chrysene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 63 | 57 | 80 | 52 | | p-Terphenyl-d14 (surr.) | 1 | % | 70 | 100 | 95 | 66 | | Organochlorine Pesticides | | | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | а-НСН | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |------|--|--|--|---|---| | | | M22- | M22- | M22- | Soil
M22- | | | | · . | • | • | Ap0036840 | | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | LOR | Unit | | | | | | | | | | | | | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 1 | % | 69 | 83 | 90 | 88 | | 1 | % | 100 | 86 | 113 | 93 | | | • | | | | | | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 0.1 | | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | | | | | < 0.1 | | | | | | | < 0.1 | | | | | | | < 0.1 | | | | | | | < 0.1 | | | | | | | < 0.1 | | | | | | | < 0.1 | | | | | | | 88 | | | | | | | 93 | | | 1 | | | | | | 0.5 | ma/ka | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | | | | | | < 0.5 | | | | | | | < 1 | | | | | | | < 1 | | | | | | | < 0.5 | | | | | | | < 1 | | | | | | | < 1 | | | | | | | < 10 | | | | | | | < 1 | | • | i iiig/iig | 1 | | | | | 20 | ma/ka | z 20 | z 20 | - 20 | < 20 | | | | | | | < 5 | | | | | | | < 1 | | | | | | | < 0.5 | | | | | | | < 5 | | | | | | | < 0.2 | | | | | | | < 0.2 | | | | | | | < 0.4 | | | | | | | < 5 | | | | | | | < 20 | | | | | | | | | 1 | mg/kg
% | < 0.5
58 | < 0.5
73 | < 0.5
58 | < 0.5
32 | | 1 1 | 1 % | . ວຽ | 1 /3 | 1 58 | 1 32 | | | 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 | 0.05 mg/kg 0.1 mg/kg 0.1 mg/kg 1 % 1 % 1 mg/kg 0.1 1 0.5 mg/kg 1 mg/kg 0.5 | 18_08_08_SS_Triplicate_EUF Soil M22-Ap0036837 Apr 18, 2022 LOR | 18.08.08.SS | 18 | | Client Sample ID | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF | SX_IB_202204
18_08_09_SS_
Primary_EUF | SX_IB_202204
18_11_57_SS_
Primary_EUF | SX_IB_202204
18_16_08_SS_
Primary_EUF | |--|------|----------|--|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036837 | M22-
Ap0036838 | M22-
Ap0036839 | M22-
Ap0036840 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | • | | | | | Teagriculation | LOIK | OTHE | | | | | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | 460 | 530 | 450 | 500 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 9.0 | 8.7 | 8.8 | 10 | | % Moisture | 1 | % | 29 | 32 | 31 | 35 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 33 | 52 | 20 | 26 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 150 | 130 | 120 | 120 | | Copper | 5 | mg/kg | 69 | 55 | 69 | 56 | | Lead | 5 | mg/kg | < 5 | 5.3 | < 5 | < 5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 200 | 170 | 180 | 160 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc | 5 | mg/kg | 130 | 110 | 140 | 110 | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanoic acid (PFOA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5
 | Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanoic acid (PFDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotridecanoic acid (PFTrDA)N15 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C4-PFBA (surr.) | 1 | % | 97 | 106 | 104 | 99 | | 13C5-PFPeA (surr.) | 1 | % | 98 | 99 | 97 | 97 | | 13C5-PFHxA (surr.) | 1 | % | 83 | 92 | 90 | 86 | | 13C4-PFHpA (surr.) | 1 | % | 78 | 87 | 91 | 89 | | 13C8-PFOA (surr.) | 1 | % | 69 | 100 | 81 | 82 | | 13C5-PFNA (surr.) | 1 | % | 76 | 113 | 56 | 85 | | 13C6-PFDA (surr.) | 1 | % | 67 | 85 | 67 | 85 | | 13C2-PFUnDA (surr.) | 1 | % | 113 | 109 | 120 | 97 | | 13C2-PFDoDA (surr.) | 1 | % | 90 | 90 | 91 | 84 | | 13C2-PFTeDA (surr.) | 1 | % | 78 | 82 | 80 | 75 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Client Sample ID Sample Matrix | | | SX_IB_202204
18_08_08_SS_
Triplicate_EUF
Soil | SX_IB_202204
18_08_09_SS_
Primary_EUF
Soil | SX_IB_202204
18_11_57_SS_
Primary_EUF
Soil | SX_IB_202204
18_16_08_SS_
Primary_EUF
Soil | |---|-----|----------|--|---|---|---| | Eurofins Sample No. | | | M22-
Ap0036837 | M22-
Ap0036838 | M22-
Ap0036839 | M22-
Ap0036840 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | Apr 18, 2022 | | Test/Reference | LOR | Unit | 7.6. 10, 2022 | , | 7.6. 10, 2022 | 7.0. 10, 2022 | | Perfluoroalkyl sulfonamido substances | LON | Offic | | | | | | • | | <u> </u> | | | | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-
EtFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 94 | 115 | 108 | 120 | | D3-N-MeFOSA (surr.) | 1 | % | 113 | 118 | 137 | 133 | | D5-N-EtFOSA (surr.) | 1 | % | 120 | 130 | 130 | 125 | | D7-N-MeFOSE (surr.) | 1 | % | 66 | 85 | 79 | 85 | | D9-N-EtFOSE (surr.) | 1 | % | 78 | 88 | 106 | 81 | | D5-N-EtFOSAA (surr.) | 1 | % | 115 | 125 | 123 | 121 | | D3-N-MeFOSAA (surr.) | 1 | % | 94 | 92 | 134 | 96 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 63 | 76 | 70 | 81 | | 18O2-PFHxS (surr.) | 1 | % | 93 | 120 | 101 | 122 | | 13C8-PFOS (surr.) | 1 | % | 70 | 111 | 78 | 64 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | • | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2
FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 70 | 75 | 76 | 73 | | 13C2-6:2 FTSA (surr.) | 1 | % | 62 | 82 | 77 | 73 | | 13C2-8:2 FTSA (surr.) | 1 | % | 91 | 117 | 90 | 117 | | 13C2-10:2 FTSA (surr.) | 1 | % | 114 | 67 | 106 | 85 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_ | SX_IB_202204
18_19_59_SS_ | SX_IB_202204
19_00_03_SS_ | SX_IB_202204
19_03_57_SS_ | |---|-----|-------|------------------------------|------------------------------|------------------------------|------------------------------| | Sample Matrix | | | Duplicate_EUF
Soil | | Primary_EUF Soil | Primary_EUF
Soil | | Eurofins Sample No. | | | M22-
Ap0036841 | M22-
Ap0036842 | M22-
Ap0036843 | M22-
Ap0036844 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | • | LOD | 1.1:- | Apr 10, 2022 | Apr 10, 2022 | Apr 13, 2022 | Apr 13, 2022 | | Test/Reference | LOR | Unit | | | | | | Total Recoverable Hydrocarbons | 20 | | . 20 | . 20 | . 20 | . 20 | | TRH C6-C9 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C10-C14 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C15-C28 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C29-C36 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH C10-C36 (Total) | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | Naphthalene ^{N02} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | TRH C6-C10 | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH C6-C10 less BTEX (F1) ^{N04} | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | TRH >C10-C16 | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C10-C16 less Naphthalene (F2) ^{N01} | 50 | mg/kg | < 50 | < 50 | < 50 | < 50 | | TRH >C16-C34 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C34-C40 | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | TRH >C10-C40 (total)* | 100 | mg/kg | < 100 | < 100 | < 100 | < 100 | | Volatile Organics | | | | | | | | Hexachlorobutadiene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Volatile Organics | | | | | | | | 1.1-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.1.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2-Trichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.1.2.2-Tetrachloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dibromoethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.3-Trichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.2.4-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3-Dichloropropane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.3.5-Trimethylbenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 1.4-Dichlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Butanone (MEK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Propanone (Acetone) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chlorotoluene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Methyl-2-pentanone (MIBK) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Allyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Bromobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromodichloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromoform | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Bromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon disulfide | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Carbon Tetrachloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | | | | | | | | | Chlorobenzene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Г | | 1 | | 1 | 1 | | |---------------------------------------|------|-------|---|---|---|---| | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF | SX_IB_202204
18_19_59_SS_
Primary_EUF | SX_IB_202204
19_00_03_SS_
Primary_EUF | SX_IB_202204
19_03_57_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036841 | M22-
Ap0036842 | M22-
Ap0036843 | M22-
Ap0036844 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | 7.6. 10, 2022 | 11,0110, 2022 | 7.6. 10, 2022 | 745. 10, 2022 | | Volatile Organics | LOIK | Offic | | | | | | Chloroethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chloroform | 0.5 | mg/kg | < 0.5 | < 0.5 | <
0.5 | < 0.5 | | Chloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | cis-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromochloromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibromomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dichlorodifluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Ethylbenzene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Iodomethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Isopropyl benzene (Cumene) | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | m&p-Xylenes | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Methylene Chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | o-Xylene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Styrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Tetrachloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Toluene | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | trans-1.2-Dichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | trans-1.3-Dichloropropene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichloroethene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Trichlorofluoromethane | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vinyl chloride | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Xylenes - Total* | 0.3 | mg/kg | < 0.3 | < 0.3 | < 0.3 | < 0.3 | | Total MAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Vic EPA IWRG 621 Other CHC (Total)* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Bromofluorobenzene (surr.) | 1 | % | 78 | 72 | 75 | 78 | | Toluene-d8 (surr.) | 1 | % | 88 | 80 | 81 | 91 | | Polycyclic Aromatic Hydrocarbons | | | | | | | | Benzo(a)pyrene TEQ (lower bound) * | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene TEQ (medium bound) * | 0.5 | mg/kg | 0.6 | 0.6 | 0.6 | 0.6 | | Benzo(a)pyrene TEQ (upper bound) * | 0.5 | mg/kg | 1.2 | 1.2 | 1.2 | 1.2 | | Acenaphthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Acenaphthylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benz(a)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(a)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(b&j)fluoranthene ^{N07} | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(g.h.i)perylene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Benzo(k)fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Chrysene P'h a changaigh a changaigh | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Dibenz(a.h)anthracene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluoranthene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Fluorene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Indeno(1.2.3-cd)pyrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Naphthalene
Phenanthrene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | renenaniniene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_ | SX_IB_202204
18_19_59_SS_ | SX_IB_202204
19_00_03_SS_ | SX_IB_202204
19_03_57_SS_ | |-------------------------------------|----------|----------|------------------------------|------------------------------|------------------------------|------------------------------| | Sample Matrix | | | Duplicate_EUF
Soil | Primary_EUF Soil | Primary_EUF Soil | Primary_EUF Soil | | Eurofins Sample No. | | | M22-
Ap0036841 | M22-
Ap0036842 | M22-
Ap0036843 | M22-
Ap0036844 | | | | | Apr 18, 2022 | | • | • | | Date Sampled | | | Apr 16, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | Polycyclic Aromatic Hydrocarbons | | T | | | | | | Total PAH* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2-Fluorobiphenyl (surr.) | 1 | % | 65 | 96 | 60 | 61 | | p-Terphenyl-d14 (surr.) | 1 | % | 68 | 92 | 54 | 68 | | Organochlorine Pesticides | | 1 | | | | | | Chlordanes - Total | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 4.4'-DDD | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDE | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 4.4'-DDT | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | а-НСН | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Aldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | b-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | d-HCH | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dieldrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan I | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan II | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endosulfan sulphate | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin aldehyde | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Endrin ketone | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | g-HCH (Lindane) | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Heptachlor epoxide | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Hexachlorobenzene | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Methoxychlor | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Toxaphene | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Aldrin and Dieldrin (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | DDT + DDE + DDD (Total)* | 0.05 | mg/kg | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Vic EPA IWRG 621 OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Vic EPA IWRG 621 Other OCP (Total)* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 69 | 94 | 52 | 69 | | Tetrachloro-m-xylene (surr.) | 1 | % | 93 | 123 | 65 | 88 | | Polychlorinated Biphenyls | T | <u> </u> | | | | | | Aroclor-1016 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1221 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1232 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1242 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1248 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1254 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Aroclor-1260 | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total PCB* | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Dibutylchlorendate (surr.) | 1 | % | 69 | 94 | 52 | 69 | | Tetrachloro-m-xylene (surr.) | 1 | % | 93 | 123 | 65 | 88 | | Phenols (Halogenated) | <u> </u> | T | | | | | | 2-Chlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4.5-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4.6-Trichlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Client Sample ID Sample Matrix | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF
Soil
M22- | SX_IB_202204
18_19_59_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
19_00_03_SS_
Primary_EUF
Soil
M22- | SX_IB_202204
19_03_57_SS_
Primary_EUF
Soil
M22- | |--|--------|----------------|---|---|---|---| | Eurofins Sample No. | | | Ap0036841 | Ap0036842 | Ap0036843 | Ap0036844 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | Phenols (Halogenated) | | | | | | | | 2.6-Dichlorophenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Chloro-3-methylphenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Pentachlorophenol | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Tetrachlorophenols - Total | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Total Halogenated Phenol* | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Phenols (non-Halogenated) | | | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | 2-Methyl-4.6-dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Nitrophenol | 1.0 | mg/kg | < 1 | < 1 | < 1 | < 1 | | 2.4-Dimethylphenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 2.4-Dinitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | 2-Methylphenol (o-Cresol) | 0.2 | mg/kg | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | 3&4-Methylphenol (m&p-Cresol) | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Total cresols* | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | 4-Nitrophenol | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Dinoseb | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Phenol | 0.5 | mg/kg | < 0.5 | < 0.5 | < 0.5 | < 0.5 | | Phenol-d6 (surr.) | 1 | % | 64 | 55 | 140 | 54 | | Total Non-Halogenated Phenol* | 20 | mg/kg | < 20 | < 20 | < 20 | < 20 | | Chromium (hexavalent) | 1 | mg/kg | < 1 | < 1 | < 1 | < 1 | | Cyanide (total) | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Fluoride (Total) | 100 | mg/kg | 450 | 550 | 540 | 490 | | pH (1:5 Aqueous extract at 25°C as rec.) | 0.1 | pH Units | 10 | 8.7 | 8.9 | 8.7 | | % Moisture | 1 | % | 35 | 29 | 30 | 29 | | Heavy Metals | | | | | | | | Arsenic | 2 | mg/kg | 41 | 31 | 32 | 20 | | Cadmium | 0.4 | mg/kg | < 0.4 | < 0.4 | < 0.4 | < 0.4 | | Chromium | 5 | mg/kg | 170 | 140 | 140 | 140 | | Copper | 5 | mg/kg | 84 | 66 | 73 | 75 | | Lead | 5 | mg/kg | 6.0 | < 5 | < 5 | < 5 | | Mercury | 0.1 | mg/kg | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Molybdenum | 5 | mg/kg | < 5 | < 5 | < 5 | < 5 | | Nickel | 5 | mg/kg | 270 | 210 | 220 | 200 | | Selenium | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Silver | 2 | mg/kg | < 2 | < 2 | < 2 | < 2 | | Tin | 10 | mg/kg | < 10 | < 10 | < 10 | < 10 | | Zinc Porfluoroalkyl carboxylic acids (PECAs) | 5 | mg/kg | 180 | 120 | 140 | 140 | | Perfluoroalkyl carboxylic acids
(PFCAs) | | // | | | | | | Perfluorobutanoic acid (PFBA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanoic acid (PFPeA) ^{N11} Perfluorohexanoic acid (PFHxA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoronexanoic acid (PFHxA) ^{N11} | 5
5 | ug/kg | < 5
< 5 | < 5 | < 5
< 5 | < 5
< 5 | | Perfluorooctanoic acid (PFOA) ^{N11} | 5 | ug/kg
ug/kg | < 5
< 5 | < 5
< 5 | < 5
< 5 | < 5 | | Perfluorononanoic acid (PFNA) ^{N11} | 5 | ug/kg
ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanoic acid (PFDA) ^{N11} | 5 | ug/kg
ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 5 | ug/kg
ug/kg | < 5 | < 5 | < 5 | < 5 | | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF | SX_IB_202204
18_19_59_SS_
Primary_EUF | SX_IB_202204
19_00_03_SS_
Primary_EUF | SX_IB_202204
19_03_57_SS_
Primary_EUF | |--|-----|-------|---|---|---|---| | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036841 | M22-
Ap0036842 | M22-
Ap0036843 | M22-
Ap0036844 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C4-PFBA (surr.) | 1 | % | 96 | 106 | 103 | 97 | | 13C5-PFPeA (surr.) | 1 | % | 95 | 107 | 113 | 97 | | 13C5-PFHxA (surr.) | 1 | % | 84 | 92 | 89 | 79 | | 13C4-PFHpA (surr.) | 1 | % | 80 | 93 | 92 | 82 | | 13C8-PFOA (surr.) | 1 | % | 79 | 96 | 86 | 58 | | 13C5-PFNA (surr.) | 1 | % | 82 | 53 | 57 | 42 | | 13C6-PFDA (surr.) | 1 | % | 91 | 92 | 82 | 66 | | 13C2-PFUnDA (surr.) | 1 | % | 105 | 126 | 113 | 117 | | 13C2-PFDoDA (surr.) | 1 | % | 104 | 86 | 82 | 105 | | 13C2-PFTeDA (surr.) | 1 | % | 68 | 76 | 82 | 69 | | Perfluoroalkyl sulfonamido substances | | | | | | | | Perfluorooctane sulfonamide (FOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11 | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 13C8-FOSA (surr.) | 1 | % | 97 | 115 | 118 | 102 | | D3-N-MeFOSA (surr.) | 1 | % | 123 | 147 | 123 | 137 | | D5-N-EtFOSA (surr.) | 1 | % | 121 | 116 | 136 | 126 | | D7-N-MeFOSE (surr.) | 1 | % | 67 | 82 | 94 | 64 | | D9-N-EtFOSE (surr.) | 1 | % | 78 | 96 | 90 | 79 | | D5-N-EtFOSAA (surr.) | 1 | % | 117 | 140 | 126 | 148 | | D3-N-MeFOSAA (surr.) | 1 | % | 92 | 137 | 141 | 124 | | Perfluoroalkyl sulfonic acids (PFSAs) | | 1 | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C3-PFBS (surr.) | 1 | % | 69 | 84 | 76 | 63 | | 18O2-PFHxS (surr.) | 1 | % | 93 | 103 | 85 | 94 | | 13C8-PFOS (surr.) | 1 | % | 68 | 89 | 74 | 69 | | | | | OV ID 000004 | OV ID 000004 | OV ID 000004 | OV ID COCCO | |---|--|-------|---|---|---|---| | Client Sample ID | | | SX_IB_202204
18_16_09_SS_
Duplicate_EUF | SX_IB_202204
18_19_59_SS_
Primary_EUF | SX_IB_202204
19_00_03_SS_
Primary_EUF | SX_IB_202204
19_03_57_SS_
Primary_EUF | | Sample Matrix | | | Soil | Soil | Soil | Soil | | Eurofins Sample No. | | | M22-
Ap0036841 | M22-
Ap0036842 | M22-
Ap0036843 | M22-
Ap0036844 | | Date Sampled | | | Apr 18, 2022 | Apr 18, 2022 | Apr 19, 2022 | Apr 19, 2022 | | Test/Reference | LOR | Unit | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | 13C2-4:2 FTSA (surr.) | 1 | % | 66 | 74 | 75 | 70 | | 13C2-6:2 FTSA (surr.) | 1 | % | 68 | 77 | 79 | 74 | | 13C2-8:2 FTSA (surr.) | 1 | % | 93 | 93 | 88 | 61 | | 13C2-10:2 FTSA (surr.) | 1 | % | 75 | 107 | 134 | 115 | | PFASs Summations | | | | | | | | Sum (PFHxS + PFOS)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of US EPA PFAS (PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 5 | ug/kg | < 5 | < 5 | < 5 | < 5 | | Sum of WA DWER PFAS (n=10)* | 10 | ug/kg | < 10 | < 10 | < 10 | < 10 | | Sum of PFASs (n=30)* | 50 | ug/kg | < 50 | < 50 | < 50 | < 50 | #### **Sample History** Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |---|--------------|--------------|--------------| | IWRG 621 WGTP Suite | | | | | Total Recoverable Hydrocarbons - 1999 NEPM Fractions | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2010 TRH C6-C40 | | | | | Total Recoverable Hydrocarbons - 2013 NEPM Fractions | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2010 TRH C6-C40 | | | | | Total Recoverable Hydrocarbons - 2013 NEPM Fractions | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2010 TRH C6-C40 | | | | | Volatile Organics | Melbourne | Apr 20, 2022 | 7 Days | | - Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS | | | | | Volatile Organics | Melbourne | Apr 20, 2022 | 7 Days | | - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices (USEPA 8260) | | | | | Polycyclic Aromatic Hydrocarbons | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water | | | | | Organochlorine Pesticides | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270) | | | | | Polychlorinated Biphenyls | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082) | | | | | Phenols (Halogenated) | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water | | | | | Phenols (non-Halogenated) | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water | | | | | Chromium (hexavalent) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-INO-4100 Hexavalent Chromium by Spectrometric detection | | | | | Cyanide (total) | Melbourne | Apr 20, 2022 | 14 Days | | - Method: LTM-INO-4020 Total Free WAD Cyanide by CFA | | | | | Fluoride (Total) | Melbourne | Apr 21, 2022 | 28 Days | | - Method: LTM-INO-4150 Determination of Total Fluoride PART A - CIC | | | | | - Method: LTM-INO-4150 Determination of Total Fluoride PART B – ISE | | | | | pH (1:5 Aqueous extract at 25°C as rec.) | Melbourne | Apr 20, 2022 | 7 Days | | - Method: LTM-GEN-7090 pH in soil by ISE | | | | | Metals IWRG 621 : Metals M12 | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS | | | | | % Moisture | Melbourne | Apr 19, 2022 | 14 Days | | - Method: LTM-GEN-7080 Moisture | | | | | Per- and Polyfluoroalkyl Substances (PFASs) | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonamido substances | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | Melbourne | Apr 20, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | PFASs Summations | Melbourne | Apr 19, 2022 | | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | | | | | #### **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC
3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 20220419042301-Eurofin-21 **Project Name:** Project ID: JC0927 Order No.: Report #: Phone: 179 Magowar Road Phone: +61 2 9900 8400 880891 08 8338 1009 Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 **Eurofins Analytical Services Manager: Michael Cassidy** | Sample Detail | | | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | |---|---|--------------|------------------|--------|------------------------|--------------|---|---------------------|---| | Melbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | Χ | Х | Х | Х | | Sydney Laboratory - NATA # 1261 Site # 18217 | | | | | | | | | | | Brisbane Laboratory - NATA # 1261 Site # 20794 Mayfield Laboratory - NATA # 1261 Site # 25079 | Perth Laboratory - NATA # 2377 Site # 2370 | | | | | | | | | | | External Laboratory | | | | | | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036819 | | х | Х | х | | 2 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036820 | | Х | Х | х | | 3 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036821 | | х | х | х | | 4 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036822 | | Х | Х | х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: 179 Magowar Road Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|-------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | X | Х | Х | | Sydr | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | bane Laboratory | | | | | | | 1 | | | | field Laboratory | | | | | | | - | | | | h Laboratory - N | | te # 2370 | | | | | | | | | rnal Laboratory | | | Г | | | | | | | 5 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | Soil | M22-
Ap0036823 | | x | Х | х | | 6 | SX_IB_202204
16_16_49_SR
_Rinsate_EUF | Apr 16, 2022 | | Water | M22-
Ap0036824 | | | x | | | 7 | SX_IB_202204
16_16_50_SB
_Blank_EUF | Apr 16, 2022 | | Water | M22-
Ap0036825 | | | x | | | 8 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036826 | | x | x | х | | 9 | SX_IB_202204 | Apr 17, 2022 | | Soil | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Due: **Priority:** Apr 21, 2022 3 Dav Apr 19, 2022 3:30 PM **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sai | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------|---------------|------|-------------------|------------------------|--------------|---|---------------------| | | | | | | | | | s (PFASs) | | | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | _ | ey Laboratory - | | | | | | | | | | | oane Laboratory | <i>'</i> | | | | | | | | | | ield Laboratory | | | | | | | | | | | n Laboratory - N | | e # 2370 | | | | | | | | 9 | rnal Laboratory
SX_IB_202204
17_00_01_SS
_Primary_EUF | | | Soil | M22-
Ap0036827 | | | | | | 10 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036828 | | Х | Х | х | | 11 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036829 | | Х | х | х | | 12 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | Soil | M22-
Ap0036830 | | х | х | х | | 13 | SX_IB_202204 | Apr 17, 2022 | | Soil | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------|-------------------|------------------------|--------------|---|---------------------| | Melk | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 17_12_28_SS
_Primary_EUF | | | | Ap0036831 | | | | | | 14 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036832 | | х | х | х | | 15 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | Apr 17, 2022 | | Soil | M22-
Ap0036833 | | х | х | х | | 16 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036834 | | х | х | х | | 17 | SX_IB_202204
18_00_05_SS | Apr 18, 2022 | | Soil | M22-
Ap0036835 | | х | х | х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794
Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 > > Apr 21, 2022 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Due: **Priority:** **Contact Name:** 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth 3 Dav Agon Lab Reports (Spoil Project) Apr 19, 2022 3:30 PM | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------------------|----------------|------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 18_00_05_SS
_Primary_EUF | | | | Ap0036835 | | | | | | 18 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036836 | | х | х | х | | 19 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036837 | | х | х | х | | 20 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036838 | | х | х | х | | 21 | SX_IB_202204
18_11_57_SS | Apr 18, 2022 | | Soil | M22-
Ap0036839 | | Х | Х | Х | #### **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|----------------------------|----------------|------|-------------------|------------------------|--------------|---|---------------------| | Mell | bourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 126 | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | [,] - NATA # 1261 | Site # 25079 |) | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | _ | _ | | | | | | | | _Primary_EUF | | | | | | | | | | 22 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036840 | | х | х | х | | 23 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036841 | | х | х | х | | 24 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036842 | | х | Х | х | | 25 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036843 | | х | х | х | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Phone: +61 2 9900 8400 Report #: Phone: 880891 08 8338 1009 Fax: 179 Magowar Road Sydney Received: Perth Apr 19, 2022 3:30 PM Apr 21, 2022 NZBN: 9429046024954 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | ney Laboratory | | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 [,] | 1 Site # 2079 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 26 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036844 | | х | х | х | | 27 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036845 | Х | | Х | | | 28 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036846 | х | | х | | | 29 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036847 | Х | | х | | | 30 | SX_IB_202204
16_16_18_SS | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036848 | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 NZBN: 9429046024954 35 O'Rorke Road Auckland IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: Sydney 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydi | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | 1 | | | | | | | _Primary_EUF | | | | | | | | | | 31 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036849 | х | | х | | | 32 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036850 | Х | | Х | | | 33 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036851 | Х | | Х | | | 34 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036852 | х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site #
18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Sydney Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 35 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036853 | Х | | х | | | 36 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036854 | Х | | x | | | 37 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036855 | Х | | Х | | | 38 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036856 | Х | | Х | | | 39 | SX_IB_202204 | Apr 17, 2022 | | AUS Leachate | M22- | Χ | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 Sydney 179 Magowar Road 880891 08 8338 1009 Phone: Fax: Received: Perth 46-48 Banksia Road Welshpool WA 6106 Apr 19, 2022 3:30 PM Apr 21, 2022 NZBN: 9429046024954 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydi | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | Site # 20794 | ļ | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 17_15_56_SS
_Duplicate_EU
F | | | - pH 5.0 | Ap0036857 | | | | | | 40 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036858 | Х | | х | | | 41 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036859 | Х | | х | | | 42 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036860 | X | | х | | | 43 | SX_IB_202204
18_08_08_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036861 | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Perth Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 18_08_08_SS
_Triplicate_EU
F | | | - pH 5.0 | Ap0036861 | | | | | | 44 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036862 | х | | х | | | 45 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036863 | х | | х | | | 46 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036864 | х | | Х | | | 47 | SX_IB_202204
18_16_09_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036865 | Х | | Х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | , | | | | | | | | | _Duplicate_EU
F | | | | | | | | | | 48 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036866 | х | | х | | | 49 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036867 | Х | | Х | | | 50 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036868 | х | | Х | | | 51 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036869 | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50
005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Phone: 08 8338 1009 Fax: Sydney Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 52 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036870 | х | | х | | | 53 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036871 | х | | Х | | | 54 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036872 | Х | | х | | | 55 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036873 | х | | х | | | 56 | SX_IB_202204 | Apr 16, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Fax: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Received: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | 1 Site # 20794 | l . | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 16_20_02_SS
_Primary_EUF | | | - Reagent
Water | Ap0036874 | | | | | | 57 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036875 | Х | | х | | | 58 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036876 | X | | Х | | | 59 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036877 | X | | х | | | 60 | SX_IB_202204
17_08_10_SS
_Triplicate_EU | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036878 | X | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 Phone: 08 8338 1009 Fax: Sydney 179 Magowar Road Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | Г | | ı | | | | | | | _Triplicate_EU
F | | | Water | | | | | | | 61 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036879 | х | | х | | | 62 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036880 | Х | | Х | | | 63 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036881 | Х | | х | | | 64 | SX_IB_202204
17_20_03_SS | Apr 17, 2022 | | AUS Leachate
- Reagent | M22-
Ap0036882 | Х | | Х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney Received: 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Perth Due: Apr 19, 2022 3:30 PM Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Primary_EUF | | | Water | | | | | | | 65 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036883 | Х | | Х | | | 66 |
SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036884 | Х | | Х | | | 67 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036885 | Х | | Х | | | 68 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036886 | X | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com Address: **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |--|---|-----------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | | | | | | | | | | Brisbane Laboratory - NATA # 1261 Site # 20794 | | | | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | , | | | | | | | 69 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036887 | Х | | х | | | 70 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036888 | Х | | Х | | | 71 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036889 | X | | х | | | 72 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036890 | Х | | Х | | | 73 | SX_IB_202204 | Apr 19, 2022 | | AUS Leachate | M22- | Χ | | Х | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au email: EnviroSales@eurofins.com Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |---------------------|---|-----------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Χ | Х | Х | Х | | Sydn | ey Laboratory | - NATA # 1261 S | Site # 18217 | | | | | | | | Brisk | pane Laboratory | / - NATA # 1261 | Site # 20794 | | | | | | | | Mayf | ield Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Perth | Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | External Laboratory | | | | | | | | | | | | 19_00_03_SS
_Primary_EUF | | | - Reagent
Water | Ap0036891 | | | | | | 74 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036892 | Х | | Х | | | Test | Counts | | | | | 48 | 24 | 74 | 24 | #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. #### Units mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre **ppm**: parts per million **ppb**: parts per billion %: Percentage org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres #### **Terms** APHA American Public Health Association COC Chain of Custody CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery. Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. LOR Limit of Reporting. Laboratory Control Sample - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. RPD Relative Percent Difference between two Duplicate pieces of analysis. SPIKE Addition of the analyte to the sample and reported as percentage recovery. SRA Sample Receipt Advice Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TCLP Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence QSM US Department of Defense Quality Systems Manual Version 5.4 US EPA United States Environmental Protection Agency WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA #### QC - Acceptance Criteria The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS PFAS field samples that contain surrogate
recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected. #### **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte. - 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample. - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. #### **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------------------|-------|----------|----------------------|----------------|--------------------| | Method Blank | | | | | | | Total Recoverable Hydrocarbons | | | | | | | TRH C6-C9 | mg/kg | < 20 | 20 | Pass | | | TRH C10-C14 | mg/kg | < 20 | 20 | Pass | | | TRH C15-C28 | mg/kg | < 50 | 50 | Pass | | | TRH C29-C36 | mg/kg | < 50 | 50 | Pass | | | Naphthalene | mg/kg | < 0.5 | 0.5 | Pass | | | TRH C6-C10 | mg/kg | < 20 | 20 | Pass | | | TRH >C10-C16 | mg/kg | < 50 | 50 | Pass | | | TRH >C16-C34 | mg/kg | < 100 | 100 | Pass | | | TRH >C34-C40 | mg/kg | < 100 | 100 | Pass | | | Method Blank | | | | | | | Volatile Organics | | | | | | | Hexachlorobutadiene | mg/kg | < 0.5 | 0.5 | Pass | | | Method Blank | 1 5 5 | • | | | | | Volatile Organics | | | | | | | 1.1-Dichloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2.4-Trichlorobenzene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.1-Dichloroethene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.1.1-Trichloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.1.1.2-Tetrachloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.1.2-Trichloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.1.2.2-Tetrachloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2-Dibromoethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2-Dichlorobenzene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2-Dichloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2-Dichloropropane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2.3-Trichloropropane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.2.4-Trimethylbenzene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.3-Dichlorobenzene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.3-Dichloropropane | mg/kg | < 0.5 | 0.5 | Pass | | | 1.3.5-Trimethylbenzene | mg/kg | < 0.5 | 0.5 | Pass | | | 1.4-Dichlorobenzene | | | 0.5 | Pass | | | | mg/kg | < 0.5 | | | | | 2-Butanone (MEK) | mg/kg | < 0.5 | 0.5 | Pass | | | 2-Propanone (Acetone) | mg/kg | < 0.5 | 0.5 | Pass | | | 4-Chlorotoluene | mg/kg | < 0.5 | 0.5 | Pass | | | 4-Methyl-2-pentanone (MIBK) | mg/kg | < 0.5 | 0.5 | Pass | | | Allyl chloride | mg/kg | < 0.5 | 0.5 | Pass | | | Benzene | mg/kg | < 0.1 | 0.1 | Pass | | | Bromobenzene | mg/kg | < 0.5 | 0.5 | Pass | | | Bromochloromethane | mg/kg | < 0.5 | 0.5 | Pass | | | Bromodichloromethane | mg/kg | < 0.5 | 0.5 | Pass | | | Bromoform | mg/kg | < 0.5 | 0.5 | Pass | | | Bromomethane | mg/kg | < 0.5 | 0.5 | Pass | | | Carbon disulfide | mg/kg | < 0.5 | 0.5 | Pass | | | Carbon Tetrachloride | mg/kg | < 0.5 | 0.5 | Pass | | | Chlorobenzene | mg/kg | < 0.5 | 0.5 | Pass | | | Chloroethane | mg/kg | < 0.5 | 0.5 | Pass | | | Chloroform | mg/kg | < 0.5 | 0.5 | Pass | | | Chloromethane | mg/kg | < 0.5 | 0.5 | Pass | | | cis-1.2-Dichloroethene | mg/kg | < 0.5 | 0.5 | Pass | | | cis-1.3-Dichloropropene | mg/kg | < 0.5 | 0.5 | Pass | | | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |----------------------------------|-------|----------|----------------------|----------------|--------------------| | Dibromochloromethane | mg/kg | < 0.5 | 0.5 | Pass | | | Dibromomethane | mg/kg | < 0.5 | 0.5 | Pass | | | Dichlorodifluoromethane | mg/kg | < 0.5 | 0.5 | Pass | | | Ethylbenzene | mg/kg | < 0.1 | 0.1 | Pass | | | lodomethane | mg/kg | < 0.5 | 0.5 | Pass | | | Isopropyl benzene (Cumene) | mg/kg | < 0.5 | 0.5 | Pass | | | m&p-Xylenes | mg/kg | < 0.2 | 0.2 | Pass | | | Methylene Chloride | mg/kg | < 0.5 | 0.5 | Pass | | | o-Xylene | mg/kg | < 0.1 | 0.1 | Pass | | | Styrene | mg/kg | < 0.5 | 0.5 | Pass | | | Tetrachloroethene | mg/kg | < 0.5 | 0.5 | Pass | | | Toluene | mg/kg | < 0.1 | 0.1 | Pass | | | trans-1.2-Dichloroethene | mg/kg | < 0.5 | 0.5 | Pass | | | trans-1.3-Dichloropropene | mg/kg | < 0.5 | 0.5 | Pass | | | Trichloroethene | mg/kg | < 0.5 | 0.5 | Pass | | | Trichlorofluoromethane | mg/kg | < 0.5 | 0.5 | Pass | | | Vinyl chloride | mg/kg | < 0.5 | 0.5 | Pass | | | Xylenes - Total* | mg/kg | < 0.3 | 0.3 | Pass | | | Method Blank | | 1 0.0 | 1 0.0 | 1 400 | | | Polycyclic Aromatic Hydrocarbons | | | T I | | | | Acenaphthene | mg/kg | < 0.5 | 0.5 | Pass | | | Acenaphthylene | mg/kg | < 0.5 | 0.5 | Pass | | | Anthracene | mg/kg | < 0.5 | 0.5 | Pass | | | Benz(a)anthracene | mg/kg | < 0.5 | 0.5 | Pass | | | Benzo(a)pyrene | mg/kg | < 0.5 | 0.5 | Pass | | | Benzo(b&j)fluoranthene | mg/kg | < 0.5 | 0.5 | Pass | | | ` " | | | | | | | Benzo(g.h.i)perylene | mg/kg | < 0.5 | 0.5 | Pass | | | Benzo(k)fluoranthene | mg/kg | < 0.5 | 0.5 | Pass | | | Chrysene | mg/kg | < 0.5 | 0.5 | Pass | | | Dibenz(a.h)anthracene | mg/kg | < 0.5 | 0.5 | Pass | | | Fluoranthene | mg/kg | < 0.5 | 0.5 | Pass | | | Fluorene | mg/kg | < 0.5 | 0.5 | Pass | | | Indeno(1.2.3-cd)pyrene | mg/kg | < 0.5 | 0.5 | Pass | | | Naphthalene | mg/kg | < 0.5 | 0.5 | Pass | | | Phenanthrene | mg/kg | < 0.5 | 0.5 | Pass | | | Pyrene | mg/kg | < 0.5 | 0.5 | Pass | | | Method Blank | | | T | | | | Organochlorine Pesticides | | | | _ | | | Chlordanes - Total | mg/kg | < 0.1 | 0.1 | Pass | | | 4.4'-DDD | mg/kg | < 0.05 | 0.05 | Pass | | | 4.4'-DDE | mg/kg | < 0.05 | 0.05 | Pass | | | 4.4'-DDT | mg/kg | < 0.05 | 0.05 | Pass | | | a-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | Aldrin | mg/kg | < 0.05 | 0.05 | Pass | | | b-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | d-HCH | mg/kg | < 0.05 | 0.05 | Pass | | | Dieldrin | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan I | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan II | mg/kg | < 0.05 | 0.05 | Pass | | | Endosulfan sulphate | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin aldehyde | mg/kg | < 0.05 | 0.05 | Pass | | | Endrin ketone | mg/kg | < 0.05 | 0.05 | Pass | | | g-HCH (Lindane) | mg/kg | < 0.05 | 0.05 | Pass | | | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------------------|-------|----------|----------------------|----------------|--------------------| | Heptachlor | mg/kg | < 0.05 | 0.05 | Pass | | | Heptachlor epoxide | mg/kg | < 0.05 | 0.05 | Pass | | | Hexachlorobenzene | mg/kg | < 0.05 | 0.05 | Pass | | | Methoxychlor | mg/kg | < 0.05 | 0.05 | Pass | | | Toxaphene | mg/kg | < 0.5 | 0.5 | Pass | | | Method Blank | | | | | | | Polychlorinated Biphenyls | | | | | | | Aroclor-1016 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1221 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1232 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1242 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1248 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1254 | mg/kg | < 0.1 | 0.1 | Pass | | | Aroclor-1260 | mg/kg | < 0.1 | 0.1 | Pass | | | Total PCB* | mg/kg | < 0.1 | 0.1 | Pass | | | Method Blank | | | | 1 | | | Phenois (Halogenated) | | | | T | | | 2-Chlorophenol | mg/kg | < 0.5 | 0.5 | Pass | | | 2.4-Dichlorophenol | mg/kg | < 0.5 | 0.5 | Pass | | | 2.4.5-Trichlorophenol | mg/kg | < 1 | 1 | Pass | | | 2.4.6-Trichlorophenol | mg/kg | <1 | 1 | Pass | | | 2.6-Dichlorophenol | mg/kg | < 0.5 | 0.5 | Pass | | | 4-Chloro-3-methylphenol | mg/kg | < 1 | 1 | Pass | | | Pentachlorophenol | mg/kg | <1 | 1 | Pass | | | Tetrachlorophenols - Total | | < 10 | 10 | Pass | | | Method Blank | mg/kg | < 10 | 10 | Fd55 | | | | | | | Τ | | | Phenois (non-Halogenated) | | . 20 | 20 | Dana | | | 2-Cyclohexyl-4.6-dinitrophenol | mg/kg | < 20 | 20 | Pass | | | 2-Methyl-4.6-dinitrophenol | mg/kg | < 5 | 5 | Pass | | | 2-Nitrophenol | mg/kg | <1 | 1.0 | Pass | | | 2.4-Dimethylphenol | mg/kg | < 0.5 | 0.5 | Pass | | | 2.4-Dinitrophenol | mg/kg | < 5 | 5 | Pass | | | 2-Methylphenol (o-Cresol) | mg/kg | < 0.2 | 0.2 | Pass | | | 3&4-Methylphenol (m&p-Cresol) | mg/kg | < 0.4 | 0.4 | Pass | | | 4-Nitrophenol | mg/kg | < 5 | 5 | Pass | | | Dinoseb | mg/kg | < 20 | 20 | Pass | | | Phenol | mg/kg | < 0.5 | 0.5 | Pass | | | Method Blank | | | | Τ_ | | | Chromium (hexavalent) | mg/kg | < 1 | 1 | Pass | | | Cyanide (total) | mg/kg | < 5 | 5 | Pass | | | Fluoride (Total) | mg/kg | < 100 | 100 | Pass | | | Method Blank | | | | 1 | | | Heavy Metals | | | | 1 | | | Arsenic | mg/kg | < 2 | 2 | Pass | | | Cadmium | mg/kg | < 0.4 | 0.4 | Pass | | | Chromium | mg/kg | < 5 | 5 | Pass | | | Copper | mg/kg | < 5 | 5 | Pass | | | Lead | mg/kg | < 5 | 5 | Pass | | | Mercury | mg/kg | < 0.1 | 0.1 | Pass | | | Molybdenum | mg/kg | < 5 | 5 | Pass | | | Nickel | mg/kg | < 5 | 5 | Pass | | | Selenium | mg/kg | < 2 | 2 | Pass | | | Silver | mg/kg | < 2 | 2 | Pass | | | Tin | mg/kg | < 10 | 10 | Pass | | | Method Blank | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code |
---|--|-------|----------|----------------------|----------------|--------------------| | Perfluoroalityl carboxylic acids (PFCAs) | Zinc | mg/kg | < 5 | 5 | Pass | | | Perfluorobutanola acid (PFPA) | Method Blank | | | | | | | Perfluoropentanoic acid (PFPA) | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | Perfluoroheptanoic acid (PFHA) | Perfluorobutanoic acid (PFBA) | ug/kg | < 5 | 5 | Pass | | | Perfluoronctanoic acid (PFDA) | Perfluoropentanoic acid (PFPeA) | ug/kg | < 5 | 5 | Pass | | | Perfluorocotanoic acid (PFOA) | Perfluorohexanoic acid (PFHxA) | ug/kg | < 5 | 5 | Pass | | | Perfluoronanancia acid (PFNA) | Perfluoroheptanoic acid (PFHpA) | ug/kg | < 5 | 5 | Pass | | | Perfluorodecanoic acid (PFDA) | Perfluorooctanoic acid (PFOA) | ug/kg | < 5 | 5 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | Perfluorononanoic acid (PFNA) | ug/kg | < 5 | 5 | Pass | | | Perfluorododecanoic acid (PFDDA) | Perfluorodecanoic acid (PFDA) | ug/kg | < 5 | 5 | Pass | | | Perfluorotridecanoic acid (PFTcDA) | ` ' | ug/kg | < 5 | | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | ` ' | ug/kg | | | Pass | | | Method Blank Perfluoroalkyl sulfonamido substances Perfluorocalky sulfonamido substances Perfluorocalky sulfonamido (PCSA) Ug/kg | Perfluorotridecanoic acid (PFTrDA) | ug/kg | < 5 | | Pass | | | Perfluoroalkyl sulfonamido substances | | ug/kg | < 5 | 5 | Pass | | | Perfluorooctane sulfonamide (FOSA) ug/kg < 5 5 Pass | | | 1 1 | | | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ug/kg < 5 5 Pass | • | | | | | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | · | | 1 | | | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ug/kg < 5 | , , | | 1 | | | | | MéFOSE | , , , | ug/kg | < 5 | 5 | Pass | | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ug/kg < 10 10 Pass | | ug/kg | < 5 | 5 | Pass | | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ug/kg < 10 | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | ug/kg | < 5 | 5 | Pass | | | Method Blank Perfluoroalkyl sulfonic acids (PFSAs) ug/kg < 5 | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) | ug/kg | < 10 | 10 | Pass | | | Perfluoroalkyl sulfonic acids (PFSAs) | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ug/kg | < 10 | 10 | Pass | | | Perfluorobulanesulfonic acid (PFBS) | Method Blank | | | | | | | Perfluorononanesulfonic acid (PFNS) | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | Perfluoropropanesulfonic acid (PFPS) | Perfluorobutanesulfonic acid (PFBS) | ug/kg | < 5 | 5 | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | Perfluorononanesulfonic acid (PFNS) | ug/kg | < 5 | 5 | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | Perfluoropropanesulfonic acid (PFPrS) | ug/kg | < 5 | 5 | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | Perfluoropentanesulfonic acid (PFPeS) | ug/kg | < 5 | 5 | Pass | | | Perfluorooctanesulfonic acid (PFOS) | Perfluorohexanesulfonic acid (PFHxS) | ug/kg | < 5 | 5 | Pass | | | Perfluorodecanesulfonic acid (PFDS) | Perfluoroheptanesulfonic acid (PFHpS) | ug/kg | < 5 | 5 | Pass | | | Method Blank n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) ug/kg < 5 Pass 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5 | Perfluorooctanesulfonic acid (PFOS) | ug/kg | < 5 | 5 | Pass | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) ug/kg < 5 Pass 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5 | Perfluorodecanesulfonic acid (PFDS) | ug/kg | < 5 | 5 | Pass | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ug/kg < 5 | | | 1 | | | | | 1H.1H.2H.2H-perfluorocotanesulfonic acid (6:2 FTSA) ug/kg < 10 | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ug/kg < 5 | , , , | ug/kg | < 5 | 5 | Pass | | | TH.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ug/kg < 5 5 Pass | · | | < 10 | | Pass | | | LCS - % Recovery Total Recoverable Hydrocarbons | · | | < 5 | | Pass | | | Total Recoverable Hydrocarbons % 112 70-130 Pass TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | ug/kg | < 5 | 5 | Pass | | | TRH C6-C9 % 112 70-130 Pass TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | • | | 1 | | | | | TRH C10-C14 % 111 70-130 Pass Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1-Dichloroethane % 74 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | | | | | | | Naphthalene % 107 70-130 Pass TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | | | | | | | TRH C6-C10 % 109 70-130 Pass TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | | | | | | | TRH >C10-C16 % 116 70-130 Pass LCS - % Recovery Volatile Organics Image: Control of the con | • | | | | | | | LCS - % Recovery Volatile Organics 74 70-130 Pass 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | | 1 | | | | | Volatile Organics 74 70-130 Pass 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | % | 116 | 70-130 | Pass | | | 1.1-Dichloroethene % 74 70-130 Pass 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | • | | | | | | | 1.1.1-Trichloroethane % 77 70-130 Pass 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | 9 | 0.1 | | 70.400 | | | | 1.2-Dichlorobenzene % 124 70-130 Pass 1.2-Dichloroethane % 112 70-130 Pass | | | t | | | | | 1.2-Dichloroethane % 112 70-130 Pass | | | 1 1 | | | | | | | | 1 | | | | | Delizerie 70 00 / 10-130 Pass | | | | | | | | Ethylbenzene % 85 70-130 Pass | | | 1 | | | | | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |----------------------------------|-------|----------|----------------------|----------------|--------------------| | m&p-Xylenes | % | 87 | 70-130 | Pass | | | Toluene | % | 99 | 70-130 | Pass | | | Trichloroethene | % | 74 | 70-130 | Pass | | | Xylenes - Total* | % | 88 | 70-130 | Pass | | | LCS - % Recovery | | | | | | | Polycyclic Aromatic Hydrocarbons | | | | | | | Acenaphthene | % | 90 | 70-130 | Pass | | | Acenaphthylene | % | 99 | 70-130 | Pass | | | Anthracene | % | 91 | 70-130 | Pass | | | Benz(a)anthracene | % | 102 | 70-130 | Pass | | | Benzo(a)pyrene | % | 97 | 70-130 | Pass | | | Benzo(b&j)fluoranthene | % | 103 | 70-130 | Pass | | | Benzo(g.h.i)perylene | % | 88 | 70-130 | Pass | | | Benzo(k)fluoranthene | % | 104 | 70-130 | Pass | | | Chrysene | % | 98 | 70-130 | Pass | | | Dibenz(a.h)anthracene | % | 97 | 70-130 | Pass | | | Fluoranthene | % | 89 | 70-130 | Pass | | | Fluorene | % | 97 | 70-130 | Pass | | | Indeno(1.2.3-cd)pyrene | % | 92 | 70-130 | Pass | | | Naphthalene | % | 83 | 70-130 | Pass | | | Phenanthrene | % | 83 | 70-130 | Pass | | | Pyrene | % | 92 | 70-130 | Pass | | | LCS - % Recovery | | | | | | | Organochlorine Pesticides | | | | | | | Chlordanes - Total | % | 98 | 70-130 | Pass | | | 4.4'-DDD |
% | 109 | 70-130 | Pass | | | 4.4'-DDE | % | 100 | 70-130 | Pass | | | 4.4'-DDT | % | 95 | 70-130 | Pass | | | a-HCH | % | 91 | 70-130 | Pass | | | Aldrin | % | 100 | 70-130 | Pass | | | b-HCH | % | 79 | 70-130 | Pass | | | d-HCH | % | 77 | 70-130 | Pass | | | Dieldrin | % | 99 | 70-130 | Pass | | | Endosulfan I | % | 108 | 70-130 | Pass | | | Endosulfan II | % | 92 | 70-130 | Pass | | | Endosulfan sulphate | % | 104 | 70-130 | Pass | | | Endrin | % | 108 | 70-130 | Pass | | | Endrin aldehyde | % | 85 | 70-130 | Pass | | | Endrin ketone | % | 93 | 70-130 | Pass | | | g-HCH (Lindane) | % | 93 | 70-130 | Pass | | | Heptachlor | % | 110 | 70-130 | Pass | | | Heptachlor epoxide | % | 78 | 70-130 | Pass | | | Hexachlorobenzene | % | 99 | 70-130 | Pass | | | Methoxychlor | % | 92 | 70-130 | Pass | | | LCS - % Recovery | | | | | | | Polychlorinated Biphenyls | | | | | | | Aroclor-1260 | % | 129 | 70-130 | Pass | | | LCS - % Recovery | | , | | | | | Phenols (Halogenated) | T | | | | | | 2-Chlorophenol | % | 79 | 25-140 | Pass | | | 2.4-Dichlorophenol | % | 84 | 25-140 | Pass | | | 2.4.5-Trichlorophenol | % | 98 | 25-140 | Pass | | | 2.4.6-Trichlorophenol | % | 56 | 25-140 | Pass | | | 2.6-Dichlorophenol | % | 74 | 25-140 | Pass | | | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--|-------|----------|----------------------|----------------|--------------------| | 4-Chloro-3-methylphenol | % | 83 | 25-140 | Pass | | | Pentachlorophenol | % | 99 | 25-140 | Pass | | | Tetrachlorophenols - Total | % | 73 | 25-140 | Pass | | | LCS - % Recovery | | | | | | | Phenols (non-Halogenated) | | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | % | 59 | 25-140 | Pass | | | 2-Methyl-4.6-dinitrophenol | % | 67 | 25-140 | Pass | | | 2-Nitrophenol | % | 89 | 25-140 | Pass | | | 2.4-Dimethylphenol | % | 80 | 25-140 | Pass | | | 2.4-Dinitrophenol | % | 39 | 25-140 | Pass | | | 2-Methylphenol (o-Cresol) | % | 66 | 25-140 | Pass | | | 3&4-Methylphenol (m&p-Cresol) | % | 94 | 25-140 | Pass | | | 4-Nitrophenol | % | 81 | 25-140 | Pass | | | Dinoseb | % | 75 | 25-140 | Pass | | | Phenol | % | 83 | 25-140 | Pass | | | LCS - % Recovery | | | | | | | Chromium (hexavalent) | % | 88 | 70-130 | Pass | | | Cyanide (total) | % | 102 | 70-130 | Pass | | | Fluoride (Total) | % | 75 | 70-130 | Pass | | | LCS - % Recovery | ,,, | | 10.00 | 1 466 | | | Heavy Metals | | Т | | | | | Arsenic | % | 113 | 80-120 | Pass | | | Cadmium | % | 97 | 80-120 | Pass | | | Chromium | % | 112 | 80-120 | Pass | | | Copper | % | 111 | 80-120 | Pass | | | Lead | % | 115 | 80-120 | Pass | | | Mercury | % | 101 | 80-120 | Pass | | | Molybdenum | % | 113 | 80-120 | Pass | | | Nickel | % | 106 | 80-120 | Pass | | | | | 111 | | | | | Selenium | % | 100 | 80-120 | Pass | | | Silver | % | | 80-120 | Pass | | | Tin | % | 114 | 80-120 | Pass | | | Zinc | % | 111 | 80-120 | Pass | | | LCS - % Recovery | | Т | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | 0/ | - | | - | | | Perfluorobutanoic acid (PFBA) | % | 94 | 50-150 | Pass | | | Perfluoropentanoic acid (PFPeA) | % | 104 | 50-150 | Pass | | | Perfluorohexanoic acid (PFHxA) | % | 96 | 50-150 | Pass | | | Perfluoroheptanoic acid (PFHpA) | % | 95 | 50-150 | Pass | | | Perfluorooctanoic acid (PFOA) | % | 109 | 50-150 | Pass | | | Perfluorononanoic acid (PFNA) | % | 108 | 50-150 | Pass | | | Perfluorodecanoic acid (PFDA) | % | 102 | 50-150 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | % | 106 | 50-150 | Pass | | | Perfluorododecanoic acid (PFDoDA) | % | 112 | 50-150 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | % | 98 | 50-150 | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | % | 97 | 50-150 | Pass | | | LCS - % Recovery Perfluoroalkyl sulfonamido substances | | | | | | | Perfluorooctane sulfonamide (FOSA) | % | 106 | 50-150 | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | % | 115 | 50-150 | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-MerOSA) N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | % | 114 | 50-150 | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- | | | | | | | MeFOSE) | % | 101 | 50-150 | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | % | 101 | 50-150 | Pass | | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) | % | 101 | 50-150 | Pass | | | Test | | | Units | Result 1 | Acce | | ass
mits | Qualifying
Code | |---|---------------------------------------|------------|--------|-----------|--|----------|-------------|--------------------| | N-methyl-perfluorooctanesulfonamic | doacetic acid (N-Me | eFOSAA) | % | 128 | 50- | -150 P | ass | | | LCS - % Recovery | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | | | | | | | Perfluorobutanesulfonic acid (PFBS |) | | % | 89 | 50- | -150 P | ass | | | Perfluorononanesulfonic acid (PFNS | 3) | | % | 149 | 50- | -150 P | ass | | | Perfluoropropanesulfonic acid (PFP | rS) | | % | 122 | 50- | -150 P | ass | | | Perfluoropentanesulfonic acid (PFP | eS) | | % | 120 | 50- | -150 P | ass | | | Perfluorohexanesulfonic acid (PFH) | (S) | | % | 118 | 50- | -150 P | ass | | | Perfluoroheptanesulfonic acid (PFH | pS) | | % | 82 | 50- | -150 P | ass | | | Perfluorooctanesulfonic acid (PFOS | 5) | | % | 131 | 50- | -150 P | ass | | | Perfluorodecanesulfonic acid (PFDS | S) | | % | 130 | 50- | -150 P | ass | | | LCS - % Recovery | | | | | | · | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfo | nic acid (4:2 FTSA) | | % | 103 | 50- | -150 P | ass | | | 1H.1H.2H.2H-perfluorooctanesulfor | ic acid (6:2 FTSA) | | % | 111 | 50- | -150 P | ass | | | 1H.1H.2H.2H-perfluorodecanesulfo | nic acid (8:2 FTSA) | | % | 86 | 50- | -150 P | ass | | | 1H.1H.2H.2H-perfluorododecanesu | · · · · · · · · · · · · · · · · · · · | | % | 127 | 50- | -150 P | ass | | | • | , | QA | | Result 1 | | | ass | Qualifying | | Test | Lab Sample ID | Source | Units | Result 1 | | | mits | Code | | Spike - % Recovery | | | | | | | | | | Polycyclic Aromatic Hydrocarbon | S | | | Result 1 | | | | | | Acenaphthene | M22-Ap0031241 | NCP | % | 101 | 70- | -130 P | ass | | | Acenaphthylene | M22-Ap0031241 | NCP | % | 127 | 70- | -130 P | ass | | | Anthracene | M22-Ap0031241 | NCP | % | 125 | 70- | -130 P | ass | | | Dibenz(a.h)anthracene | M22-Ap0031241 | NCP | % | 124 | 70- | -130 P | ass | | | Fluorene | M22-Ap0031241 | NCP | % | 117 | 70- | -130 P | ass | | | Naphthalene | M22-Ap0031241 | NCP | % | 105 | 70- | -130 P | ass | | | Spike - % Recovery | | | | | | | | | | Organochlorine Pesticides | | | | Result 1 | | | | | | Endrin aldehyde | M22-Ap0030337 | NCP | % | 123 | 70- | -130 P | ass | | | Hexachlorobenzene | M22-Ap0031223 | NCP | % | 88 | 70- | -130 P | ass | | | Spike - % Recovery | | | | | | | | | | Polychlorinated Biphenyls | | | | Result 1 | | | | | | Aroclor-1016 | M22-Ap0031213 | NCP | % | 74 | 70- | -130 P | ass | | | Aroclor-1260 | M22-Ap0031213 | NCP | % | 112 | 70- | -130 P | ass | | | Spike - % Recovery | | | | | | | | | | Phenols (Halogenated) | | | | Result 1 | | | | | | 2-Chlorophenol | M22-Ap0031241 | NCP | % | 86 | 30- | -130 P | ass | | | 2.4-Dichlorophenol | M22-Ap0031241 | NCP | % | 89 | 30- | -130 P | ass | | | 2.4.5-Trichlorophenol | M22-Ap0031241 | NCP | % | 115 | 30- | -130 P | ass | | | 2.4.6-Trichlorophenol | M22-Ap0031241 | NCP | % | 82 | 30- | -130 P | ass | | | 2.6-Dichlorophenol | M22-Ap0031241 | NCP | % | 76 | 30- | -130 P | ass | | | 4-Chloro-3-methylphenol | M22-Ap0031241 | NCP | % | 87 | 30- | -130 P | ass | | | Pentachlorophenol | M22-Ap0031241 | NCP | % | 84 | 30- | -130 P | ass | | | Tetrachlorophenols - Total | M22-Ap0031241 | NCP | % | 78 | 30- | -130 P | ass | | | Spike - % Recovery | | | | | | | | | | Phenols (non-Halogenated) | | | | Result 1 | | | | | | 2-Cyclohexyl-4.6-dinitrophenol | M22-Ap0031241 | NCP | % | 72 | 30- | -130 P | ass | | | 2-Methyl-4.6-dinitrophenol | M22-Ap0031241 | NCP | % | 63 | | | ass | | | 2-Nitrophenol | M22-Ap0031241 | NCP | % | 96 | | | ass | | | 2.4-Dimethylphenol | M22-Ap0031241 | NCP | % | 101 | | | ass | | | 2.4-Dinitrophenol | M22-Ap0031241 | NCP | % | 53 | | | ass | | | | | | | 1 | | | | | | 2-Methylphenol (o-Cresol) | M22-Ap0031241 | NCP | % | 75 | 30- | -130 P | ass | 1 | | 2-Methylphenol (o-Cresol) 3&4-Methylphenol (m&p-Cresol) | M22-Ap0031241
M22-Ap0031241 | NCP
NCP | %
% | 75
108 | | | ass
ass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---|---------------|--------------|--------------|----------|----------------------|----------------|--------------------| | Dinoseb | M22-Ap0031241 | NCP | % | 83 | 30-130 | Pass | | | Phenol | M22-Ap0031241 | NCP | % | 83 | 30-130 | Pass | | | Spike - % Recovery | | | | | | | | | | | | | Result 1 | | | | | Chromium (hexavalent) | M22-Ap0034367 | NCP | % | 90 | 70-130 | Pass | | | Spike - % Recovery | | | | | | | | | Total Recoverable Hydrocarbons | | | | Result 1 | | | | | TRH C6-C9 | M22-Ap0036820 | CP | % | 122 | 70-130 | Pass | | | Naphthalene | M22-Ap0036820 | CP | % | 119 | 70-130 | Pass | | | TRH C6-C10 | M22-Ap0036820 | CP | % | 120 | 70-130 | Pass | | | Spike - % Recovery | | | | <u> </u> | | | | | Volatile Organics | | | | Result 1 | | | | | 1.1-Dichloroethene | M22-Ap0036820 | CP | % | 80 | 70-130 | Pass | | | 1.1.1-Trichloroethane | M22-Ap0036820 | CP | % | 75 | 70-130 | Pass | | | 1.2-Dichlorobenzene | M22-Ap0036820 | CP | % | 118 | 70-130 | Pass | | | 1.2-Dichloroethane | M22-Ap0036820 | CP | % | 115 | 70-130 | Pass | | | Benzene | M22-Ap0036820 | CP | % | 96 | 70-130 | Pass | | | Ethylbenzene | M22-Ap0036820 | CP | % | 97 | 70-130 | Pass
| | | m&p-Xylenes | M22-Ap0036820 | CP | % | 102 | 70-130 | Pass | | | o-Xylene | M22-Ap0036820 | CP | % | 104 | 70-130 | Pass | | | Toluene | M22-Ap0036820 | CP | % | 108 | 70-130 | Pass | | | Trichloroethene | M22-Ap0036820 | CP | % | 77 | 70-130 | Pass | | | Xylenes - Total* | M22-Ap0036820 | CP | % | 102 | 70-130 | Pass | | | Spike - % Recovery | | | | | | | | | | | | | Result 1 | | | | | Fluoride (Total) | M22-Ap0036827 | CP | % | 72 | 70-130 | Pass | | | Spike - % Recovery | | | | | | , | | | | | | | Result 1 | | | | | Fluoride (Total) | M22-Ap0036830 | CP | % | 72 | 70-130 | Pass | | | Spike - % Recovery | | | | | | 1 | | | Perfluoroalkyl carboxylic acids (Pl | FCAs) | | | Result 1 | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036831 | CP | % | 93 | 50-150 | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036831 | CP | % | 104 | 50-150 | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036831 | CP | % | 100 | 50-150 | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036831 | CP | % | 90 | 50-150 | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036831 | CP | % | 101 | 50-150 | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036831 | CP | % | 118 | 50-150 | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036831 | CP | % | 119 | 50-150 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036831 | СР | % | 102 | 50-150 | Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0036831 | СР | % | 104 | 50-150 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036831 | CP | % | 110 | 50-150 | Pass | | | Perfluorotetradecanoic acid | W22 Ap0030031 | Oi | /0 | 110 | 30-130 | 1 433 | | | (PFTeDA) | M22-Ap0036831 | CP | % | 96 | 50-150 | Pass | | | Spike - % Recovery | | | | | | | | | Perfluoroalkyl sulfonamido substa | nces | | | Result 1 | | | | | Perfluorooctane sulfonamide (FOSA) | M22-Ap0036831 | СР | % | 107 | 50-150 | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | M22-Ap0036831 | СР | % | 130 | 50-150 | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036831 | СР | % | 99 | 50-150 | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036831 | СР | % | 105 | 50-150 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |---|----------------|--------------|---------------|----------|----------------------|----------------|--------------------| | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036831 | СР | % | 100 | 50-150 | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036831 | СР | % | 66 | 50-150 | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036831 | СР | % | 126 | 50-150 | Pass | | | Spike - % Recovery | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036831 | СР | % | 93 | 50-150 | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036831 | СР | % | 145 | 50-150 | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036831 | СР | % | 139 | 50-150 | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036831 | СР | % | 95 | 50-150 | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036831 | СР | % | 93 | 50-150 | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036831 | СР | % | 130 | 50-150 | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036831 | СР | % | 94 | 50-150 | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036831 | СР | % | 140 | 50-150 | Pass | | | Spike - % Recovery | | | | T | | Γ | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | 1 | | Result 1 | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036831 | СР | % | 104 | 50-150 | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036831 | СР | % | 87 | 50-150 | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2 | W22 / \$000001 | 0. | 70 | 0. | 33 100 | 1 400 | | | FTSA) | M22-Ap0036831 | CP | % | 98 | 50-150 | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036831 | СР | % | 88 | 50-150 | Pass | | | Spike - % Recovery | | | | | | | | | Organochlorine Pesticides | | | | Result 1 | | | | | Chlordanes - Total | M22-Ap0036832 | СР | % | 91 | 70-130 | Pass | | | 4.4'-DDD | M22-Ap0036832 | CP | % | 96 | 70-130 | Pass | | | 4.4'-DDE | M22-Ap0036832 | CP | % | 92 | 70-130 | Pass | | | 4.4'-DDT | M22-Ap0036832 | СР | % | 94 | 70-130 | Pass | | | a-HCH | M22-Ap0036832 | СР | % | 88 | 70-130 | Pass | | | Aldrin | M22-Ap0036832 | CP | % | 80 | 70-130 | Pass | | | b-HCH | M22-Ap0036832 | CP | % | 113 | 70-130 | Pass | | | d-HCH | M22-Ap0036832 | CP | % | 85 | 70-130 | Pass | | | Dieldrin | M22-Ap0036832 | CP | % | 84 | 70-130 | Pass | | | Endosulfan I | M22-Ap0036832 | CP | % | 90 | 70-130 | Pass | | | Endosulfan II | M22-Ap0036832 | CP | % | 92 | 70-130 | Pass | | | Endosulfan sulphate | M22-Ap0036832 | CP | % | 99 | 70-130 | Pass | | | Endrin | M22-Ap0036832 | CP | % | 95 | 70-130 | Pass | | | Endrin ketone | M22-Ap0036832 | CP | % | 118 | 70-130 | Pass | | | g-HCH (Lindane) | M22-Ap0036832 | CP | % | 82 | 70-130 | Pass | | | Heptachlor | M22-Ap0036832 | CP | % | 106 | 70-130 | Pass | | | Heptachlor epoxide | M22-Ap0036832 | CP | <u> </u> | 91 | 70-130 | Pass | | | Methoxychlor | | CP | <u>%</u>
% | 102 | | | | | IVIGUIOXYGIIIOI | M22-Ap0036832 | | 70 | 102 | 70-130 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--------------------------------|----------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------| | Heavy Metals | | | | Result 1 | | | | | | | Arsenic | M22-Ap0036842 | СР | % | 107 | | | 75-125 | Pass | | | Cadmium | M22-Ap0036842 | СР | % | 81 | | | 75-125 | Pass | | | Chromium | M22-Ap0036842 | СР | % | 106 | | | 75-125 | Pass | | | Copper | M22-Ap0036842 | СР | % | 119 | | | 75-125 | Pass | | | Lead | M22-Ap0036842 | СР | % | 100 | | | 75-125 | Pass | | | Mercury | M22-Ap0036842 | СР | % | 95 | | | 75-125 | Pass | | | Molybdenum | M22-Ap0036842 | CP | % | 108 | | | 75-125 | Pass | | | Nickel | M22-Ap0036842 | CP | % | 118 | | | 75-125 | Pass | | | Selenium | M22-Ap0036842 | CP | % | 92 | | | 75-125 | Pass | | | Silver | M22-Ap0036842 | CP | % | 83 | | | 75-125 | Pass | | | Tin | M22-Ap0036842 | CP | % | 106 | | | 75-125 | Pass | | | Zinc | M22-Ap0036842 | CP | % | 125 | | | 75-125 | Pass | | | ZIIIC | WIZZ-AP003664Z | | 70 | 123 | | | | | Ouglifying | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | l | I I | | | Γ | | | Total Recoverable Hydrocarbons | 1 | | | Result 1 | Result 2 | RPD | | <u> </u> | | | TRH C6-C9 | M22-Ap0036819 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH C10-C14 | M22-Ap0036819 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH C15-C28 | M22-Ap0036819 | CP | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | TRH C29-C36 | M22-Ap0036819 | CP | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | Naphthalene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | TRH C6-C10 | M22-Ap0036819 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH >C10-C16 | M22-Ap0036819 | CP | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | TRH >C16-C34 | M22-Ap0036819 | CP | mg/kg | < 100 | < 100 | <1 | 30% | Pass | | | TRH >C34-C40 | M22-Ap0036819 | CP | mg/kg | < 100 | < 100 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Volatile Organics | | | | Result 1 | Result 2 | RPD | | | | | Hexachlorobutadiene | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Volatile Organics | | | | Result 1 | Result 2 | RPD | | | | | 1.1-Dichloroethane | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.4-Trichlorobenzene | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1-Dichloroethene | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.1-Trichloroethane | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.1.2-Tetrachloroethane | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.2-Trichloroethane | M22-Ap0036819 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.2.2-Tetrachloroethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dibromoethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichlorobenzene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichloroethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichloropropane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.3-Trichloropropane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.4-Trimethylbenzene | M22-Ap0036819 | CP | | | | <1 | | | | | • | · · | | mg/kg | < 0.5 | < 0.5 | | 30% | Pass | | | 1.3-Dichlorobenzene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.3-Dichloropropane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.3.5-Trimethylbenzene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.4-Dichlorobenzene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2-Butanone (MEK) | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2-Propanone (Acetone) | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 4-Chlorotoluene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 4-Methyl-2-pentanone (MIBK) | M22-Ap0036819 | CP | mg/kg | < 0.5 | <
0.5 | <1 | 30% | Pass | | | Allyl chloride | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzene | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Bromobenzene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | I | | Duplicate | | | | | | | | | | |--------------------------------|--------------------------------|-----------|-------|----------------|----------------|----------|------------|--|--| | Volatile Organics | | | | Result 1 | Result 2 | RPD | | | | | Bromochloromethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromodichloromethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromoform | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromomethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Carbon disulfide | M22-Ap0036819 | CP | | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Carbon Tetrachloride | M22-Ap0036819 | CP
CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chlorobenzene | · · | | mg/kg | | | | | 1 1 | | | Chloroethane | M22-Ap0036819
M22-Ap0036819 | CP
CP | mg/kg | < 0.5
< 0.5 | < 0.5
< 0.5 | <1
<1 | 30%
30% | Pass
Pass | | | Chloroform | M22-Ap0036819 | CP
CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chloromethane | M22-Ap0036819 | CP
CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | | · · | | mg/kg | | | | | | | | cis-1.2-Dichloroethene | M22-Ap0036819 | CP
CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | cis-1.3-Dichloropropene | M22-Ap0036819 | <u>CP</u> | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibromochloromethane | M22-Ap0036819 | <u>CP</u> | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibromomethane | M22-Ap0036819 | CP_ | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dichlorodifluoromethane | M22-Ap0036819 | CP_ | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Ethylbenzene | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | lodomethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Isopropyl benzene (Cumene) | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | m&p-Xylenes | M22-Ap0036819 | CP | mg/kg | < 0.2 | < 0.2 | <1 | 30% | Pass | | | Methylene Chloride | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | o-Xylene | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Styrene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Tetrachloroethene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Toluene | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | trans-1.2-Dichloroethene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | trans-1.3-Dichloropropene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Trichloroethene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Trichlorofluoromethane | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Vinyl chloride | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Xylenes - Total* | M22-Ap0036819 | CP | mg/kg | < 0.3 | < 0.3 | <1 | 30% | Pass | | | Duplicate | | | | T | <u> </u> | | I | T | | | Polycyclic Aromatic Hydrocarbo | | | 1 | Result 1 | Result 2 | RPD | | | | | Acenaphthene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Acenaphthylene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Anthracene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benz(a)anthracene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(a)pyrene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(b&j)fluoranthene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(g.h.i)perylene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(k)fluoranthene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chrysene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibenz(a.h)anthracene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Fluoranthene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Fluorene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Indeno(1.2.3-cd)pyrene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Naphthalene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Phenanthrene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Pyrene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Organochlorine Pesticides | | | | Result 1 | Result 2 | RPD | | | | | | | СР | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Chlordanes - Total | M22-Ap0036819 | UF_ | mg/kg | 1 0.1 | , 0 | | | | | | Chlordanes - Total
4.4'-DDD | M22-Ap0036819
M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | | | | | 1 | | | | | | | Duplicate | | | | | | | | | | |--------------------------------|--------------------|----------|------------|----------|----------|-----|---------|-------|--| | | | | | Daguit 4 | Danut 0 | DDD | I | | | | Organochlorine Pesticides | Mag A = 0000010 | 0.0 | | Result 1 | Result 2 | RPD | 000/ | | | | a-HCH | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Aldrin | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | b-HCH | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | d-HCH | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dieldrin | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan I | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan II | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan sulphate | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin aldehyde | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin ketone | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | g-HCH (Lindane) | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Hexachlorobenzene | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Methoxychlor | M22-Ap0036819 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Toxaphene | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Polychlorinated Biphenyls | | | 1 | Result 1 | Result 2 | RPD | | | | | Aroclor-1016 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1221 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1232 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1242 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1248 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1254 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1260 | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Total PCB* | M22-Ap0036819 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Phenols (Halogenated) | | | | Result 1 | Result 2 | RPD | | | | | 2-Chlorophenol | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4-Dichlorophenol | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4.5-Trichlorophenol | M22-Ap0036819 | СР | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 2.4.6-Trichlorophenol | M22-Ap0036819 | СР | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 4-Chloro-3-methylphenol | M22-Ap0036819 | СР | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Pentachlorophenol | M22-Ap0036819 | СР | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Tetrachlorophenols - Total | M22-Ap0036819 | СР | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | | Duplicate | | | | • | | | | | | | Phenols (non-Halogenated) | | | | Result 1 | Result 2 | RPD | | | | | 2-Cyclohexyl-4.6-dinitrophenol | M22-Ap0036819 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | 2-Methyl-4.6-dinitrophenol | M22-Ap0036819 | СР | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-Nitrophenol | M22-Ap0036819 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 2.4-Dimethylphenol | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4-Dinitrophenol | M22-Ap0036819 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-Methylphenol (o-Cresol) | M22-Ap0036819 | CP | mg/kg | < 0.2 | < 0.2 | <1 | 30% | Pass | | | 3&4-Methylphenol (m&p-Cresol) | M22-Ap0036819 | CP | mg/kg | < 0.4 | < 0.4 | <1 | 30% | Pass | | | 4-Nitrophenol | M22-Ap0036819 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Dinoseb | M22-Ap0036819 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | Phenol | M22-Ap0036819 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | 1 11122 1 10000019 | <u> </u> | i iiig/kg | | | | 0070 | 1 433 | | | Duplicate | | | | Result 1 | Result 2 | RPD | | | | | Cyanide (total) | M22-Ap0010607 | NCP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | % Moisture | M22-Ap0010607 | CP | mg/kg
% | 40 | 41 | 1.0 | 30% | Pass | | | | IVIZZ-MPUUSUO 19 | UP . | /0 | 40 | 41 | 1.0 | J 30 /0 | 1 000 | | | Duplicate | | | | Pocult 4 | Popult 2 | DDD | | | | | Chromium (havavalant) | M22 A=0020004 | CD | m = // | Result 1 | Result 2 | RPD | 2007 | Post | | | Chromium (hexavalent) | M22-Ap0036821 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Dunlingto | | | | | | | | | | |---|------------------|----------|-----------|----------|----------|-----|-------|-------|--| | Duplicate | | | | Result 1 | Result 2 |
RPD | | | | | Chromium (hexavalent) | M22-Ap0036826 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Fluoride (Total) | M22-Ap0036826 | CP | mg/kg | < 100 | < 100 | <1 | 30% | Pass | | | Duplicate | WZZ-AP00300Z0 | OI . | l llig/kg | _ < 100 | <u> </u> | | 30 70 | 1 033 | | | Duplicate | | | | Result 1 | Result 2 | RPD | | | | | Fluoride (Total) | M22-Ap0036829 | CP | mg/kg | 680 | 500 | 30 | 30% | Pass | | | Duplicate | WIZZ / NPOCOCOZO | <u> </u> | i iig/itg | | 000 | 00 | 0070 | 1 433 | | | Perfluoroalkyl carboxylic acids (PF | CAs) | | | Result 1 | Result 2 | RPD | | | | | • • • | M22-Ap0036830 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036830 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorododecanoic acid | | | | | | | | | | | (PFDoDA) | M22-Ap0036830 | CP
CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid | M22-Ap0036830 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | (PFTeDA) | M22-Ap0036830 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | | | | I | ı | | | | | | Perfluoroalkyl sulfonamido substa | nces | | | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide (FOSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036830 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036830 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | Duplicate | , ,,,,,,,,, | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFSA | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid | : | | | | , , | | | 1 | | | Dunlingto | | | | | | | | | | |---|---------------|----|-------|----------|----------|-----|-----|------|--| | Duplicate | | | | D 11.4 | D # 0 | DDD | l | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FISAS) | | 1 | Result 1 | Result 2 | RPD | | + - | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036830 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2
FTSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0036830 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Total Recoverable Hydrocarbons | | | | Result 1 | Result 2 | RPD | | | | | TRH C6-C9 | M22-Ap0036831 | СР | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH C10-C14 | M22-Ap0036831 | СР | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH C15-C28 | M22-Ap0036831 | СР | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | TRH C29-C36 | M22-Ap0036831 | СР | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | Naphthalene | M22-Ap0036831 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | TRH C6-C10 | M22-Ap0036831 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | TRH >C10-C16 | M22-Ap0036831 | CP | mg/kg | < 50 | < 50 | <1 | 30% | Pass | | | TRH >C16-C34 | M22-Ap0036831 | CP | mg/kg | < 100 | < 100 | <1 | 30% | Pass | | | TRH >C34-C40 | M22-Ap0036831 | CP | mg/kg | < 100 | < 100 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Volatile Organics | | | | Result 1 | Result 2 | RPD | | | | | Hexachlorobutadiene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Volatile Organics | | | | Result 1 | Result 2 | RPD | | | | | 1.1-Dichloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.4-Trichlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1-Dichloroethene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.1-Trichloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.1.2-Tetrachloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.2-Trichloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.1.2.2-Tetrachloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dibromoethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2-Dichloropropane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.3-Trichloropropane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.2.4-Trimethylbenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.3-Dichlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.3-Dichloropropane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.3.5-Trimethylbenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 1.4-Dichlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2-Butanone (MEK) | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2-Propanone (Acetone) | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 4-Chlorotoluene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 4-Methyl-2-pentanone (MIBK) | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Allyl chloride | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzene | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Bromobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromochloromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromodichloromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromoform | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Bromomethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Carbon disulfide | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dunlingto | | | | | | | | | | |---------------------------------|---------------|----|-----------|----------------|----------------|-----|-------|-------|---| | Duplicate | | | | D 11.4 | D 4.0 | DDD | | | | | Volatile Organics | 1400 4 22222 | | | Result 1 | Result 2 | RPD | 0657 | | | | Carbon Tetrachloride | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chloroethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chloroform | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chloromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | cis-1.2-Dichloroethene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | cis-1.3-Dichloropropene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibromochloromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibromomethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dichlorodifluoromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Ethylbenzene | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Iodomethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Isopropyl benzene (Cumene) | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | m&p-Xylenes | M22-Ap0036831 | CP | mg/kg | < 0.2 | < 0.2 | <1 | 30% | Pass | | | Methylene Chloride | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | o-Xylene | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Styrene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Tetrachloroethene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Toluene | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | trans-1.2-Dichloroethene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | i | |
trans-1.3-Dichloropropene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Trichloroethene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Trichlorofluoromethane | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Vinyl chloride | M22-Ap0036831 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Xylenes - Total* | M22-Ap0036831 | СР | mg/kg | < 0.3 | < 0.3 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Polycyclic Aromatic Hydrocarbor | ns | | | Result 1 | Result 2 | RPD | | | | | Acenaphthene | M22-Ap0036831 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Acenaphthylene | M22-Ap0036831 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Anthracene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benz(a)anthracene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(a)pyrene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(b&j)fluoranthene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(g.h.i)perylene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Benzo(k)fluoranthene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Chrysene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Dibenz(a.h)anthracene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Fluoranthene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Fluorene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Indeno(1.2.3-cd)pyrene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Naphthalene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Phenanthrene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Pyrene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | WZZ-Ap0030031 | Ci | i iiig/kg | \ 0.5 | V 0.5 | | 30 // | 1 033 | | | Organochlorine Pesticides | | | | Popult 1 | Popult 2 | DDD | T | | | | Chlordanes - Total | M22-Ap0036831 | CP | ma/ka | Result 1 < 0.1 | Result 2 < 0.1 | RPD | 30% | Pass | | | | , | | mg/kg | 1 | 1 | <1 | | | | | 4.4'-DDD | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDE | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | 4.4'-DDT | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | a-HCH | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Aldrin | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | b-HCH | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | d-HCH | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Dieldrin | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | |------------------------------------|-------------------|----------|-----------|----------|-----------|-------|-----------|-------|--| | Organochlorine Pesticides | | | | Result 1 | Result 2 | RPD | | | | | Endosulfan I | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan II | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endosulfan sulphate | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin aldehyde | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Endrin ketone | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | g-HCH (Lindane) | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Heptachlor epoxide | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Hexachlorobenzene | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Methoxychlor | M22-Ap0036831 | CP | mg/kg | < 0.05 | < 0.05 | <1 | 30% | Pass | | | Toxaphene | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | 10122 7 100000001 | <u> </u> | ı mg/kg | | V 0.0 | | 0070 | 1 433 | | | Polychlorinated Biphenyls | | | | Result 1 | Result 2 | RPD | | | | | Aroclor-1016 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1221 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1232 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1242 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1248 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1254 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Aroclor-1260 | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Total PCB* | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Duplicate | WZZ-AP0030031 | Ci | I IIIg/kg | <u> </u> | <u> </u> | | 30 70 | 1 033 | | | Phenois (Halogenated) | | | | Result 1 | Result 2 | RPD | | | | | 2-Chlorophenol | M22-Ap0036831 | СР | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4-Dichlorophenol | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4.5-Trichlorophenol | M22-Ap0036831 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 2.4.6-Trichlorophenol | M22-Ap0036831 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 2.6-Dichlorophenol | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 4-Chloro-3-methylphenol | M22-Ap0036831 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Pentachlorophenol | M22-Ap0036831 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | Tetrachlorophenols - Total | M22-Ap0036831 | CP | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | | Duplicate | WZZ AP0030031 | Oi | i iig/kg | <u> </u> | <u> </u> | | 3070 | 1 433 | | | Phenols (non-Halogenated) | | | | Result 1 | Result 2 | RPD | | | | | 2-Cyclohexyl-4.6-dinitrophenol | M22-Ap0036831 | СР | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | 2-Methyl-4.6-dinitrophenol | M22-Ap0036831 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-Nitrophenol | M22-Ap0036831 | CP | mg/kg | < 1 | < 1 | <1 | 30% | Pass | | | 2.4-Dimethylphenol | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | 2.4-Dinitrophenol | M22-Ap0036831 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-Methylphenol (o-Cresol) | M22-Ap0036831 | CP | mg/kg | < 0.2 | < 0.2 | <1 | 30% | Pass | | | 3&4-Methylphenol (m&p-Cresol) | M22-Ap0036831 | CP | mg/kg | < 0.2 | < 0.2 | <1 | 30% | Pass | | | 4-Nitrophenol | M22-Ap0036831 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Dinoseb | M22-Ap0036831 | CP | mg/kg | < 20 | < 20 | <1 | 30% | Pass | | | Phenol | M22-Ap0036831 | CP | mg/kg | < 0.5 | < 0.5 | <1 | 30% | Pass | | | Duplicate | WIZZ AP0000001 | OI . | i iiig/kg | | \ 0.0 | | J J J J J | 1 000 | | | Duphoate | | | | Result 1 | Result 2 | RPD | | | | | pH (1:5 Aqueous extract at 25°C as | | | | INCOURT | INCOUIL Z | INI-D | | | | | rec.) | M22-Ap0036831 | CP | pH Units | 8.4 | 8.4 | pass | 30% | Pass | | | % Moisture | M22-Ap0036831 | CP | % | 28 | 28 | 2.0 | 30% | Pass | | | Duplicate | | | | | ı | | | | | |---|---------------|----|-------|----------|----------|-----|------|------|--| | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Arsenic | M22-Ap0036831 | CP | mg/kg | 28 | 23 | 21 | 30% | Pass | | | Cadmium | M22-Ap0036831 | CP | mg/kg | < 0.4 | < 0.4 | <1 | 30% | Pass | | | Chromium | M22-Ap0036831 | CP | mg/kg | 140 | 110 | 21 | 30% | Pass | | | Copper | M22-Ap0036831 | CP | mg/kg | 70 | 56 | 23 | 30% | Pass | | | Lead | M22-Ap0036831 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Mercury | M22-Ap0036831 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Molybdenum | M22-Ap0036831 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Nickel | M22-Ap0036831 | CP | mg/kg | 210 | 160 | 26 | 30% | Pass | | | Selenium | M22-Ap0036831 | CP | mg/kg | < 2 | < 2 | <1 | 30% | Pass | | | Silver | M22-Ap0036831 | CP | mg/kg | < 2 | < 2 | <1 | 30% | Pass | | | Tin | M22-Ap0036831 | CP | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | | Zinc | M22-Ap0036831 | CP | mg/kg | 130 | 100 | 23 | 30% | Pass | | | Duplicate | | | | | I | | | | | | | 1 | | | Result 1 | Result 2 | RPD | | | | | Fluoride (Total) | M22-Ap0036840 | CP | mg/kg | 500 | 520 | 3.0 | 30% | Pass | | | Duplicate | | | | | ı | | | | | | Perfluoroalkyl carboxylic acids (Pl | FCAs) | | 1 | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | | | | • | | | _ | | | | Perfluoroalkyl sulfonamido substa | inces | | | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide | M22 A=0026840 | CD | | . 5 | . 5 | -1 | 200/ | Door | | | (FOSA) N-methylperfluoro-1-octane | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | sulfonamide (N-MeFOSA) N-ethylperfluoro-1-octane | M22-Ap0036840 | CP | ug/kg | < 5 | < 5
 <1 | 30% | Pass | | | sulfonamide (N-EtFOSA) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036840 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036840 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid | | СР | | | | | | | | | (PFPrS) Perfluoropentanesulfonic acid | M22-Ap0036840 | | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | (PFPeS) | M22-Ap0036840 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorobaxyl sulfonic acids (PFSAs) | Dunlicate | | | | | | | | | | |--|---------------------------------------|---------------|----------|----------|----------|-----------|-----|-----|-------|--| | Perfluorobreamesulfonic acid M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass | Duplicate Particular and a said (DES | A a \ | | | Dogult 4 | Dog::lt C | DDD | | | | | PFHKS M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pass Perfluoroleptanesulfonic acid (PFHS) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pass Pass Perfluorocanesulfonic acid (PFOS) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass Pa | • | AS) | | 1 | Result 1 | Result 2 | KPD | | | | | Perfugno M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass | (PFHxS) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | (PFOS) M22-Ap0036840 CP ug/kg < 5 < 1 30% Pass Perfluorodecanesulfonic acids (n.2 FTSAs) Result 1 Result 2 RPD Cupurodecanesulfonic acids (n.2 FTSAs) N.2 Fuorodecanesulfonic acid (4:2 Perfluorodecanesulfonic acid (4:2 PTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass TH.11-L2H2-H2H2-H2H2-H2H2-H2H2-H2H2-H2H2-H2 | (PFHpS) | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | (PFDS) M22-Ap0036840 CP ug/kg <5 <5 <1 030% Pass | | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Result 1 | | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | H.1H 2H 2H- Perfutoroctanesulfonic acid (4:2 FTSA) | Duplicate | | | | | | | | | | | Definition cacid (4:2 FTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | | Result 1 | Result 2 | RPD | | | | | H. H. J. | perfluorohexanesulfonic acid (4:2 | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | FTSA M22-Ap0036840 | 1H.1H.2H.2H- | , | | 3. 3 | - | | | | | | | Defluorodecanesulfonic acid (8:2 FTSA) M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass | FTSA) | M22-Ap0036840 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | Defluorododecanesulfonic acid M22-Ap0036840 CP ug/kg < 5 < 5 < 1 30% Pass | perfluorodecanesulfonic acid (8:2 | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Result 1 Result 2 RPD | perfluorododecanesulfonic acid | M22-Ap0036840 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Result 1 Result 2 RPD Result 2 RPD Result 3 Result 3 Result 4 Result 5 Result 5 Result 6 Result 6 Result 6 Result 7 8 Result 8 Result 9 | | | <u> </u> | | | | 31 | | 1 000 | | | % Moisture M22-Ap0036841 CP % 35 35 2.0 30% Pass Duplicate Result 1 Result 1 Result 1 Result 1 Result 1 Result 2 RPD Chromite Arsenic M22-Ap0036841 CP mg/kg 41 41 41 30% Pass Cadmium M22-Ap0036841 CP mg/kg 40.4 <1 | | | | | Result 1 | Result 2 | RPD | | | | | Duplicate Heavy Metals Result Result Result Result At At At At At At At | % Moisture | M22-Ap0036841 | CP | % | | | | 30% | Pass | | | Heavy Metals | Duplicate | | | | | | - | | | | | Cadmium M22-Ap0036841 CP mg/kg < 0.4 < 0.4 < 1 30% Pass Chromium M22-Ap0036841 CP mg/kg 170 160 4.0 30% Pass Copper M22-Ap0036841 CP mg/kg 84 88 5.0 30% Pass Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass Mercury M22-Ap0036841 CP mg/kg < 0.1 | Heavy Metals | | | | Result 1 | Result 2 | RPD | | | | | Chromium | Arsenic | M22-Ap0036841 | СР | mg/kg | 41 | 41 | <1 | 30% | Pass | | | Copper M22-Ap0036841 CP mg/kg 84 88 5.0 30% Pass Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass Mercury M22-Ap0036841 CP mg/kg < 0.1 | Cadmium | M22-Ap0036841 | CP | mg/kg | < 0.4 | < 0.4 | <1 | 30% | Pass | | | Lead M22-Ap0036841 CP mg/kg 6.0 6.0 1.0 30% Pass | Chromium | M22-Ap0036841 | CP | mg/kg | 170 | 160 | 4.0 | 30% | Pass | | | Mercury M22-Ap0036841 CP mg/kg < 0.1 < 1 30% Pass Molybdenum M22-Ap0036841 CP mg/kg < 5 | Copper | M22-Ap0036841 | CP | mg/kg | 84 | 88 | 5.0 | 30% | Pass | | | Molybdenum M22-Ap0036841 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036841 CP mg/kg 270 230 16 30% Pass Selenium M22-Ap0036841 CP mg/kg < 2 | Lead | M22-Ap0036841 | CP | mg/kg | 6.0 | 6.0 | 1.0 | 30% | Pass | | | Nickel M22-Ap0036841 CP mg/kg 270 230 16 30% Pass | Mercury | M22-Ap0036841 | CP | mg/kg | < 0.1 | < 0.1 | <1 | 30% | Pass | | | Selenium M22-Ap0036841 CP mg/kg <2 <2 <1 30% Pass | Molybdenum | M22-Ap0036841 | CP | mg/kg | < 5 | < 5 | <1 | 30% | Pass | | | Silver M22-Ap0036841 CP mg/kg < 2 < 2 < 1 30% Pass Tin M22-Ap0036841 CP mg/kg < 10 | Nickel | M22-Ap0036841 | CP | mg/kg | 270 | 230 | 16 | 30% | Pass | | | Tin M22-Ap0036841 CP mg/kg < 10 < 1 30% Pass Zinc M22-Ap0036841 CP mg/kg 180 180 2.0 30% Pass Duplicate Result 1 Result 2 RPD RPD Duplicate Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 | Selenium | M22-Ap0036841 | CP | mg/kg | < 2 | < 2 | <1 | 30% | Pass | | | Duplicate | Silver | M22-Ap0036841 | CP | mg/kg | < 2 | < 2 | <1 | 30% | Pass | | | Publicate Result 1 Result 2 RPD | Tin | M22-Ap0036841 | CP | mg/kg | < 10 | < 10 | <1 | 30% | Pass | | | Result 1 Result 2 RPD | Zinc | M22-Ap0036841 | CP | mg/kg | 180 | 180 | 2.0 | 30% | Pass | | | PH (1:5 Aqueous extract at 25°C as rec.) M22-Ap0036842 CP pH Units 8.7 8.7 pass 30% Pass | Duplicate | | | | Posult 1 | Posult 2 | DDD | | | | | Duplicate Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 | | | СР | pH Units | | | | 30% | Pass | | | Heavy Metals Result 1 Result 2 RPD Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 30% Pass Cadmium M22-Ap0036842 CP mg/kg < 0.4 < 1 30% Pass Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Mercury M22-Ap0036842 CP mg/kg < 0.1 < 0.1 < 1 30% Pass Molybdenum M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30% Pass Selenium M22-Ap0036842 CP mg/kg | | | | | | | | | | | | Arsenic M22-Ap0036842 CP mg/kg 31 31 <1 30% Pass Cadmium M22-Ap0036842 CP mg/kg < 0.4 | • | | | | Result 1 | Result 2 | RPD | | | | | Cadmium M22-Ap0036842 CP mg/kg < 0.4 < 0.4 < 1 30% Pass Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5 | - | M22-Ap0036842 | СР | mg/kg | | | | 30% | Pass | | | Chromium M22-Ap0036842 CP mg/kg 140 140 3.0 30% Pass Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5 | Cadmium | | СР | | | < 0.4 | <1 | 30% | Pass | | | Copper M22-Ap0036842 CP mg/kg 66 65 1.0 30% Pass Lead M22-Ap0036842 CP mg/kg < 5 | | | СР | | 140 | 140 | 3.0 | 30% | Pass | | | Lead M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Mercury M22-Ap0036842 CP mg/kg < 0.1 | Copper | | СР | | 66 | 65 | 1.0 | 30% | Pass | | | Mercury M22-Ap0036842 CP mg/kg < 0.1 < 1 30% Pass Molybdenum M22-Ap0036842 CP mg/kg < 5 | | | СР | | < 5 | 1 | | 30% | | | | Molybdenum M22-Ap0036842 CP mg/kg < 5 < 5 < 1 30% Pass Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30%
Pass Selenium M22-Ap0036842 CP mg/kg < 2 | Mercury | | СР | | | 1 | | 30% | | | | Nickel M22-Ap0036842 CP mg/kg 210 210 1.0 30% Pass Selenium M22-Ap0036842 CP mg/kg <2 | Molybdenum | | СР | | | | | 30% | | | | Selenium M22-Ap0036842 CP mg/kg < 2 < 2 < 1 30% Pass | Nickel | | СР | | | | 1.0 | 30% | Pass | | | | Selenium | | СР | | < 2 | < 2 | <1 | 30% | Pass | | | | Silver | | СР | | < 2 | < 2 | | 30% | Pass | | | Tin M22-Ap0036842 CP mg/kg < 10 < 10 <1 30% Pass | Tin | | СР | | < 10 | < 10 | <1 | 30% | Pass | | | Zinc M22-Ap0036842 CP mg/kg 120 120 <1 30% Pass | | | СР | 1 | | 1 | | 30% | | | | - | | | | | | | | | | |---|--------------------------------|----------|----------------|------------|------------|----------|------------|--------------|--| | Duplicate | | | | | | | Ī | | | | Perfluoroalkyl carboxylic acids (PI | | | l " | Result 1 | Result 2 | RPD | 200/ | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0036844 | CP
CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) | M22-Ap0036844
M22-Ap0036844 | CP
CP | ug/kg
ug/kg | < 5
< 5 | < 5
< 5 | <1
<1 | 30%
30% | Pass
Pass | | | Perfluoroneptanoic acid (PFHpA) | M22-Ap0036844 | CP
CP | ug/kg
ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0036844 | CP | ug/kg
ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0036844 | CP | ug/kg
ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0036844 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0036844 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0036844 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl sulfonamido substa | inces | | _ | Result 1 | Result 2 | RPD | | | | | Perfluorooctane sulfonamide (FOSA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-methylperfluoro-1-octane
sulfonamido)-ethanol (N-MeFOSE) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 2-(N-ethylperfluoro-1-octane
sulfonamido)-ethanol (N-EtFOSE) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | N-ethyl-
perfluorooctanesulfonamidoacetic
acid (N-EtFOSAA) | M22-Ap0036844 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | N-methyl-
perfluorooctanesulfonamidoacetic
acid (N-MeFOSAA) | M22-Ap0036844 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | T | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | Duplicate | a-2 FTC 4 -\ | | | Desili 4 | Descrit o | DDD | | | | | n:2 Fluorotelomer sulfonic acids (I
1H.1H.2H.2H- | 11:2 F I SAS) | | | Result 1 | Result 2 | RPD | | | | | perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0036844 | СР | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0036844 | СР | ug/kg | < 10 | < 10 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorodecanesulfonic acid (8:2 | M22-Ap0036844 | СР | | | < 5 | <1 | 30% | Pass | | | FTSA) 1H.1H.2H.2H- perfluorododecanesulfonic acid | 1VIZZ-APUU30044 | <u> </u> | ug/kg | < 5 | < υ | <u> </u> | 30% | r'ass | | | (10:2 FTSA) | M22-Ap0036844 | CP | ug/kg | < 5 | < 5 | <1 | 30% | Pass | | Report Number: 880891-S #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### **Qualifier Codes/Comments** Code Description F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01 Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. N02 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). #### Authorised by: N11 N15 Catherine Wilson Analytical Services Manager Scott Beddoes Senior Analyst (NSW) Joseph Edouard Senior Analyst (VIC) Harry Bacalis Senior Analyst (NSW) Mary Makarios Senior Analyst (NSW) Caitlin Breeze Senior Analyst (VIC) Glenn Jackson **General Manager** Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. Report Number: 880891-S Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 NATA Accredited Accreditation Number 1261 Site Number 1254 Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates. Attention: Agon Lab Reports (Spoil Project) Report 880891-W Project name 20220419042301-Eurofin-21 Project ID JC0927 Received Date Apr 19, 2022 | Client Sample ID | | | SX_IB_202204
16_16_49_SR_
Rinsate_EUF | SX_IB_202204
16_16_50_SB_
Blank_EUF | |--|------|------|---|---| | Sample Matrix | | | Water | Water | | Eurofins Sample No. | | | M22-
Ap0036824 | M22-
Ap0036825 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | Perfluorobutanoic acid (PFBA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | Perfluoropentanoic acid (PFPeA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorohexanoic acid (PFHxA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluoroheptanoic acid (PFHpA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorooctanoic acid (PFOA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorononanoic acid (PFNA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorodecanoic acid (PFDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluoroundecanoic acid (PFUnDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorododecanoic acid (PFDoDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorotridecanoic acid (PFTrDA) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorotetradecanoic acid (PFTeDA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | 13C4-PFBA (surr.) | 1 | % | 96 | 96 | | 13C5-PFPeA (surr.) | 1 | % | 109 | 114 | | 13C5-PFHxA (surr.) | 1 | % | 85 | 86 | | 13C4-PFHpA
(surr.) | 1 | % | 85 | 86 | | 13C8-PFOA (surr.) | 1 | % | 87 | 89 | | 13C5-PFNA (surr.) | 1 | % | 83 | 82 | | 13C6-PFDA (surr.) | 1 | % | 82 | 83 | | 13C2-PFUnDA (surr.) | 1 | % | 62 | 64 | | 13C2-PFDoDA (surr.) | 1 | % | 44 | 42 | | 13C2-PFTeDA (surr.) | 1 | % | 13 | 16 | | Perfluoroalkyl sulfonamido substances | | _ | | | | Perfluorooctane sulfonamide (FOSA)N11 | 0.05 | ug/L | < 0.05 | < 0.05 | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | 13C8-FOSA (surr.) | 1 | % | 86 | 84 | | Client Sample ID Sample Matrix | | | SX_IB_202204
16_16_49_SR_
Rinsate_EUF
Water
M22- | SX_IB_202204
16_16_50_SB_
Blank_EUF
Water
M22- | |---|------|------|--|--| | Eurofins Sample No. | | | Ap0036824 | Ap0036825 | | Date Sampled | | | Apr 16, 2022 | Apr 16, 2022 | | Test/Reference | LOR | Unit | | | | Perfluoroalkyl sulfonamido substances | | | | | | D3-N-MeFOSA (surr.) | 1 | % | 95 | 62 | | D5-N-EtFOSA (surr.) | 1 | % | 90 | 59 | | D7-N-MeFOSE (surr.) | 1 | % | 79 | 69 | | D9-N-EtFOSE (surr.) | 1 | % | 65 | 56 | | D5-N-EtFOSAA (surr.) | 1 | % | 34 | 27 | | D3-N-MeFOSAA (surr.) | 1 | % | 29 | 32 | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | Perfluorobutanesulfonic acid (PFBS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorononanesulfonic acid (PFNS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluoropropanesulfonic acid (PFPrS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluoropentanesulfonic acid (PFPeS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorohexanesulfonic acid (PFHxS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluoroheptanesulfonic acid (PFHpS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorooctanesulfonic acid (PFOS) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | Perfluorodecanesulfonic acid (PFDS) ^{N15} | 0.01 | ug/L | < 0.01 | < 0.01 | | 13C3-PFBS (surr.) | 1 | % | 84 | 85 | | 18O2-PFHxS (surr.) | 1 | % | 89 | 87 | | 13C8-PFOS (surr.) | 1 | % | 96 | 88 | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | | | | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11} | 0.05 | ug/L | < 0.05 | < 0.05 | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11} | 0.01 | ug/L | < 0.01 | < 0.01 | | 13C2-4:2 FTSA (surr.) | 1 | % | 33 | 32 | | 13C2-6:2 FTSA (surr.) | 1 | % | 52 | 52 | | 13C2-8:2 FTSA (surr.) | 1 | % | 67 | 60 | | 13C2-10:2 FTSA (surr.) | 1 | % | 54 | 59 | | PFASs Summations | | | | | | Sum (PFHxS + PFOS)* | 0.01 | ug/L | < 0.01 | < 0.01 | | Sum of US EPA PFAS (PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | | Sum of enHealth PFAS (PFHxS + PFOS + PFOA)* | 0.01 | ug/L | < 0.01 | < 0.01 | | Sum of WA DWER PFAS (n=10)* | 0.05 | ug/L | < 0.05 | < 0.05 | | Sum of PFASs (n=30)* | 0.1 | ug/L | < 0.1 | < 0.1 | ## **Sample History** Where samples are submitted/analysed over several days, the last date of extraction is reported. If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time. | Description | Testing Site | Extracted | Holding Time | |---|--------------|--------------|---------------------| | Per- and Polyfluoroalkyl Substances (PFASs) | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | Melbourne | Apr 19, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonamido substances | Melbourne | Apr 19, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | Perfluoroalkyl sulfonic acids (PFSAs) | Melbourne | Apr 19, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | Melbourne | Apr 19, 2022 | 28 Days | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | | PFASs Summations | Melbourne | Apr 19, 2022 | | | - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) | | | | Report Number: 880891-W **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com Address: **Company Name:** Agon Environmental Pty Ltd - VIC > 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | | | | | |------|---|------------------------|------------------|---|---------------------|---|---|---|---| | Melb | ourne Laborato | | Х | Х | Х | Х | | | | | Sydr | ney Laboratory | - NATA # 1261 S | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | <u> </u> | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | Exte | rnal Laboratory | | | 1 | | | | | | | No | Sample ID | Sample Date | Sampling
Time | Matrix | LAB ID | | | | | | 1 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036819 | | Х | х | х | | 2 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036820 | | х | х | х | | 3 | SX_IB_202204
16_12_10_SS
_Primary_EUF | M22-
Ap0036821 | | х | х | х | | | | | 4 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | Soil | M22-
Ap0036822 | | х | х | х | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Sydney Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail lelbourne Laboratory - NATA # 1261 Site # 1254 lydney Laboratory - NATA # 1261 Site # 18217 | | | | | | | | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|-------|---|-------------------|--|---|---|---------------------| | Melk | ourne Laborato | | Х | Х | Х | Х | | | | | | Sydi | ney Laboratory | | | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 5 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | Soil | | M22-
Ap0036823 | | х | Х | х | | 6 | SX_IB_202204
16_16_49_SR
_Rinsate_EUF | Apr 16, 2022 | | Water | | M22-
Ap0036824 | | | Х | | | 7 | SX_IB_202204
16_16_50_SB
_Blank_EUF | M22-
Ap0036825 | | | Х | | | | | | | 8 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | Soil | | M22-
Ap0036826 | | х | Х | х | | 9 | SX_IB_202204 | Apr 17, 2022 | | Soil | | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA #
1261 Site # 1254 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------|---|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | | Х | Х | Х | Х | | | | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ⁻ | 1 Site # 2079 | 4 | | | | | | | | May | field Laboratory | [,] - NATA # 1261 | Site # 25079 | 1 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | | Exte | rnal Laboratory | ,
T | r | 1 | | | | | | | | 9 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | Soil | | M22-
Ap0036827 | | | | | | 10 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | Soil | | M22-
Ap0036828 | | х | х | х | | 11 | SX_IB_202204 Apr 17, 2022 Soil M22-
17_08_05_SSPrimary_EUF | | | | | | | | х | х | | 12 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | Soil | | M22-
Ap0036830 | | х | х | х | | 13 | SX_IB_202204 | Apr 17, 2022 | | Soil | | M22- | | Х | Х | Х | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: email: EnviroSales@eurofins.com 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail Slample Detail elbourne Laboratory - NATA # 1261 Site # 1254 ydney Laboratory - NATA # 1261 Site # 18217 | | | | | | | | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------|-------------------|--|---|---|---------------------| | Mell | oourne Laborato | Х | Х | Х | Х | | | | | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 [,] | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | ı | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | T | 1 | | | | | | | | 17_12_28_SS
_Primary_EUF | | | | Ap0036831 | | | | | | 14 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036832 | | х | х | х | | 15 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | | х | х | x | | | | | | 16 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | Soil | M22-
Ap0036834 | | Х | х | х | | 17 | SX_IB_202204
18_00_05_SS | Apr 18, 2022 | | Soil | M22-
Ap0036835 | | X | Х | х | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC > 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 08 8338 1009 880891 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road Phone: +61 2 9900 8400 46-48 Banksia Road Welshpool WA 6106 Perth Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail Jelbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------|--|---|---|---|---------------------| | Melk | ourne Laborato | | Х | Х | Х | Х | | | | | Sydi | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 |) | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | <u>, </u> | | | | | | | 18_00_05_SS
_Primary_EUF | | | | Ap0036835 | | | | | | 18 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036836 | | х | х | х | | 19 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | M22-
Ap0036837 | | х | х | х | | | | | 20 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036838 | | х | х | х | | 21 | SX_IB_202204
18_11_57_SS | Apr 18, 2022 | | Soil | M22-
Ap0036839 | | х | Х | х | #### **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com web: www.eurofins.com.au **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** Address: 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------|-------------------|---|---|---|---------------------| | Melb | ourne Laborato | | Х | Х | Х | Х | | | | | | ney Laboratory | | | | | | | | | | Bris | bane Laboratory | y - NATA # 126 [,] | 1 Site # 20794 | | | | | | | | | field Laboratory | | | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | · | r | _ | | | | | | | | _Primary_EUF | | | | | | | | | | 22 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | Soil | M22-
Ap0036840 | | х | х | Х | | 23 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | Soil | M22-
Ap0036841 | | х | х | Х | | 24 | SX_IB_202204
18_19_59_SS
_Primary_EUF | | х | Х | х | | | | | | 25 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036843 | | х | Х | х | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Perth 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51
IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 Phone: Fax: 179 Magowar Road Due: 08 8338 1009 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) Apr 21, 2022 Apr 19, 2022 3:30 PM | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 126 [,] | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | , | | | | | | | | | 26 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | Soil | M22-
Ap0036844 | | х | х | х | | 27 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036845 | х | | х | | | 28 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036846 | Х | | х | | | 29 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036847 | х | | х | | | 30 | SX_IB_202204
16_16_18_SS | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036848 | Х | | х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 | | | | | | | | IWRG 621 WGTP Suite | |-------|---|-----------------------------|----------------|--------------------------|-------------------|---|---|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydr | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Brisl | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | ļ | | | | | | | May | ield Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pertl | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Primary_EUF | | | | | | | | | | 31 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036849 | Х | | х | | | 32 | SX_IB_202204
16_20_02_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036850 | Х | | Х | | | 33 | SX_IB_202204
17_00_01_SS
_Primary_EUF | M22-
Ap0036851 | Х | | х | | | | | | 34 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036852 | Х | | Х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Received: Due: Phone: +61 8 6253 4444 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC > 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road **Eurofins Environment Testing Australia Pty Ltd** Sydney **Priority:** Apr 21, 2022 **Contact Name:** Agon Lab Reports (Spoil Project) 3 Dav Apr 19, 2022 3:30 PM | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | / - NATA # 126 | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | , | | | | | | | | 35 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036853 | х | | х | | | 36 | SX_IB_202204
17_08_10_SS
_Triplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036854 | х | | x | | | 37 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036855 | Х | | Х | | | 38 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036856 | х | | х | | | 39 | SX_IB_202204 | Apr 17, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 Fax: 179 Magowar Road Sydney 08 8338 1009 Phone: Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Mell | oourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | , | | | | | | | | | | 17_15_56_SS
_Duplicate_EU
F | | | - pH 5.0 | Ap0036857 | | | | | | 40 | SX_IB_202204
17_20_03_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036858 | х | | х | | | 41 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036859 | х | | х | | | 42 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036860 | х | | х | | | 43 | SX_IB_202204
18_08_08_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036861 | Х | | х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898
Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: 880891 08 8338 1009 Fax: Received: Due: Apr 19, 2022 3:30 PM Apr 21, 2022 NZBN: 9429046024954 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|--------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | | ney Laboratory | | | | | | | | | | | bane Laboratory | | | | | | | | | | | field Laboratory | | | | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
 | | | I | | | | | | | 18_08_08_SS
_Triplicate_EU
F | | | - pH 5.0 | Ap0036861 | | | | | | 44 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036862 | х | | Х | | | 45 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036863 | х | | Х | | | 46 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036864 | х | | х | | | 47 | SX_IB_202204
18_16_09_SS | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036865 | Х | | Х | | Melbourne 6 Monterey Road ABN: 50 005 085 521 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Eurofins Environment Testing Australia Pty Ltd** Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|---|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | Laboratory - NATA # 1261 Site # 1254
poratory - NATA # 1261 Site # 18217 | | | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 1261 | 1 Site # 20794 | ļ. | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | _Duplicate_EU | | | | | | | | | | 48 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036866 | X | | Х | | | 49 | SX_IB_202204
19_00_03_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036867 | X | | х | | | 50 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- pH 5.0 | M22-
Ap0036868 | X | | х | | | 51 | SX2022041
6_08_36_SS_
Triplicate_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036869 | X | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 email: EnviroSales@eurofins.com **Company Name:** web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: Sydney 179 Magowar Road Received: 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 Perth Apr 19, 2022 3:30 PM Apr 21, 2022 Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 20794 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | 52 | SX2022041
6_08_44_SS_
Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036870 | Х | | х | | | 53 | SX_IB_202204
16_12_10_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036871 | X | | х | | | 54 | SX_IB_202204
16_16_18_SS
_Primary_EUF | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036872 | X | | х | | | 55 | SX_IB_202204
16_16_22_SS
_Duplicate_EU
F | Apr 16, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036873 | Х | | х | | | 56 | SX_IB_202204 | Apr 16, 2022 | | AUS Leachate | M22- | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Sydney Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | y - NATA # 126 ² | 1 Site # 2079 | 1 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | , | | | | | | | | 16_20_02_SS
_Primary_EUF | | | - Reagent
Water | Ap0036874 | | | | | | 57 | SX_IB_202204
17_00_01_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036875 | Х | | Х | | | 58 | SX_IB_202204
17_03_57_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036876 | Х | | Х | | | 59 | SX_IB_202204
17_08_05_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036877 | х | | Х | | | 60 | SX_IB_202204
17_08_10_SS
_Triplicate_EU | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036878 | Х | | Х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066
Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954 > Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | | | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroa | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | | | Sa | mple Detail | | | edure | | Per- and Polyfluoroalkyl Substances (PFASs) | uite | | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydr | ney Laboratory | - NATA # 1261 : | Site # 18217 | | | | | | | | | bane Laboratory | <i>'</i> | | | | | | | | | | ield Laboratory | | | | | | | | | | | h Laboratory - N | | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | | ı | | | | | | | _Triplicate_EU | | | Water | | | | | | | 61 | SX_IB_202204
17_12_28_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036879 | Х | | х | | | 62 | SX_IB_202204
17_15_56_SS
_Primary_EUF | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036880 | х | | Х | | | 63 | SX_IB_202204
17_15_56_SS
_Duplicate_EU
F | Apr 17, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036881 | X | | X | | | 64 | SX_IB_202204
17_20_03_SS | Apr 17, 2022 | | AUS Leachate
- Reagent | M22-
Ap0036882 | Х | | Х | | ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Sydney Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 20220419042301-Eurofin-21 **Project Name:** Project ID: Address: JC0927 Order No.: Report #: 880891 08 8338 1009 Phone: Fax: **Eurofins Environment Testing Australia Pty Ltd** Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|--|-----------------------------|----------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melk | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Syd | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laborator | y - NATA # 126 ⁻ | 1 Site # 20794 | 4 | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | 1 | | | | | | | Pert | h Laboratory - N | IATA # 2377 Si | te # 2370 | | | | | | | | Exte | rnal Laboratory | ,
T | | 1 | | | | | \sqcup | | | _Primary_EUF | | | Water | | | | | | | 65 | SX_IB_202204
18_00_05_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036883 | Х | | Х | | | 66 | SX_IB_202204
18_04_01_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036884 | Х | | х | | | 67 | SX_IB_202204
18_08_08_SS
_Triplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036885 | Х | | х | | | 68 | SX_IB_202204
18_08_09_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036886 | x | | х | | **Eurofins Environment Testing Australia Pty Ltd** Sydney 179 Magowar Road ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Received: Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 NZBN: 9429046024954 Apr 19, 2022 3:30 PM Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 web: www.eurofins.com.au email: EnviroSales@eurofins.com **Company Name:** Agon Environmental Pty Ltd - VIC 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: Address: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 880891 08 8338 1009 Phone: Fax: Due: **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) Apr 21, 2022 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |------|---|-----------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ory - NATA # 12 | 61 Site # 125 | 4 | | Х | Х | Х | Х | | Sydı | ney Laboratory | - NATA # 1261 | Site # 18217 | | | | | | | | Bris | bane Laboratory | / - NATA # 126′ | Site # 20794 | l . | | | | | | | May | field Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Pert | h Laboratory - N | IATA # 2377 Sit | te # 2370 | | | | | | | | Exte | rnal Laboratory | | | 1 | | | | | | | 69 | SX_IB_202204
18_11_57_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036887 | Х | | Х | | | 70 | SX_IB_202204
18_16_08_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036888 | Х | | Х | | | 71 | SX_IB_202204
18_16_09_SS
_Duplicate_EU
F | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036889 | Х | | Х | | | 72 | SX_IB_202204
18_19_59_SS
_Primary_EUF | Apr 18, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036890 | Х | | Х | | | 73 | SX_IB_202204 | Apr 19, 2022 | | AUS Leachate | M22- | Χ | | Х | | Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 ABN: 50 005 085 521 **Eurofins Environment Testing Australia Pty Ltd** Sydney Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290 **Company Name:** email: EnviroSales@eurofins.com web: www.eurofins.com.au Agon Environmental Pty Ltd - VIC Address: 3/224 Glen Osmond Road Fullarton SA 5063 **Project Name:** 20220419042301-Eurofin-21 Project ID: JC0927 Order No.: Report #: Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 880891 08 8338 1009 Phone: Fax: 179 Magowar Road Perth 46-48 Banksia Road Welshpool WA 6106 Received: Apr 19, 2022 3:30 PM Due: Apr 21, 2022 **Priority:** 3 Dav **Contact Name:** Agon Lab Reports (Spoil Project) NZBN: 9429046024954 | | | Sa | mple Detail | | | AUS Leaching Procedure | Moisture Set | Per- and Polyfluoroalkyl Substances (PFASs) | IWRG 621 WGTP Suite | |-------|---|-----------------|---------------|------------------------------------|-------------------|------------------------|--------------|---|---------------------| | Melb | ourne Laborato | ry - NATA # 12 | 61 Site # 125 | 4 | | Χ | Х | Х | Х | | Sydn | ey Laboratory - | NATA # 1261 S | Site # 18217 | | | | | | | | Brisk | ane Laboratory | / - NATA # 1261 | Site # 20794 | | | | | | | | Mayf | ield Laboratory | - NATA # 1261 | Site # 25079 | | | | | | | | Perth | Laboratory - N | IATA # 2377 Sit | e # 2370 | | | | | | | | Exte | rnal Laboratory | | | | | | | | | | | 19_00_03_SS
_Primary_EUF | | | - Reagent
Water | Ap0036891 | | | | | | 74 | SX_IB_202204
19_03_57_SS
_Primary_EUF | Apr 19, 2022 | | AUS Leachate
- Reagent
Water | M22-
Ap0036892 | Х | | X | | | Test | Counts | | | | | 48 | 24 | 74 | 24 | #### **Internal Quality Control Review and Glossary** #### General - Laboratory QC results for Method Blanks,
Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request. - 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated. - 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated. - 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences. - 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds - 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise. - 7. Samples were analysed on an 'as received' basis. - 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results. - 9. This report replaces any interim results previously issued. #### **Holding Times** Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001). For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control. For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. #### Units mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre **ppm**: parts per million **ppb**: parts per billion %: Percentage org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres #### **Terms** APHA American Public Health Association COC Chain of Custody CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery. Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis **Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison. LOR Limit of Reporting. Laboratory Control Sample - reported as percent recovery. Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water. NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. RPD Relative Percent Difference between two Duplicate pieces of analysis. SPIKE Addition of the analyte to the sample and reported as percentage recovery. SRA Sample Receipt Advice Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TCLP Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence QSM US Department of Defense Quality Systems Manual Version 5.4 US EPA United States Environmental Protection Agency WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA ### QC - Acceptance Criteria The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected. ## **QC Data General Comments** - 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided. - 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples. - 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt. - 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte. - 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample. - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data. ## **Quality Control Results** | Test | Units | Result 1 | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--|-------------|----------|----------------------|----------------|--------------------| | Method Blank | | | | | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | | | | Perfluorobutanoic acid (PFBA) | ug/L | < 0.05 | 0.05 | Pass | | | Perfluoropentanoic acid (PFPeA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorohexanoic acid (PFHxA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroheptanoic acid (PFHpA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorooctanoic acid (PFOA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorononanoic acid (PFNA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorodecanoic acid (PFDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorododecanoic acid (PFDoDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | ug/L | < 0.01 | 0.01 | Pass | | | Method Blank | <u>~</u> g/ | 10.01 | 0.0. | 1 400 | | | Perfluoroalkyl sulfonamido substances | | T | | | | | Perfluoroctane sulfonamide (FOSA) | ug/L | < 0.05 | 0.05 | Pass | | | N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) | ug/L | < 0.05 | 0.05 | Pass | | | N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) | ug/L | < 0.05 | 0.05 | Pass | | | 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N- | ug/L | < 0.03 | 0.03 | F 455 | | | MeFOSE) | ug/L | < 0.05 | 0.05 | Pass | | | 2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) | ug/L | < 0.05 | 0.05 | Pass | | | N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) | ug/L | < 0.05 | 0.05 | Pass | | | N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) | ug/L | < 0.05 | 0.05 | Pass | | | Method Blank | | | , , , , , , | 1 335 | | | Perfluoroalkyl sulfonic acids (PFSAs) | | | | | | | Perfluorobutanesulfonic acid (PFBS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorononanesulfonic acid (PFNS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluoroheptanesulfonic acid (PFHpS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorooctanesulfonic acid (PFOS) | ug/L | < 0.01 | 0.01 | Pass | | | Perfluorodecanesulfonic acid (PFDS) | | < 0.01 | 0.01 | Pass | | | Method Blank | ug/L | < 0.01 | 0.01 | Fass | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (n:2 FTSAs) | /1 | 0.04 | 0.01 | D | | | 1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | | | 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) | ug/L | < 0.05 | 0.05 | Pass | | | 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | | | 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) | ug/L | < 0.01 | 0.01 | Pass | | | LCS - % Recovery | | T | | l | | | Perfluoroalkyl carboxylic acids (PFCAs) | | | | - | | | Perfluorobutanoic acid (PFBA) | % | 94 | 50-150 | Pass | | | Perfluoropentanoic acid (PFPeA) | % | 121 | 50-150 | Pass | | | Perfluorohexanoic acid (PFHxA) | % | 95 | 50-150 | Pass | | | Perfluoroheptanoic acid (PFHpA) | % | 88 | 50-150 | Pass | | | Perfluorooctanoic acid (PFOA) | % | 89 | 50-150 | Pass | | | Perfluorononanoic acid (PFNA) | % | 92 | 50-150 | Pass | | | Perfluorodecanoic acid (PFDA) | % | 93 | 50-150 | Pass | | | Perfluoroundecanoic acid (PFUnDA) | % | 105 | 50-150 | Pass | | | Perfluorododecanoic acid (PFDoDA) | % | 105 | 50-150 | Pass | | | Perfluorotridecanoic acid (PFTrDA) | % | 88 | 50-150 | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | % | 105 | 50-150 | Pass | | | Test | | | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | |--|---------------------|--------------|-------|----------|----------|-----
----------------------|----------------|--------------------| | LCS - % Recovery | | | | , | | | | | | | Perfluoroalkyl sulfonamido substa | nces | | | | | | | | | | Perfluorooctane sulfonamide (FOSA | A) | | % | 98 | | | 50-150 | Pass | | | N-methylperfluoro-1-octane sulfonar | mide (N-MeFOSA) | | % | 112 | | | 50-150 | Pass | | | N-ethylperfluoro-1-octane sulfonami | de (N-EtFOSA) | | % | 110 | | | 50-150 | Pass | | | 2-(N-methylperfluoro-1-octane sulfor MeFOSE) | namido)-ethanol (N | - | % | 114 | | | 50-150 | Pass | | | 2-(N-ethylperfluoro-1-octane sulfona | mido)-ethanol (N-E | tFOSE) | % | 100 | | | 50-150 | Pass | | | N-ethyl-perfluorooctanesulfonamido | acetic acid (N-EtFC | SAA) | % | 80 | | | 50-150 | Pass | | | N-methyl-perfluorooctanesulfonamic | doacetic acid (N-Me | FOSAA) | % | 99 | | | 50-150 | Pass | | | LCS - % Recovery | | | | | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | | | | | | | | Perfluorobutanesulfonic acid (PFBS |) | | % | 93 | | | 50-150 | Pass | | | Perfluorononanesulfonic acid (PFNS | S) | | % | 91 | | | 50-150 | Pass | | | Perfluoropropanesulfonic acid (PFP | rS) | | % | 103 | | | 50-150 | Pass | | | Perfluoropentanesulfonic acid (PFPe | eS) | | % | 104 | | | 50-150 | Pass | | | Perfluorohexanesulfonic acid (PFHx | S) | | % | 102 | | | 50-150 | Pass | | | Perfluoroheptanesulfonic acid (PFH | pS) | | % | 99 | | | 50-150 | Pass | | | Perfluorooctanesulfonic acid (PFOS |) | | % | 119 | | | 50-150 | Pass | | | Perfluorodecanesulfonic acid (PFDS | 8) | | % | 81 | | | 50-150 | Pass | | | LCS - % Recovery | | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (| n:2 FTSAs) | | | | | | | | | | 1H.1H.2H.2H-perfluorohexanesulfor | nic acid (4:2 FTSA) | | % | 103 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorooctanesulfon | ic acid (6:2 FTSA) | | % | 133 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorodecanesulfor | nic acid (8:2 FTSA) | | % | 101 | | | 50-150 | Pass | | | 1H.1H.2H.2H-perfluorododecanesul | fonic acid (10:2 FT | SA) | % | 86 | | | 50-150 | Pass | | | Test | Lab Sample ID | QA
Source | Units | Result 1 | | | Acceptance
Limits | Pass
Limits | Qualifying
Code | | Duplicate | | | | | | | | | | | Perfluoroalkyl carboxylic acids (Pl | CAs) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanoic acid (PFBA) | M22-Ap0029943 | NCP | ug/L | 1.1 | 1.1 | 1.0 | 30% | Pass | | | Perfluoropentanoic acid (PFPeA) | M22-Ap0029943 | NCP | ug/L | 2.6 | 2.8 | 9.0 | 30% | Pass | | | Perfluorohexanoic acid (PFHxA) | M22-Ap0029943 | NCP | ug/L | 4.3 | 4.4 | 3.0 | 30% | Pass | | | Perfluoroheptanoic acid (PFHpA) | M22-Ap0029943 | NCP | ug/L | 2.5 | 2.6 | 4.0 | 30% | Pass | | | Perfluorooctanoic acid (PFOA) | M22-Ap0029943 | NCP | ug/L | 4.0 | 3.7 | 9.0 | 30% | Pass | | | Perfluorononanoic acid (PFNA) | M22-Ap0029943 | NCP | ug/L | 0.82 | 0.74 | 10 | 30% | Pass | | | Perfluorodecanoic acid (PFDA) | M22-Ap0029943 | NCP | ug/L | 0.20 | 0.16 | 20 | 30% | Pass | | | Perfluoroundecanoic acid (PFUnDA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorododecanoic acid (PFDoDA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotridecanoic acid (PFTrDA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorotetradecanoic acid (PFTeDA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | - | • | | | | | | | Perfluoroalkyl sulfonic acids (PFS | As) | | | Result 1 | Result 2 | RPD | | | | | Perfluorobutanesulfonic acid (PFBS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorononanesulfonic acid (PFNS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropropanesulfonic acid (PFPrS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluoropentanesulfonic acid (PFPeS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorohexanesulfonic acid (PFHxS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | Report Number: 880891-W | Duplicate | | | | | | | | | | |---|-------------------|----------|----------|--------|--------|-----|-----|------|--| | Perfluoroalkyl sulfonic acids (PFS | SAs) | Result 1 | Result 2 | RPD | | | | | | | Perfluoroheptanesulfonic acid (PFHpS) | M22-Ap0029943 NCP | | | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorooctanesulfonic acid (PFOS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Perfluorodecanesulfonic acid (PFDS) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | Duplicate | | | | | | | | | | | n:2 Fluorotelomer sulfonic acids (| Result 1 | Result 2 | RPD | | | | | | | | 1H.1H.2H.2H-
perfluorohexanesulfonic acid (4:2
FTSA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorooctanesulfonic acid (6:2
FTSA) | M22-Ap0029943 | NCP | ug/L | 11 | 11 | 3.0 | 30% | Pass | | | 1H.1H.2H.2H-
perfluorododecanesulfonic acid
(10:2 FTSA) | M22-Ap0029943 | NCP | ug/L | < 0.01 | < 0.01 | <1 | 30% | Pass | | Report Number: 880891-W #### Comments #### Sample Integrity Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No #### **Qualifier Codes/Comments** Code Description Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11 Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15 #### Authorised by: Catherine Wilson Analytical Services Manager Joseph Edouard Senior Analyst (VIC) Glenn Jackson **General Manager** Final Report - this report replaces any previously issued Report - Indicates Not Requested - * Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please click here. Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received. | 011, | AIN OF CUSTODY DOCUME | NIAI | | | GE | HA | - | | EC ED Dist | _ | | | | | | | | | | | |--|--|-----------|----------|---------------|--|-------------------|---------------|--------------------------------|---------------------------------|--------------------------|-----------|----------|--------------|-----------------------------|----------------|--|--|------------------------------------|--------------------------|---------------| | i | | IAI | | | ES - EP Risk
William O'Haire - Agon | | | | | | | | | | | | | | | | | | : Agon Evironmental | | | \mathcal{H} | V | | _ | PLER: | LR - EP Risk | _ | | | | | | | | | | ALS | | ADDRESS / OFFICE: Melbourne | | | | | | | |
ILE 1: | +61 400 826 907 (Craig Trimbur) | | | | | | | | | | | | | PROJECT MANAGER (PM): Craig Trimbur PROJECT ID: JC0927 | | | | | | _ | L REPORT TO: | +61 490 411 004 (David Lawson) | | | | | | | | | | Australian Laboratory Services Pty | | | | | | | | | | | EMA | L REPORT TO: | | Labi | eports | . S]@ | gagonen | viro.co
m | m.au
otherh | <u>agor</u>
ublabi | nenvir
results | onmenta
s1@wgtp | @esdat.com.au
.com.au | | | _ | 0220419041350-ALS-21
TS REQUIRED (Date): 3 days | | | P.O. NO.: | O.: ME-150-19 WGTF | | _ | | | | | | | | | | | | | | | TREGOE: | TO TAL QUITED (Date), 5 days | | | GOOTEN | O.: ME-130-19 WG IF | | $\overline{}$ | | different to report) | | | | | | | | onenvi | ro.com.a | u agonenvironm | ental@esdat.c | | 7 AC | COMMENTS / SPECIAL HANDLING | | | | | DIPOSAL: | ANA | Tala REGUIRED | Including Sul 1ES (No | 2 | Suite | nust be | listed to at | od to attract suite prices) | | | | No | otes: | | | | Application of the Section Se | | | | | | 1 | | | Suite (Lab | lended | | | | | | | | | | | | DE SERVICE DE LA COMPANION | | | | | <u>.</u> | l le | | so suit | endec | S - Exter | | | | | | | | | | | SAMPLE INFORMATION (note: S = Suii, W=Water) | | | | | CONTAINER INF | AINER INFORMATION | | plus Cr | S 28 Extend | PFAS - Extended mine pH) | E | | | | | | | | | | | ALSID | SAMPLE ID | MATRIX | DATE | Time | Type / Code | Total bottles | Spail | <u>7</u> | PFAS | ASLP J | 집 | | | | | | | | | | | 7 | SX20220416_08_31_SS_Primary_ALS | S | 16-04-22 | 08:31 | Bucket | | х | · x | · x | × | x | 一 | | 1 | | | | | | | | 2 | SX20220416_08_34_SS_Duplicate_ALS | S | 16-04-22 | 08:34 | Bucket | | х | × | х | х | х | 7 | | | | | | | | | | 3 | SX_IB_20220416_09_36_SR_Rinsate_ALS | S | 16-04-22 | 09:36 | Bottle | 1 | | | x | | \sqcap | | | \top | 1 | | | | | | | 4 | SX_IB_20220416_09_38_SB_Blank_ALS | s | 16-04-22 | 09:38 | Bottle | 1 | | <u> </u> | × | \top | | | | | 1 | 1 | _ | | | | | 5 | SX_IB_20220416_12_04_SS_Primary_ALS | S | 16-04-22 | 12:04 | Bucket | | × | х | × | × | х | | | + | + | 1 | 1 | | | | | 6 | SX_IB_20220416_16_12_SS_Primary_ALS | s | 16-04-22 | 16:12 | Bucket | | x | × | × | × | x | | _ | + | | 1 | | \vdash | | | | 7 | SX_IB_20220416_16_24_SS_Triplicate_ALS | s | 16-04-22 | 16:24 | Bucket | | × | × | х | × | x | | | +- | + | | 1 | | | | | 8 | SX_IB_20220416_20_06_SS_Primary_ALS | S | 16-04-22 | 20:06 | Bucket | | x | x | × | × | x | - | + | - | | | | | | | | य | SX_IB_20220416_23_55_SS_Primary_ALS | s | 16-04-22 | 23:55 | Bucket | | х | х | x | × | x | | | + | + | 1 | | - | | _ | | 10 | | S | 17-04-22 | 04:02 | Bucket | | х | Х | X | х | х | | | T | | | | | | | | 11 | \$X_IB_20220417_08_07_SS_Primary_ALS | S | 17-04-22 | 08:07 | Bucket | <u> </u> | Х | × | х | X | × | | | | | | <u> </u> | | | | | <u> 12.</u> | SX_IB_20220417_08_10_SS_Duplicate_ALS | S | 17-04-22 | 08:10 | Bucket | ļ | Х | х | x | X | × | | | | | | | | | | | 13 | SX_IB_20220417_12_29_SS_Primary_ALS | S | 17-04-22 | 12:29 | Bucket | | x | х | × | х | х | | | | | | <u> </u> | | | | | 14 | SX_I8_20220417_15_57_SS_Triplicate_ALS | S | 17-04-22 | 15:57 | Bucket | | х | х | х | х | х | | | | | | | | - | | | 15 | SX_i8_20220417_15_58_SS_Primary_ALS | S | 17-04-22 | 15:58 | Bucket | | х | × | × | х | х | | | | 1 | | | | | | | 16 | SX_IB_20220418_00_02_SS_Primary_ALS | S | 18-04-22 | 0:02 | Bucket | | x | х | x | х | х | | | | |] | | | | | | 13 | SX_IB_20220418_03_59_SS_Primary_ALS | s | 18-04-22 | 3:59 | Bucket | | x | х | x | х | х | | | | | | | | | | | 18 | | \$ | 18-04-22 | 8:07 | Bucket | | х | х | × | х | × | | | | | | | | | | | 19 | SX_IB_20220418_08_07_SS_Duplicate_ALS | S | 18-04-22 | 8:07 | Bucket | | х | × | х | х | х | | | | | | | | | | | 20 | SX_IB_20220418_11_58_SS_Primary_ALS | s | 18-04-22 | 11:58 | Bucket | | х | х | х | х | х | \neg | | | | | | | | | | 21 | SX_IB_20220418_16_07_SS_Primary_ALS | S | 18-04-22 | 16:07 | Bucket | | х | х | х | × | х | | | | | | | | | | | 22 | SX_IB_20220418_16_10_SS_Triplicate_ALS | S | 18-04-22 | 16:10 | Bucket | | х | х | х . | х | × | | | | | | | T: | | _
_ Env | | ુ ક | SX_IB_20220418_20_01_SS_Primary_ALS | S | 18-04-22 | 20:01 | Bucket | | х | х | х | × | х | T | | 1 | 1 | | | | | _ Mel | | ζ | SX_IB_20220419_00_01_SS_Primary_ALS | S | 19-04-22 | 0:01 | Bucket | | х | х | x | . × | × | \dashv | | T | 1 | T | | \vdash | | - iviGi | | 35 | SX_IB_20220419_03_59_SS_Primary_ALS | S | 19-04-22 | 3:59 | Bucket | | х | х | х | х | х | \dashv | | T | | † | | | | E | | | | | | | | | | | | | | \Box | | T | | | | | | _ | | | | QUISHED I | BY: | | | | | | | RE | CEIVED | BY | | | | | | | METHOD (| | | Name: | | | | | Date: | | Nam | e: Shain | e Rismed | een | | | | | : (9 | | | Co | on' Note No: | | | Of:
Name: | | | | | Time:
Date: | | Of:
Nam | ALS | | | | | | | : 14 | : 45 | | | | | | | | | | - 1 | Date. | | | | | | | | | Date | | | | 1 | ansport Co: | | Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC. SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; V = VOA Vial HCl Preserved; VS = VOA Vial Sulphuric Preserved Plastic; F = Formaldehyde Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle, SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle, ASS = Plastic Bad for Acid Sulphate Soils, B = Unpreserved Bag. Catrier: Courie **!: |4/ ዛ** °C Seal: Y C/note: Temp: Environmental Division Melbourne Work Order Reference EM2206998 Lelephone : + 61-3-8549 9600 ## **CERTIFICATE OF ANALYSIS** **Work Order** : EM2206998 : AGON ENVIRONMENTAL PTY LTD Contact : DAVID LAWSON Address : D1.1 63-85 TURNER STREET PORT MELBOURNE 3207 Telephone Client **Project** : JC0927 Order number C-O-C number 20220419041350-ALS-21 Sampler ES-EP Risk, LR- EP Risk, William O'Haire- Agon Site · 20220419041350-ALS-21 : EN/150/19 -WGTP -Bulk Sample Quote Quote number No. of samples received : 48 No. of samples analysed : 48 Page : 1 of 65 > Laboratory : Environmental Division Melbourne Contact : Josh Alexander Address : 4 Westall Rd Springvale VIC Australia 3171 Telephone : +61-3-8549 9600 **Date Samples Received** : 19-Apr-2022 14:45 **Date Analysis Commenced** : 20-Apr-2022 Issue Date : 26-Apr-2022 10:06 ISO/IEC 17025 - Testing This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full This Certificate of Analysis contains the following information: - General Comments - Analytical Results - Surrogate Control Limits Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** #### Signatories This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11. Signatories Position Accreditation Category Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC Xing Lin Senior Organic Chemist Melbourne Inorganics, Springvale, VIC Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC Page : 2 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 #### **General Comments** The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request. Where moisture determination has been performed, results are reported on a dry weight basis. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting - ^ = This result is computed from individual analyte detections at or above the level of reporting - ø = ALS is not NATA accredited for these tests. - ~ = Indicates an estimated value. - Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs. - EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml
bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method. - EP074-UT: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR. - EP074-WF: Where reported, Sum of trichlorobenzenes is the sum of the reported concentrations of 1,2,3-Trichlorobenzene and 1,2,4-Trichlorobenzene, and 1,3,5-Trichlorobenzene at or above the LOR. - EG005T: EM2206998 #12, #16 and #20 has been diluted prior to cadmium analysis due to sample matrix. LOR values have been raised accordingly. - EP231X: Poor matrix spike recovery for sample EM2206998-031 due to sample matrix interference. - EG005-T: EM2206998 #24 Poor spike recovery for Nickel due to sample matrix. Confirmed by re-digestion and re-analysis. - EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements. - EN60: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3. - EN60-DI: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3. Page : 3 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 4 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 5 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 6 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 7 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 8 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 9 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 10 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 11 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 12 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 # Analytical Results 13C8-PFOA 98.8 101 % 101 0.02 Page : 13 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 14 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 15 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 16 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 17 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 18 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 19 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 20 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 21 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 ## **Analytical Results** sulfonamide (EtFOSA) Page : 22 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 | Sub-Matrix: DI WATER LEACHATE (Matrix: WATER) | | | Sample ID | SX_IB_20220418_20_
01_SS_Primary_ALS | SX_IB_20220419_00_
01_SS_Primary_ALS | SX_IB_20220419_03_
59_SS_Primary_ALS |
 | |---|-------------------|----------------------|-----------|---|---|---|------| | | | Sampling date / time | | 18-Apr-2022 20:01 | 19-Apr-2022 00:01 | 19-Apr-2022 00:00 |
 | | Compound | CAS Number | LOR | Unit | EM2206998-046 | EM2206998-047 | EM2206998-048 |
 | | | | | | Result | Result | Result |
 | | EP231C: Perfluoroalkyl Sulfonamid | es - Continued | | | | | | | | N-Methyl perfluorooctane | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | sulfonamidoethanol (MeFOSE) | | | | | | | | | N-Ethyl perfluorooctane | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | sulfonamidoethanol (EtFOSE) | | | | | | | | | N-Methyl perfluorooctane | 2355-31-9 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | sulfonamidoacetic acid | | | | | | | | | (MeFOSAA) | | | | | | | | | N-Ethyl perfluorooctane | 2991-50-6 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | sulfonamidoacetic acid | | | | | | | | | (EtFOSAA) | | | | | | | | | P231D: (n:2) Fluorotelomer Sulfor | nic Acids | | | | | | | | 4:2 Fluorotelomer sulfonic acid | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | (4:2 FTS) | | | | | | | | | 6:2 Fluorotelomer sulfonic acid | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | (6:2 FTS) | | | | | | | | | 8:2 Fluorotelomer sulfonic acid | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | (8:2 FTS) | | | | | | | | | 10:2 Fluorotelomer sulfonic acid | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | (10:2 FTS) | | | | | | | | | P231P: PFAS Sums | | | | | | | | | Sum of PFAS | | 0.10 | μg/L | <0.10 | <0.10 | <0.10 |
 | | Sum of PFHxS and PFOS | 355-46-4/1763-23- | 0.01 | μg/L | <0.01 | <0.01 | <0.01 |
 | | | 1 | | | | | | | | Sum of PFAS (WA DER List) | | 0.05 | μg/L | <0.05 | <0.05 | <0.05 |
 | | EP231S: PFAS Surrogate | | | | | | | | | 13C4-PFOS | | 0.02 | % | 97.9 | 90.2 | 92.7 |
 | | 13C8-PFOA | | 0.02 | % | 101 | 101 | 103 |
 | Page : 23 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 24 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 25 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 26 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 27 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 28 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 29 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 30 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 31 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 32 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 33 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 34 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 35 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 36 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 37 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 38 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 39 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 40 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 41 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 42 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 43 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 44 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 45 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 46 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 47 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 48 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 49 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 50 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 51 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 52 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 53 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 54 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 55 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 56 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 57 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 58 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 59 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 60 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 61 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 62 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 63 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 64 of 65 Work Order :
EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Page : 65 of 65 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 # Surrogate Control Limits | Sub-Matrix: ASLP LEACHATE | | Recover | y Limits (%) | |------------------------------------|-----------------------------|---------|--------------| | Compound | CAS Number | Low | High | | EP231S: PFAS Surrogate | | | | | 13C4-PFOS | | 65 | 140 | | 13C8-PFOA | | 71 | 133 | | ub-Matrix: DI WATER LEACHATE | | Recover | y Limits (%) | | Compound | CAS Number | Low | High | | EP231S: PFAS Surrogate | | | | | 13C4-PFOS | | 65 | 140 | | 13C8-PFOA | | 71 | 133 | | Sub-Matrix: SOIL | | Recover | y Limits (%) | | Compound | CAS Number | Low | High | | EP066S: PCB Surrogate | | | | | Decachlorobiphenyl | 2051-24-3 | 41 | 122 | | EP074S: VOC Surrogates (Ultra-Tra | ce) | | | | 1.2-Dichloroethane-D4 | 17060-07-0 | 59 | 119 | | Toluene-D8 | 2037-26-5 | 55 | 117 | | 4-Bromofluorobenzene | 460-00-4 | 59 | 123 | | EP075S: Acid Extractable Surrogate | es (Waste Classification) | | | | Phenol-d6 | 13127-88-3 | 63 | 134 | | 2-Chlorophenol-D4 | 93951-73-6 | 60 | 125 | | 2.4.6-Tribromophenol | 118-79-6 | 54 | 129 | | EP075T: Base/Neutral Extractable S | urrogates (Waste Classifica | ation) | | | Nitrobenzene-D5 | 4165-60-0 | 63 | 131 | | 1.2-Dichlorobenzene-D4 | 2199-69-1 | 61 | 124 | | 2-Fluorobiphenyl | 321-60-8 | 69 | 131 | | Anthracene-d10 | 1719-06-8 | 70 | 133 | | 4-Terphenyl-d14 | 1718-51-0 | 59 | 141 | | EP231S: PFAS Surrogate | | | | | 13C4-PFOS | | 68 | 136 | | 13C8-PFOA | | 69 | 133 | | Sub-Matrix: WATER | | Recover | y Limits (%) | | Compound | CAS Number | Low | High | | EP231S: PFAS Surrogate | | | | | 13C4-PFOS | | 65 | 140 | | 13C8-PFOA | | 71 | 133 | ## **QUALITY CONTROL REPORT** : 1 of 55 · 26-Apr-2022 : EM2206998 Work Order Page Client : AGON ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne Contact : DAVID LAWSON Contact : Josh Alexander Address Address : D1.1 63-85 TURNER STREET : 4 Westall Rd Springvale VIC Australia 3171 PORT MELBOURNE 3207 Telephone Telephone : +61-3-8549 9600 Project : JC0927 Date Samples Received : 19-Apr-2022 Order number **Date Analysis Commenced** : 20-Apr-2022 C-O-C number 20220419041350-ALS-21 Issue Date Sampler : ES-EP Risk, LR- EP Risk, William O'Haire- Agon Site : 20220419041350-ALS-21 Quote number : EN/150/19 -WGTP -Bulk Sample Quote No. of samples received : 48 No. of samples analysed : 48 Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full. This Quality Control Report contains the following information: - Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits - Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits - Matrix Spike (MS) Report; Recovery and Acceptance Limits #### Signatories This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11. | Signatories | Position | Accreditation Category | |-----------------|------------------------|---------------------------------------| | Dilani Fernando | Laboratory Coordinator | Melbourne Inorganics, Springvale, VIC | | Xing Lin | Senior Organic Chemist | Melbourne Inorganics, Springvale, VIC | | Xing Lin | Senior Organic Chemist | Melbourne Organics, Springvale, VIC | | | | | Page : 2 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 #### **General Comments** The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request. Where moisture determination has been performed, results are reported on a dry weight basis. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC #### Laboratory Duplicate (DUP) Report The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%. | Sub-Matrix: SOIL | | | | Laboratory Duplicate (DUP) Report | | | | | | | | |----------------------|---|--------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|--------------------|--|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | | EG005(ED093)T: To | tal Metals by ICP-AES (QC L | .ot: 4293364) | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EG005T: Cadmium | 7440-43-9 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | | | EG005T: Chromium | 7440-47-3 | 2 | mg/kg | 91 | 101 | 10.9 | 0% - 20% | | | | | | EG005T: Molybdenum | 7439-98-7 | 2 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Nickel | 7440-02-0 | 2 | mg/kg | 113 | 128 | 12.3 | 0% - 20% | | | | | | EG005T: Silver | 7440-22-4 | 2 | mg/kg | <2 | <2 | 0.0 | No Limit | | | | | | EG005T: Arsenic | 7440-38-2 | 5 | mg/kg | 20 | 23 | 10.9 | No Limit | | | | | | EG005T: Copper | 7440-50-8 | 5 | mg/kg | 37 | 46 | 20.0 | No Limit | | | | | | EG005T: Lead | 7439-92-1 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Selenium | 7782-49-2 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Tin | 7440-31-5 | 5 | mg/kg | <10 | <10 | 0.0 | No Limit | | | | | | EG005T: Zinc | 7440-66-6 | 5 | mg/kg | 75 | 79 | 4.8 | 0% - 50% | | | | EM2206998-012 | SX_IB_20220417_08_10_S
S_Duplicate_ALS | EG005T: Cadmium | 7440-43-9 | 1 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Chromium | 7440-47-3 | 2 | mg/kg | 113 | 111 | 1.6 | 0% - 20% | | | | | | EG005T: Molybdenum | 7439-98-7 | 2 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Nickel | 7440-02-0 | 2 | mg/kg | 195 | 170 | 13.7 | 0% - 20% | | | | | | EG005T: Silver | 7440-22-4 | 2 | mg/kg | <2 | <2 | 0.0 | No Limit | | | | | | EG005T: Arsenic | 7440-38-2 | 5 | mg/kg | 26 | 21 | 19.0 | No Limit | | | | | | EG005T: Copper | 7440-50-8 | 5 | mg/kg | 62 | 58 | 5.8 | 0% - 50% | | | | | | EG005T: Lead | 7439-92-1 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Selenium | 7782-49-2 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | | EG005T: Tin | 7440-31-5 | 5 | mg/kg | <10 | <10 | 0.0 | No Limit | | | | | | EG005T: Zinc | 7440-66-6 | 5 | mg/kg | 92 | 83 | 9.8 | 0% - 50% | | | Page : 3 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|---|-----------------------------|------------|-----------------------------------|---------|-----------------|------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EG005(ED093)T: Tot | al Metals by ICP-AES (QC L | ot: 4293367) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EG005T: Chromium | 7440-47-3 | 2 | mg/kg | 85 | 94 | 9.1 | 0% - 50% | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EG005T: Cadmium | 7440-43-9 | 1 | mg/kg | 1 | <1 | 0.0 | No Limit | | | | _ /_ | EG005T: Molybdenum | 7439-98-7 | 2 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | EG005T: Nickel | 7440-02-0 | 2 | mg/kg | 169 | 146 | 14.4 | 0% - 20% | | | | | EG005T: Silver | 7440-22-4 | 2 | mg/kg | <2 | <2 | 0.0 | No Limit | | | | | EG005T: Arsenic | 7440-38-2 | 5 | mg/kg | 20 | 19 | 0.0 | No Limit | | | | | EG005T: Copper | 7440-50-8 | 5 | mg/kg | 61 | 55 | 9.8 | 0% - 50% | | | | | EG005T: Lead | 7439-92-1 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | EG005T: Selenium | 7782-49-2 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | | EG005T: Tin | 7440-31-5 | 5 | mg/kg | <10 | <10 | 0.0 | No Limit | | | | | EG005T: Zinc | 7440-66-6 | 5 | mg/kg | 91 | 90 | 1.6 | 0% - 50% | | | EA001: pH in soil us | ing 0.01M CaCl extract (QC | Lot: 4293418) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary ALS | EA001: pH (CaCl2) | | 0.1 | pH Unit | 11.0 | 11.1 | 1.1 | 0% - 20% | | | EM2206998-012 | SX_IB_20220417_08_10_S
S Duplicate ALS | EA001: pH (CaCl2) | | 0.1 | pH Unit | 7.8 | 7.7 | 0.0 | 0% - 20% | | | EA001: pH in soil us | ing 0.01M CaCl extract (QC | Lat: 4293419) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S | EA001: pH (CaCl2) | | 0.1 | pH Unit | 8.8 | 8.8 | 0.0 | 0% - 20% | | | | S_Primary_ALS | | | | | | | | | | | | ntent (Dried @ 105-110°C) (C | QC Lot: 4293517) | | | | | | | | | |
EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EA055: Moisture Content | | 0.1 | % | 34.7 | 36.9 | 5.9 | 0% - 20% | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EA055: Moisture Content | | 0.1 | % | 30.3 | 31.8 | 5.0 | 0% - 20% | | | EA055: Moisture Co | ntent (Dried @ 105-110°C) (C | QC Lot: 4293518) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EA055: Moisture Content | | 0.1 | % | 30.6 | 33.3 | 8.5 | 0% - 20% | | | EG035T: Total Reco | verable Mercury by FIMS (Q | C Lot: 4293365) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EG035T: Mercury | 7439-97-6 | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | EM2206998-012 | SX_IB_20220417_08_10_S | EG035T: Mercury | 7439-97-6 | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | FORSET E 4 I B | S_Duplicate_ALS | 00.1 (4.4000000) | | | | | | | | | | | verable Mercury by FIMS (Q | | 7400 57 5 | | | | 2.1 | 0.0 | N. 1. 1 | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EG035T: Mercury | 7439-97-6 | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | EG048: Hexavalent (| Chromium (Alkaline Digest) | (QC Lot: 4293431) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 0.5 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | Page : 4 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|--|---|----------------------|-----------------------------------|-------|-----------------|------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EG048: Hexavalent | Chromium (Alkaline Digest) | (QC Lot: 4293431) - continued | | | | | | | | | | EM2206998-012 | SX_IB_20220417_08_10_S
S_Duplicate_ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 0.5 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | | EG048: Hexavalent | Chromium (Alkaline Digest) | (QC Lot: 4293432) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 0.5 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | | EK026SF: Total CN | by Segmented Flow Analyse | er (QC Lot: 4293594) | | | | | | | | | | EM2206959-018 | Anonymous | EK026SF: Total Cyanide | 57-12-5 | 1 | mg/kg | <5 | <5 | 0.0 | No Limit | | | EM2206998-011 | SX_IB_20220417_08_07_S
S_Primary_ALS | EK026SF: Total Cyanide | 57-12-5 | 1 | mg/kg | <5 | <5 | 0.0 | No Limit | | | EK026SF: Total CN | by Segmented Flow Analyse | er (QC Lot: 4293595) | | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S_Triplicate_ALS | EK026SF: Total Cyanide | 57-12-5 | 1 | mg/kg | <5 | <5 | 0.0 | No Limit | | | EK040T: Fluoride T | otal (QC Lot: 4293424) | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary ALS | EK040T: Fluoride | 16984-48-8 | 40 | mg/kg | 160 | 140 | 15.2 | No Limit | | | EM2206998-012 | SX_IB_20220417_08_10_S
S Duplicate ALS | EK040T: Fluoride | 16984-48-8 | 40 | mg/kg | 150 | 180 | 20.6 | No Limit | | | EK040T: Fluoride T | otal (QC Lot: 4293425) | | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EK040T: Fluoride | 16984-48-8 | 40 | mg/kg | 180 | 170 | 0.0 | No Limit | | | EP066: Polychlorin | ated Biphenyls (PCB) (QC Lo | ot: 4293316) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary_ALS | EP066-EM: Total Polychlorinated biphenyls | | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP066-EM: Total Polychlorinated biphenyls | | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | EP066: Polychlorina | ated Biphenyls (PCB) (QC Lo | ot: 4293319) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EP066-EM: Total Polychlorinated biphenyls | | 0.1 | mg/kg | <0.1 | <0.1 | 0.0 | No Limit | | | EP074A: Monocycli | c Aromatic Hydrocarbons (C | QC Lot: 4293292) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: Benzene | 71-43-2 | 0.2 | mg/kg | <0.2 | <0.2 | 0.0 | No Limit | | | | _ | EP074-UT: Toluene | 108-88-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP074-UT: Ethylbenzene | 100-41-4 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP074-UT: meta- & para-Xylene | 108-38-3
106-42-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP074-UT: Styrene | 100-42-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP074-UT: ortho-Xylene | 95-47-6 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP074-UT: Benzene | 71-43-2 | 0.2 | mg/kg | <0.2 | <0.2 | 0.0 | No Limit | | Page : 5 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory | Duplicate (DUP) Report | t | | |-----------------------|---|-------------------------------------|----------------------|------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP074A: Monocyclic | c Aromatic Hydrocarbons(C | QC Lot: 4293292) - continued | | | | | | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP074-UT: Toluene | 108-88-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: Ethylbenzene | 100-41-4 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: meta- & para-Xylene | 108-38-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | 106-42-3 | | | | | | | | | | EP074-UT: Styrene | 100-42-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: ortho-Xylene | 95-47-6 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | EP074A: Monocyclic | c Aromatic Hydrocarbons(C | QC Lot: 4293294) | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP074-UT: Benzene | 71-43-2 | 0.2 | mg/kg | <0.2 | <0.2 | 0.0 | No Limit | | | | EP074-UT: Toluene | 108-88-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: Ethylbenzene | 100-41-4 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: meta- & para-Xylene | 108-38-3
106-42-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: Styrene | 100-42-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP074-UT: ortho-Xylene | 95-47-6 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | EP074H: Naphthalei | ne (QC Lot: 4293292) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: Naphthalene | 91-20-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP074-UT: Naphthalene | 91-20-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | EP074H: Naphthale | ne (QC Lot: 4293294) | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP074-UT: Naphthalene | 91-20-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | EP074I: Volatile Hale | ogenated Compounds (QC I | Lot: 4293292) | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | _ | EP074-UT: cis-1.2-Dichloroethene | 156-59-2 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1-Trichloroethane | 71-55-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Carbon Tetrachloride | 56-23-5 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1.2-Tetrachloroethane | 630-20-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2.4-Trichlorobenzene | 120-82-1 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Vinyl chloride | 75-01-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: trans-1.2-Dichloroethene | 156-60-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Chloroform | 67-66-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichloroethane | 107-06-2 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Trichloroethene | 79-01-6 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Tetrachloroethene | 127-18-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.2.2-Tetrachloroethane | 79-34-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Hexachlorobutadiene | 87-68-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | Page : 6 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory | Duplicate (DUP) Report | | | |-----------------------|---|-------------------------------------|------------|------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP074I: Volatile Halo | genated Compounds (QC I | _ot: 4293292) - continued | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: Chlorobenzene | 108-90-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.4-Dichlorobenzene | 106-46-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichlorobenzene | 95-50-1 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.2-Trichloroethane | 79-00-5 | 0.04 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Methylene chloride | 75-09-2 | 0.4 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT:
cis-1.2-Dichloroethene | 156-59-2 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1-Trichloroethane | 71-55-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Carbon Tetrachloride | 56-23-5 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1.2-Tetrachloroethane | 630-20-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2.4-Trichlorobenzene | 120-82-1 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Vinyl chloride | 75-01-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: trans-1.2-Dichloroethene | 156-60-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Chloroform | 67-66-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichloroethane | 107-06-2 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Trichloroethene | 79-01-6 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Tetrachloroethene | 127-18-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.2.2-Tetrachloroethane | 79-34-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Hexachlorobutadiene | 87-68-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Chlorobenzene | 108-90-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.4-Dichlorobenzene | 106-46-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichlorobenzene | 95-50-1 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.2-Trichloroethane | 79-00-5 | 0.04 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Methylene chloride | 75-09-2 | 0.4 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | EP074I: Volatile Halo | genated Compounds (QC L | ot: 4293294) | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: cis-1.2-Dichloroethene | 156-59-2 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1-Trichloroethane | 71-55-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Carbon Tetrachloride | 56-23-5 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.1.2-Tetrachloroethane | 630-20-6 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2.4-Trichlorobenzene | 120-82-1 | 0.01 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Vinyl chloride | 75-01-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: trans-1.2-Dichloroethene | 156-60-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Chloroform | 67-66-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichloroethane | 107-06-2 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Trichloroethene | 79-01-6 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Tetrachloroethene | 127-18-4 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | I . | EF | | | • | 3 3 | | | | 1 | Page : 7 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory I | Duplicate (DUP) Report | | | |----------------------|---|---|-----------------------|------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP074I: Volatile Hal | ogenated Compounds (QC L | _ot: 4293294) - continued | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP074-UT: 1.1.2.2-Tetrachloroethane | 79-34-5 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Hexachlorobutadiene | 87-68-3 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Chlorobenzene | 108-90-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.4-Dichlorobenzene | 106-46-7 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.2-Dichlorobenzene | 95-50-1 | 0.02 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: 1.1.2-Trichloroethane | 79-00-5 | 0.04 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP074-UT: Methylene chloride | 75-09-2 | 0.4 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | EP075A: Phenolic C | ompounds (Halogenated)(C | QC Lot: 4293314) | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP075-EM: 2-Chlorophenol | 95-57-8 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dichlorophenol | 120-83-2 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 2.6-Dichlorophenol | 87-65-0 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 0.03 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.3.5.6-Tetrachlorophenol | 935-95-5 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: 2.4.5-Trichlorophenol | 95-95-4 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.4.6-Trichlorophenol | 88-06-2 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol | 4901-51-3/58-9
0-2 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Pentachlorophenol | 87-86-5 | 0.2 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP075-EM: 2-Chlorophenol | 95-57-8 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dichlorophenol | 120-83-2 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 2.6-Dichlorophenol | 87-65-0 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 0.03 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.3.5.6-Tetrachlorophenol | 935-95-5 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: 2.4.5-Trichlorophenol | 95-95-4 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.4.6-Trichlorophenol | 88-06-2 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol | 4901-51-3/58-9
0-2 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Pentachlorophenol | 87-86-5 | 0.2 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | EP075A: Phenolic C | ompounds (Halogenated) (C | QC Lot: 4293317) | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EP075-EM: 2-Chlorophenol | 95-57-8 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | , | EP075-EM: 2.4-Dichlorophenol | 120-83-2 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 2.6-Dichlorophenol | 87-65-0 | 0.03 | mg/kg | <0.50 | <0.50 | 0.0 | No Limit | | | | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 0.03 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.3.5.6-Tetrachlorophenol | 935-95-5 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: 2.4.5-Trichlorophenol | 95-95-4 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | | | | EP075-EM: 2.4.6-Trichlorophenol | 88-06-2 | 0.05 | mg/kg | <1.00 | <1.00 | 0.0 | No Limit | Page : 8 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | ub-Matrix: SOIL | | | | | | | | | | |----------------------|---|---|-----------------------|------|-------|-----------------|------------------|---------|-------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (% | | P075A: Phenolic C | Compounds (Halogenated)(C | QC Lot: 4293317) - continued | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol | 4901-51-3/58-9
0-2 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | _ /_ | EP075-EM: Pentachlorophenol | 87-86-5 | 0.2 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | P075A: Phenolic C | Compounds (Non-halogenate | d) (QC Lot: 4293314) | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP075-EM: Phenol | 108-95-2 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | _Filliary_ALG | EP075-EM: 2-Methylphenol | 95-48-7 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 3- & 4-Methylphenol | 1319-77-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2-Nitrophenol | 88-75-5 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dimethylphenol | 105-67-9 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dinitrophenol | 51-28-5 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 4-Nitrophenol | 100-02-7 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 2-Methyl-4.6-dinitrophenol | 8071-51-0 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: Dinoseb | 88-85-7 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol | 131-89-5 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | | EM2206998-013 | SX_IB_20220417_12_29_S
S Primary ALS | EP075-EM: Phenol | 108-95-2 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2-Methylphenol | 95-48-7 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 3- & 4-Methylphenol | 1319-77-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2-Nitrophenol | 88-75-5 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dimethylphenol | 105-67-9 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dinitrophenol | 51-28-5 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 4-Nitrophenol | 100-02-7 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 2-Methyl-4.6-dinitrophenol | 8071-51-0 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: Dinoseb | 88-85-7 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol | 131-89-5 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | | P075A: Phenolic C | Compounds
(Non-halogenate | d) (QC Lot: 4293317) | | | | | | | | | M2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP075-EM: Phenol | 108-95-2 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | _ ,_ | EP075-EM: 2-Methylphenol | 95-48-7 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 3- & 4-Methylphenol | 1319-77-3 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2-Nitrophenol | 88-75-5 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dimethylphenol | 105-67-9 | 1 | mg/kg | <1 | <1 | 0.0 | No Limit | | | | EP075-EM: 2.4-Dinitrophenol | 51-28-5 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 4-Nitrophenol | 100-02-7 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: 2-Methyl-4.6-dinitrophenol | 8071-51-0 | 5 | mg/kg | <5 | <5 | 0.0 | No Limit | | | | EP075-EM: Dinoseb | 88-85-7 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol | 131-89-5 | 5 | mg/kg | <20 | <20 | 0.0 | No Limit | Page : 9 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | | | | | |----------------------|--|---|----------------------|-----|-------|-----------------|------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP075B: Polynuclea | ar Aromatic Hydrocarbons(G | QC Lot: 4293314) - continued | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP075-EM: Naphthalene | 91-20-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Acenaphthene | 83-32-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Acenaphthylene | 208-96-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Fluorene | 86-73-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Phenanthrene | 85-01-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Anthracene | 120-12-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Fluoranthene | 206-44-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Pyrene | 129-00-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benz(a)anthracene | 56-55-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Chrysene | 218-01-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(a)pyrene | 50-32-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Indeno(1.2.3.cd)pyrene | 193-39-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Dibenz(a.h)anthracene | 53-70-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(g.h.i)perylene | 191-24-2 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2
207-08-9 | 1 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | EM2206998-013 | 12206998-013 SX_IB_20220417_12_29_S
S_Primary_ALS | EP075-EM: Naphthalene | 91-20-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | - | EP075-EM: Acenaphthene | 83-32-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Acenaphthylene | 208-96-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Fluorene | 86-73-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Phenanthrene | 85-01-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Anthracene | 120-12-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Fluoranthene | 206-44-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Pyrene | 129-00-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benz(a)anthracene | 56-55-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Chrysene | 218-01-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(a)pyrene | 50-32-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Indeno(1.2.3.cd)pyrene | 193-39-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Dibenz(a.h)anthracene | 53-70-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(g.h.i)perylene | 191-24-2 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2
207-08-9 | 1 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | EP075B: Polynuclea | ar Aromatic Hydrocarbons (0 | QC Lot: 4293317) | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EP075-EM: Naphthalene | 91-20-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Acenaphthene | 83-32-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Acenaphthylene | 208-96-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | EP075-EM: Fluorene | 86-73-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | Page : 10 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory I | Duplicate (DUP) Report | f | | | |----------------------|---|---|----------------------|------|-------|-----------------|------------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EP075B: Polynuclea | r Aromatic Hydrocarbons (0 | QC Lot: 4293317) - continued | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP075-EM: Phenanthrene | 85-01-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Anthracene | 120-12-7 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Fluoranthene | 206-44-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Pyrene | 129-00-0 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Benz(a)anthracene | 56-55-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Chrysene | 218-01-9 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Benzo(a)pyrene | 50-32-8 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Indeno(1.2.3.cd)pyrene | 193-39-5 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Dibenz(a.h)anthracene | 53-70-3 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Benzo(g.h.i)perylene | 191-24-2 | 0.5 | mg/kg | <0.5 | <0.5 | 0.0 | No Limit | | | | | EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2
207-08-9 | 1 | mg/kg | <1.0 | <1.0 | 0.0 | No Limit | | | EP075I: Organochlor | rine Pesticides (QC Lot: 429 | 3314) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP075-EM: alpha-BHC | 319-84-6 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Hexachlorobenzene (HCB) | 118-74-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: beta-BHC | 319-85-7 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: gamma-BHC | 58-89-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: delta-BHC | 319-86-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Heptachlor | 76-44-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Aldrin | 309-00-2 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Heptachlor epoxide | 1024-57-3 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: cis-Chlordane | 5103-71-9 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | | EP075-EM: trans-Chlordane | 5103-74-2 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | | EP075-EM: Endosulfan 1 | 959-98-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Dieldrin | 60-57-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Endrin aldehyde | 7421-93-4 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Endrin | 72-20-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Endosulfan 2 | 33213-65-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Endosulfan sulfate | 1031-07-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Methoxychlor | 72-43-5 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: 4.4`-DDE | 72-55-9 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: 4.4`-DDD | 72-54-8 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: 4.4`-DDT | 50-29-3 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP075-EM: alpha-BHC | 319-84-6 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: Hexachlorobenzene (HCB) | 118-74-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: beta-BHC | 319-85-7 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP075-EM: gamma-BHC | 58-89-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | Page : 11 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | ub-Matrix: SOIL | | | | | | Laboratory | Duplicate (DUP) Report | | | |---------------------|---|-----------------------------------|------------|------|-------|-----------------|------------------------|---------|-------------------| | aboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (% | | P075I: Organochlo | rine Pesticides (QC Lot: 429 | 93314) - continued | | | | | | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP075-EM: delta-BHC | 319-86-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Heptachlor | 76-44-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Aldrin | 309-00-2 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Heptachlor epoxide | 1024-57-3 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: cis-Chlordane | 5103-71-9 | 0.03 | mg/kg
| <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: trans-Chlordane | 5103-74-2 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: Endosulfan 1 | 959-98-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Dieldrin | 60-57-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endrin aldehyde | 7421-93-4 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endrin | 72-20-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endosulfan 2 | 33213-65-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endosulfan sulfate | 1031-07-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Methoxychlor | 72-43-5 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDE | 72-55-9 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDD | 72-54-8 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDT | 50-29-3 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | P075I: Organochlo | rine Pesticides (QC Lot: 429 | 93317) | | | | | | | | | M2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP075-EM: alpha-BHC | 319-84-6 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Hexachlorobenzene (HCB) | 118-74-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: beta-BHC | 319-85-7 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: gamma-BHC | 58-89-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: delta-BHC | 319-86-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Heptachlor | 76-44-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Aldrin | 309-00-2 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Heptachlor epoxide | 1024-57-3 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: cis-Chlordane | 5103-71-9 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: trans-Chlordane | 5103-74-2 | 0.03 | mg/kg | <0.03 | <0.03 | 0.0 | No Limit | | | | EP075-EM: Endosulfan 1 | 959-98-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Dieldrin | 60-57-1 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endrin aldehyde | 7421-93-4 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endrin | 72-20-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endosulfan 2 | 33213-65-9 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Endosulfan sulfate | 1031-07-8 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: Methoxychlor | 72-43-5 | 0.03 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDE | 72-55-9 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDD | 72-54-8 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | | | | EP075-EM: 4.4`-DDT | 50-29-3 | 0.05 | mg/kg | <0.05 | <0.05 | 0.0 | No Limit | Page : 12 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | Laboratory Duplicate (DUP) Report | | | | | | | | |----------------------|---|---|-------------|-----|-----------------------------------|-----------------|------------------|---------|--------------------|--|--|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | | | EP080/071: Total Pe | troleum Hydrocarbons (QC | Lot: 4293292) - continued | | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: C6 - C9 Fraction | | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S Primary ALS | EP074-UT: C6 - C9 Fraction | | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EP080/071: Total Pe | troleum Hydrocarbons (QC | Lot: 4293294) | | | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP074-UT: C6 - C9 Fraction | | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EP080/071: Total Pe | troleum Hydrocarbons (QC | Lot: 4293315) | | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP071-EM: C15 - C28 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | _ /_ | EP071-EM: C29 - C36 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C14 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C36 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP071-EM: C15 - C28 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: C29 - C36 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C14 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C36 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | EP080/071: Total Pe | troleum Hydrocarbons (QC | Lot: 4293320) | | | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP071-EM: C15 - C28 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: C29 - C36 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C14 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | | | EP071-EM: C10 - C36 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | EP080/071: Total Re | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 4293292) | | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP074-UT: C6 - C10 Fraction | C6_C10 | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | | | EP074-UT: C6 - C10 Fraction minus BTEX (F1) | C6_C10-BTEX | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP074-UT: C6 - C10 Fraction | C6_C10 | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | | | EP074-UT: C6 - C10 Fraction minus BTEX (F1) | C6_C10-BTEX | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EP080/071: Total Re | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 4293294) | | | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP074-UT: C6 - C10 Fraction | C6_C10 | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | | _ ·- | EP074-UT: C6 - C10 Fraction minus BTEX (F1) | C6_C10-BTEX | 10 | mg/kg | <20 | <20 | 0.0 | No Limit | | | | | EP080/071: Total Re | coverable Hydrocarb <u>ons - N</u> | EPM 2013 Fractions (QC Lot: 4293315) | | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP071-EM: >C16 - C34 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: >C34 - C40 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | | EP071-EM: >C10 - C16 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | Page : 13 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|--|--|------------|--------|-----------------------------------|-----------------|------------------|---------|--------------------|--|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | | EP080/071: Total Re | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 4293315) - continued | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP071-EM: >C10 - C40 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | EM2206998-013 | SX_IB_20220417_12_29_S
S_Primary_ALS | EP071-EM: >C16 - C34 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | EP071-EM: >C34 - C40 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | EP071-EM: >C10 - C16 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | | EP071-EM: >C10 - C40 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | EP080/071: Total Re | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 4293320) | | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S Primary ALS | EP071-EM: >C16 - C34 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | _ | EP071-EM: >C34 - C40 Fraction | | 100 | mg/kg | <100 | <100 | 0.0 | No Limit | | | | | | EP071-EM: >C10 - C16 Fraction | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | | | EP071-EM: >C10 - C40 Fraction (sum) | | 50 | mg/kg | <50 | <50 | 0.0 | No Limit | | | | EP231A: Perfluoroa | lkyl Sulfonic Acids (QC Lot: | 4294640) | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EM2206998-012 | SX_IB_20220417_08_10_S
S_Duplicate_ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.0002 | mg/kg | <5.0 μg/kg |
<0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231A: Perfluoroa | Ikyl Sulfonic Acids (QC Lot: | 4294641) | | | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S Triplicate ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4294640) | | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | Page : 14 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | Matrix: SOIL | | | | | Laboratory I | Duplicate (DUP) Report | | | |----------------------|--|---|------------|--------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4294640) - continued | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary ALS | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.0005 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.001 | mg/kg | <5 μg/kg | <0.005 | 0.0 | No Limit | | EM2206998-012 | SX_IB_20220417_08_10_S
S_Duplicate_ALS | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | - ' - | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.0002 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.0005 | mg/kg | <5.0 µg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.001 | mg/kg | <5 μg/kg | <0.005 | 0.0 | No Limit | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4294641) | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S_Triplicate_ALS | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | 5 p | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.001 | mg/kg | <5 μg/kg | <0.005 | 0.0 | No Limit | | EP231C: Perfluoroa | Ikyl Sulfonamides (QC Lot: | | | | | | | | 1 | | EM2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | Page : 15 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | ub-Matrix: SOIL | | | | | | Laboratory | Duplicate (DUP) Report | | | | |---------------------|--|---|------------|--------|-------|-----------------|------------------------|---------|-------------------|--| | aboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (% | | | P231C: Perfluoroa | lkyl Sulfonamides (QC Lot: | 4294640) - continued | | | | | | | | | | M2206998-001 | SX20220416_08_31_SS
_Primary_ALS | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.0002 | mg/kg | <10.0 µg/kg | <0.0100 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | M2206998-012 | SX_IB_20220417_08_10_S
S Duplicate ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | P231C: Perfluoroa | Ikyl Sulfonamides (QC Lot: | 4294641) | | | | | | | | | | M2206998-022 | SX_IB_20220418_16_10_S
S Triplicate ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | 5 p dats | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol
(EtFOSE) | 1691-99-2 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | Page : 16 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory | Duplicate (DUP) Report | | | |----------------------|--|---|------------------------|--------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231D: (n:2) Fluo | rotelomer Sulfonic Acids(Q | C Lot: 4294640) - continued | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.0005 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | EM2206998-012 | SX_IB_20220417_08_10_S
S_Duplicate_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.0005 | mg/kg | <10.0 µg/kg | <0.0100 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | EP231D: (n:2) Fluo | rotelomer Sulfonic Acids (Q | C Lot: 4294641) | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S Triplicate ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.0005 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4294640) | | | | | | | | | | EM2206998-001 | SX20220416_08_31_SS
Primary ALS | EP231X: Sum of PFAS | | 0.0002 | mg/kg | <50.0 μg/kg | <0.0500 | 0.0 | No Limit | | | _ ,_ | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.0002 | mg/kg | <10.0 µg/kg | <0.0100 | 0.0 | No Limit | | EM2206998-012 | SX_IB_20220417_08_10_S
S Duplicate ALS | EP231X: Sum of PFAS | | 0.0002 | mg/kg | <50.0 μg/kg | <0.0500 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.0002 | mg/kg | <10.0 µg/kg | <0.0100 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4294641) | | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S Triplicate ALS | EP231X: Sum of PFAS | | 0.0002 | mg/kg | <50.0 μg/kg | <0.0500 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.0002 | mg/kg | <5.0 μg/kg | <0.0050 | 0.0 | No Limit | Page : 17 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | | | Laboratory I | Duplicate (DUP) Report | | | |----------------------|--|--|------------|--------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231P: PFAS Sums | s (QC Lot: 4294641) - contir | nued | | | | | | | | | EM2206998-022 | SX_IB_20220418_16_10_S
S Triplicate ALS | EP231X: Sum of PFAS (WA DER List) | | 0.0002 | mg/kg | <10.0 μg/kg | <0.0100 | 0.0 | No Limit | | Sub-Matrix: WATER | | | | | | Laboratory | Duplicate (DUP) Report | | | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231A: Perfluoroal | Ikyl Sulfonic Acids (QC Lot: | | | | | | | | | | EM2206432-001 | Anonymous | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | 0.18 | 0.20 | 12.1 | 0% - 50% | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | 0.19 | 0.17 | 6.6 | 0% - 50% | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | 0.06 | 0.08 | 28.7 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | 0.04 | 0.04 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | 0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EM2206603-005 | Anonymous | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | 0.07 | 0.08 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | 0.14 | 0.13 | 11.2 | 0% - 50% | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231A: Perfluoroal | Ikyl Sulfonic Acids (QC Lot: | 4297210) | | | | | | | | | EM2206730-001 | Anonymous | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EM2206998-005 | SX_IB_20220416_12_04_S
S Primary ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231A: Perfluoroal | Ikyl Sulfonic Acids (QC Lot: | 4297276) | | | | | | | | | EM2206998-033 | SX_IB_20220417_04_02_S
S_Primary_ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | Page : 18 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | Laboratory I | Duplicate (DUP) Report | | | |----------------------|---|--|------------|------|------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231A: Perfluoroa | Ikyl Sulfonic Acids (QC Lot: | 4297276) - continued | | | | | | | | | EM2206998-038 | SX_IB_20220417_15_58_S
S_Primary_ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231A: Perfluoroa | lkyl Sulfonic Acids (QC Lot: | 4297326) | | | | | | | | | EM2206730-005 | Anonymous | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 |
μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231A: Perfluoroa | lkyl Sulfonic Acids (QC Lot: | 4298480) | | | | | | | | | EM2206998-016 | SX_IB_20220418_00_02_S
S_Primary_ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | 1 2 | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231A: Perfluoroa | Ikyl Sulfonic Acids (QC Lot: | 4298483) | | | | | | | | | EM2206998-026 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | | | | , , | | | | 1 | | EM2206432-001 | Anonymous | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | 0.49 | 0.46 | 6.3 | 0% - 20% | | 00 102 001 | | EP231X: Perlluoropentanoic acid (PFPA) | 2706-90-3 | 0.02 | μg/L | 0.34 | 0.31 | 7.3 | 0% - 50% | Page : 19 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | | | | | |----------------------|---|--|------------|------|------|-----------------|------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4294552) - continued | | | | | | | | | EM2206432-001 | Anonymous | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | 0.28 | 0.26 | 7.8 | 0% - 50% | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | 0.19 | 0.19 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EM2206603-005 | Anonymous | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4297210) | | | | | | | | | EM2206730-001 | Anonymous | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EM2206998-005 | SX_IB_20220416_12_04_S
S Primary ALS | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | _ | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | Page : 20 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Laboratory Duplicate (DUP) Report | | | | | | |----------------------|---|--|------------|-----------------------------------|------|-----------------|------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231B: Perfluoroa | ılkyl Carboxylic Acids (QC L | | | | | | | | | | EM2206998-005 | SX_IB_20220416_12_04_S
S_Primary_ALS | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EP231B: Perfluoroa | ılkyl Carboxylic Acids (QC L | ot: 4297276) | | | | | | | | | EM2206998-033 | SX_IB_20220417_04_02_S
S_Primary_ALS | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | µg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L
| <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EM2206998-038 | SX_IB_20220417_15_58_S
S_Primary_ALS | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EP231B: Perfluoroa | ılkyl Carboxylic Acids (QC L | ot: 4297326) | | | | | | | | | EM2206730-005 | Anonymous | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | Page : 21 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Executive parameter Semple Semple Semple Methods (Oct Lot 427358) - continued | Sub-Matrix: WATER | | | | | | Laboratory | Duplicate (DUP) Report | | | |---|----------------------|------------------------------|--|------------|------|------|-----------------|------------------------|---------|--------------------| | EM208789-005 Anonymous | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231X Perfluoroolity Cartboxylic Anties Col Lot - 4084889 | EP231B: Perfluoroa | alkyl Carboxylic Acids (QC L | ot: 4297326) - continued | | | | | | | | | EP231X Perfluoroolity Cartboxylic Anties Col Lot - 4084889 | EM2206730-005 | Anonymous | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM200996 016 SX_IB_2020416_00_02_8 EP231X Perfluoroectanoic acid (PFOA) 335-67.1 0.01 ug/L 4.0.01 4.0.01 0.0 No Limit | | | | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | PP331X Perfluoropentanole acid (PPPA) | EP231B: Perfluoroa | ılkyl Carboxylic Acids (QC L | ot: 4298480) | | | | | | | | | EP231X Perfluorobretanoic acid (PFPA) 2708-90.3 0.02 µg/L 0.002 0.002 0.0 No Limit | EM2206998-016 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | EP231X Perfluoronication and (PFI-pA) 375-85-9 0.02 pgl. < 0.02 < 0.02 0.0 No Limit | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X Perfluorodecanoic acid (PFNA) | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorodecanoic acid (PFDA) | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 19JL <0.02 <0.02 0.00 No Limit | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X Perfluorododecanoic acid (PFDoDA) 307-85-1 0.02 pg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotridecanoic acid (PFTDA) | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05 | | | | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorobutanoic acid (PFBA) 375-224 0.1 µg/L <0.1 <0.1 <0.0 No Limit | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EM2206998-023 SX_IB_20220418_20_01_S S_Primary_ALS | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | S_Primary_ALS | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EP231X: Perfluoronexanoic acid (PFHxA) | EM2206998-023 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | µg/L | <0.01 | <0.01 | 0.0 | No Limit | | EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 pg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoronanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorododecanoic acid (PFDDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotidecanoic acid (PFTrDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotridecanoic acid (PFTrDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorobutanoic acid (PFBA) 375-22-4 0.1 µg/L <0.1 <0.1 0.0 No Limit | | | | 72629-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231B: Perfluoroalkyl Carboxylic Acids (QC Lot: 4298483) EM2206998-026 SX_20220416_08_31_SS _Primary_ALS EP231X: Perfluorooctanoic acid (PFOA) 335-67-1 0.01 µg/L <0.01 <0.01 0.0 No Limit EP231X: Perfluoropentanoic acid (PFPeA) 2706-90-3 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorononanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDDA) 376-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFDDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFTDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotecanoic acid (PFTDA) 376-06-7 0.05 µg/L <0.05 <0.05 0.0 No Limit | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) |
376-06-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM2206998-026 SX_20220416_08_31_SS | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | | EM2206998-026 SX_20220416_08_31_SS | EP231B: Perfluoroa | ılkyl Carboxylic Acids (QC L | ot: 4298483) | | | | | | | | | EP231X: Perfluoropentanoic acid (PFPeA) 2706-90-3 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroheptanoic acid (PFHpA) 375-85-9 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorononanoic acid (PFNA) 375-95-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFNA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFDA) 335-76-2 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 µg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 µg/L <0.05 <0.05 0.0 No Limit | | SX20220416_08_31_SS | | 335-67-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | EP231X: Perfluorohexanoic acid (PFHxA) 307-24-4 0.02 μg/L <0.02 | | - ·- | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoronanoic acid (PFNA) 375-95-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroddecanoic acid (PFDDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 <0.05 0.0 No Limit | | | | 307-24-4 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFDoDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 0.05 0.0 No Limit | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotridecanoic acid (PFTDA) 376-06-7 0.05 μg/L <0.05 0.00 No Limit | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluoroundecanoic acid (PFUnDA) 2058-94-8 0.02 μg/L <0.02 | | | | 335-76-2 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorododecanoic acid (PFDoDA) 307-55-1 0.02 μg/L <0.02 | | | | 2058-94-8 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotridecanoic acid (PFTrDA) 72629-94-8 0.02 μg/L <0.02 <0.02 0.0 No Limit EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05 μg/L <0.05 | | | ` ' | 307-55-1 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.05 μg/L <0.05 <0.05 0.0 No Limit | | | ` ' | 72629-94-8 | 0.02 | | <0.02 | <0.02 | 0.0 | No Limit | | | | | , | 376-06-7 | 0.05 | | <0.05 | <0.05 | 0.0 | No Limit | | | | | | 375-22-4 | 0.1 | μg/L | <0.1 | <0.1 | 0.0 | No Limit | Page : 22 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | Laboratory | Duplicate (DUP) Report | | | |----------------------|---|---|------------|------|-------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231C: Perfluoroa | Ikyl Sulfonamides (Q0 | | | | | | | | | | EM2206432-001 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane | 2355-31-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | sulfonamidoacetic acid (MeFOSAA) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane | 2991-50-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | sulfonamidoacetic acid (EtFOSAA) | | | | | | | | | | | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | (MeFOSA) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | (EtFOSA) | | | | | | | | | | | EP231X: N-Methyl perfluorooctane | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | sulfonamidoethanol (MeFOSE) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM0000000 005 | A = = = = = = = = = = = = = = = = = = = | sulfonamidoethanol (EtFOSE) | 754.04.0 | 0.00 | | 40.00 | 40.00 | 0.0 | NI a I imais | | EM2206603-005 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane | 2355-31-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | sulfonamidoacetic acid (MeFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane | 2991-30-0 | 0.02 | µg/L | <0.02 | \0.02 | 0.0 | INO LITTIL | | | | sulfonamidoacetic acid (EtFOSAA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31300-32-0 | 0.03 | µg/L | ~0.03 | \0.03 | 0.0 | NO LITTIL | | | | EP231X: N-Ethyl perfluorooctane sulfonamide | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | (EtFOSA) | 1101 00 2 | 0.00 | P9/ L | 10.00 | 10.00 | 0.0 | 140 Emili | | | | EP231X: N-Methyl perfluorooctane | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | sulfonamidoethanol (MeFOSE) | | | 13 | | | | | | | | EP231X: N-Ethyl perfluorooctane | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | sulfonamidoethanol (EtFOSE) | | | | | | | | | EP231C: Perfluoroa | lkyl Sulfonamides (Q0 | C Lot: 4297210) | | | | | | | | | EM2206730-001 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane | 2355-31-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | sulfonamidoacetic acid (MeFOSAA) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane | 2991-50-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | sulfonamidoacetic acid (EtFOSAA) | | | | | | | | | | | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | (MeFOSA) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | (EtFOSA) | | | | | | | | | | | EP231X: N-Methyl perfluorooctane | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | sulfonamidoethanol (MeFOSE) | | | | | | | | | | | EP231X: N-Ethyl perfluorooctane | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | sulfonamidoethanol (EtFOSE) | | | | | | | | Page : 23 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | | | | | |----------------------|---|---|------------|------|------|-----------------|------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231C: Perfluoroa | lkyl Sulfonamides (QC Lot: | 4297210) - continued | | | | | | | | | EM2206998-005 | SX_IB_20220416_12_04_S
S_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | _ ,_ | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231C: Perfluoroa | Ikyl Sulfonamides (QC Lot: | 4297276) | | | | | | | | | EM2206998-033 | SX_IB_20220417_04_02_S
S_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl
perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM2206998-038 | SX_IB_20220417_15_58_S
S_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | Page : 24 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|---|---|------------|-----------------------------------|------|-----------------|------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EP231C: Perfluoroa | lkyl Sulfonamides (QC Lot: 4 | | | | | | | | | | | EM2206998-038 | SX_IB_20220417_15_58_S
S Primary ALS | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231C: Perfluoroa | lkyl Sulfonamides (QC Lot: 4 | . , | | | | | | | | | | EM2206730-005 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | <0.02 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231C: Perfluoroa | Ikyl Sulfonamides (QC Lot: 4 | | | | | | | | | | | EM2206998-016 | SX_IB_20220418_00_02_S
S_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | 7_ 7_ | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | Page : 25 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|---|---|-------------|-----------------------------------|------|-----------------|------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EP231C: Perfluoroa | lkyl Sulfonamides (QC Lot: | 4298480) - continued | | | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231C: Perfluoroa | Ikyl Sulfonamides (QC Lot: | 4298483) | | | | | | | | | | EM2206998-026 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | 7- | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231D: (n:2) Fluor | rotelomer Sulfonic Acids (Q | C Lot: 4294552) | | | | | | | | | | EM2206432-001 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EM2206603-005 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231D: (n:2) Fluor | rotelomer Sulfonic Acids (Q | C Lot: 4297210) | | | | | | | | | | EM2206730-001 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | Page : 26 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Laboratory Duplicate (DUP) Report | | | | | | | |----------------------|---|---|-------------|-----------------------------------|------|-----------------|------------------|---------|--------------------|--| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids (Q | C Lot: 4297210) - continued | | | | | | | | | | EM2206730-001 | Anonymous | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EM2206998-005 | SX_IB_20220416_12_04_S
S_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids (Q | C Lot: 4297276) | | | | | | | | | | EM2206998-033 | SX_IB_20220417_04_02_S
S_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) |
27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EM2206998-038 | SX_IB_20220417_15_58_S
S_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids (Q | C Lot: 4297326) | | | | | | | | | | EM2206730-005 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids (Q | C Lot: 4298480) | | | | | | | | | | EM2206998-016 | SX_IB_20220418_00_02_S
S_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | Page : 27 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | Laboratory Duplicate (DUP) Report | | | | |----------------------|---|---|------------------------|------|------|-----------------------------------|------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids(Q | C Lot: 4298480) - continued | | | | | | | | | EM2206998-016 | SX_IB_20220418_00_02_S
S_Primary_ALS | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231D: (n:2) Fluor | otelomer Sulfonic Acids (Q | C Lot: 4298483) | | | | | | | | | EM2206998-026 | SX20220416_08_31_SS
_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4294552) | | | | | | | | | | EM2206432-001 | Anonymous | EP231X: Sum of PFAS | | 0.01 | μg/L | 1.79 | 1.71 | 4.6 | 0% - 20% | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | 0.37 | 0.37 | 0.0 | 0% - 20% | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | 1.73 | 1.67 | 3.5 | 0% - 20% | | EM2206603-005 | Anonymous | EP231X: Sum of PFAS | | 0.01 | μg/L | 0.21 | 0.21 | 0.0 | 0% - 20% | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | 0.21 | 0.21 | 0.0 | 0% - 20% | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | 0.21 | 0.21 | 0.0 | 0% - 20% | | EP231P: PFAS Sum | s (QC Lot: 4297210) | | | | | | | | | | EM2206730-001 | Anonymous | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | EM2206998-005 | SX_IB_20220416_12_04_S
S_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | Page : 28 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | | | Laboratory | Duplicate (DUP) Report | | | |----------------------|---|-----------------------------------|------------------------|------|------|-----------------|------------------------|---------|--------------------| | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) | | EP231P: PFAS Sum | s (QC Lot: 4297210) - conti | nued | | | | | | | | | EM2206998-005 | SX_IB_20220416_12_04_S
S_Primary_ALS | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4297276) | | | | | | | | | | EM2206998-033 | SX_IB_20220417_04_02_S
S_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM2206998-038 | SX_IB_20220417_15_58_S
S_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4297326) | | | | | | | | | | EM2206730-005 | Anonymous | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4298480) | | | | | | | | | | EM2206998-016 | SX_IB_20220418_00_02_S
S_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EM2206998-023 | SX_IB_20220418_20_01_S
S_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | | EP231P: PFAS Sum | s (QC Lot: 4298483) | | | | | | | | | | EM2206998-026 | SX20220416_08_31_SS
_Primary_ALS | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.10 | <0.10 | 0.0 | No Limit | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/1763-
23-1 | 0.01 | μg/L | <0.01 | <0.01 | 0.0 | No Limit | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.05 | <0.05 | 0.0 | No Limit | Page : 29 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 ## Method Blank (MB) and Laboratory Control Sample (LCS) Report The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS. | Sub-Matrix: SOIL | | | | Method Blank (MB) | | Laboratory Control Spike (LC | | | |--|-----------------|------------------|-------------|-------------------|---------------|------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293364) | | | | | | | | | | EG005T: Arsenic | 7440-38-2 | 5 | mg/kg | <5 | 123 mg/kg | 92.0 | 70.0 | 130 | | EG005T: Cadmium | 7440-43-9 | 1 | mg/kg | <1 | 1.23 mg/kg | 60.9 | 50.0 | 130 | | EG005T: Chromium | 7440-47-3 | 2 | mg/kg | <2 | 20.2 mg/kg | 96.7 | 70.0 | 130 | | EG005T: Copper | 7440-50-8 | 5 | mg/kg | <5 | 55.9 mg/kg | 87.7 | 70.0 | 130 | | EG005T: Lead | 7439-92-1 | 5 | mg/kg | <5 | 62.4 mg/kg | 90.7 | 70.0 | 130 | | EG005T: Molybdenum | 7439-98-7 | 2 | mg/kg | <2 | 2.19 mg/kg | 87.6 | 70.0 | 130 | | EG005T: Nickel | 7440-02-0 | 2 | mg/kg | <2 | 15.4 mg/kg | 91.9 | 70.0 | 130 | | EG005T: Selenium | 7782-49-2 | 5 | mg/kg |
<5 | | | | | | EG005T: Silver | 7440-22-4 | 2 | mg/kg | <2 | 2.9 mg/kg | 91.3 | 70.0 | 130 | | EG005T: Tin | 7440-31-5 | 5 | mg/kg | <5 | 5.33 mg/kg | 82.0 | 70.0 | 130 | | EG005T: Zinc | 7440-66-6 | 5 | mg/kg | <5 | 162 mg/kg | 70.5 | 70.0 | 130 | | EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293367) | | | | | | | | | | EG005T: Arsenic | 7440-38-2 | 5 | mg/kg | <5 | 123 mg/kg | 92.8 | 70.0 | 130 | | EG005T: Cadmium | 7440-43-9 | 1 | mg/kg | <1 | 1.23 mg/kg | 60.9 | 50.0 | 130 | | EG005T: Chromium | 7440-47-3 | 2 | mg/kg | <2 | 20.2 mg/kg | 98.7 | 70.0 | 130 | | EG005T: Copper | 7440-50-8 | 5 | mg/kg | <5 | 55.9 mg/kg | 89.1 | 70.0 | 130 | | EG005T: Lead | 7439-92-1 | 5 | mg/kg | <5 | 62.4 mg/kg | 91.1 | 70.0 | 130 | | EG005T: Molybdenum | 7439-98-7 | 2 | mg/kg | <2 | 2.19 mg/kg | 88.7 | 70.0 | 130 | | EG005T: Nickel | 7440-02-0 | 2 | mg/kg | <2 | 15.4 mg/kg | 95.1 | 70.0 | 130 | | EG005T: Selenium | 7782-49-2 | 5 | mg/kg | <5 | | | | | | EG005T: Silver | 7440-22-4 | 2 | mg/kg | <2 | 2.9 mg/kg | 86.9 | 70.0 | 130 | | EG005T: Tin | 7440-31-5 | 5 | mg/kg | <5 | 5.33 mg/kg | 80.2 | 70.0 | 130 | | EG005T: Zinc | 7440-66-6 | 5 | mg/kg | <5 | 162 mg/kg | 71.5 | 70.0 | 130 | | EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Pla | stic Vessel) (C | QCLot: 4294609) | | | | | | | | EN60-Dla-P: Final pH | | 0.1 | pH Unit | 7.1 | | | | | | EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas | stic Vessel) ((| OCL of: 4294610) | | | | | | | | EN60-DIa-P: Final pH | | 0.1 | pH Unit | 7.1 | | | | | | EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas | atic Vescel) ((| OCI et: 4206993) | | | | | | | | EN60-DIa-P: Final pH | stic vessel) (C | 0.1 | pH Unit | 6.7 | | | | | | | | *** | pri Onit | V.1 | | | - | | | EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plas | stic Vessel) (C | | nl I I Init | 7.4 | | | | | | EN60-Dla-P: Final pH | | 0.1 | pH Unit | 7.1 | | | | | | EA001: pH in soil using 0.01M CaCl extract (QCLot: 429341 | | | | | | | | | | EA001: pH (CaCl2) | | | pH Unit | | 4 pH Unit | 101 | 98.8 | 101 | | | | | | | 7 pH Unit | 100 | 99.3 | 101 | Page : 30 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |---|----------|-----|---------|-------------------|------------------------|------------------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound CA | S Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EA001: pH in soil using 0.01M CaCl extract (QCLot: 4293419) | | | | | | | | | | EA001: pH (CaCl2) | | | pH Unit | | 4 pH Unit | 100 | 98.8 | 101 | | | | | | | 7 pH Unit | 100 | 99.3 | 101 | | EG035T: Total Recoverable Mercury by FIMS (QCLot: 4293365) | | | | | | | | | | EG035T: Mercury 74 | 39-97-6 | 0.1 | mg/kg | <0.1 | 0.64 mg/kg | 90.6 | 70.0 | 130 | | EG035T: Total Recoverable Mercury by FIMS (QCLot: 4293366) | | | | | | | | | | EG035T: Mercury 74 | 39-97-6 | 0.1 | mg/kg | <0.1 | 0.64 mg/kg | 79.7 | 70.0 | 130 | | EG048: Hexavalent Chromium (Alkaline Digest) (QCLot: 429343 | 1) | | | | | | | | | EG048G: Hexavalent Chromium 185 | 40-29-9 | 0.5 | mg/kg | <0.5 | 20 mg/kg | 86.9 | 70.0 | 130 | | EG048: Hexavalent Chromium (Alkaline Digest) (QCLot: 429343; | 2) | | | | | | | | | , , , | 40-29-9 | 0.5 | mg/kg | <0.5 | 20 mg/kg | 87.8 | 70.0 | 130 | | EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4293 | 594) | | | | | | | | | | 57-12-5 | 1 | mg/kg | <1 | 20 mg/kg | 97.1 | 70.0 | 130 | | EK026SF: Total CN by Segmented Flow Analyser (QCLot: 4293) | 595) | | | | | | | | | | 57-12-5 | 1 | mg/kg | <1 | 20 mg/kg | 97.9 | 70.0 | 130 | | EK040T: Fluoride Total (QCLot: 4293424) | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | 84-48-8 | 40 | mg/kg | <40 | 400 mg/kg | 78.1 | 75.2 | 110 | | EK040T: Fluoride Total (QCLot: 4293425) | | | | | 3 0 | | | | | | 84-48-8 | 40 | mg/kg | <40 | 400 mg/kg | 76.2 | 75.2 | 110 | | EP066: Polychlorinated Biphenyls (PCB) (QCLot: 4293316) | | | 3 3 | | 3 3 | | | - | | EP066-EM: Total Polychlorinated biphenyls | | 0.1 | mg/kg | <0.1 | 1 mg/kg | 98.4 | 67.4 | 136 | | | | 4 | 99 | | | | | | | EP066: Polychlorinated Biphenyls (PCB) (QCLot: 4293319) EP066-EM: Total Polychlorinated biphenyls | | 0.1 | mg/kg | <0.1 | 1 mg/kg | 99.8 | 67.4 | 136 | | | | 0.1 | mg/kg | 40.1 | i ilig/kg | 00.0 | 01.4 | 100 | | EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4293292) | 71-43-2 | 0.2 | mg/kg | <0.2 | 2.1 mg/kg | 88.9 | 69.2 | 116 | | El of Fort Bonzono | 08-88-3 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg
2.1 mg/kg | 87.0 | 67.7 | 116 | | Zi o' i o' i reidelle | 00-41-4 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 86.4 | 66.6 | 115 | | E. o. i e.i. Early Bonzone | 08-38-3 | 0.5 | mg/kg | <0.5 | 4.2 mg/kg | 84.9 | 65.2 | 112 | | | 06-42-3 | | | | | | 20.2 | | | | 00-42-5 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 87.6 | 69.4 | 111 | | • | 95-47-6 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 84.9 | 68.4 | 110 | | EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4293294) | | | | | | | | | | | 71-43-2 | 0.2 | mg/kg | <0.2 | 2.1 mg/kg | 89.8 | 69.2 | 116 | | EP074-UT: Toluene | 08-88-3 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 88.5 | 67.7 | 116 | | EP074-UT: Ethylbenzene 1 | 00-41-4 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 86.2 | 66.6 | 115 | | EP074-UT: meta- & para-Xylene 1 | 08-38-3 | 0.5 | mg/kg | <0.5 | 4.2 mg/kg | 84.0 | 65.2 | 112 | | | 06-42-3 | | | | | | | | | EP074-UT: Styrene | 00-42-5 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 84.9 | 69.4 | 111 | Page : 31 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | | Laboratory Control Spike (LCS | S) Report | | |---|---------------------|------|-------|-------------------|---------------|-------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 4 | 4293294) - continue | d | | | | | | | | EP074-UT: ortho-Xylene | 95-47-6 | 0.5 | mg/kg | <0.5 | 2.1 mg/kg | 84.1 | 68.4 | 110 | | EP074H: Naphthalene (QCLot: 4293292) | | | | | | | | | | EP074-UT: Naphthalene | 91-20-3 | 1 | mg/kg | <1 | 0.6 mg/kg | 96.6 | 72.3 | 114 | | EP074H: Naphthalene (QCLot: 4293294) | | | | | | | | | | EP074-UT: Naphthalene | 91-20-3 | 1 | mg/kg | <1 | 0.6 mg/kg | 89.1 | 72.3 | 114 | | EP074I: Volatile Halogenated Compounds (QCLot: 429) | 3292) | | | | | | | | | EP074-UT: Vinyl chloride | 75-01-4 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 98.9 | 47.0 | 138 | | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 92.0 | 57.6 | 125 | | EP074-UT: Methylene chloride | 75-09-2 | 0.4 | mg/kg | <0.4 | 2.1 mg/kg | 89.2 | 72.3 | 115 | | EP074-UT: trans-1.2-Dichloroethene | 156-60-5 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 92.4 | 60.5 | 122 | | EP074-UT: cis-1.2-Dichloroethene | 156-59-2 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 89.2 | 70.3 | 112 | | EP074-UT: Chloroform | 67-66-3 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 90.4 | 66.6 | 115 | | EP074-UT: 1.1.1-Trichloroethane | 71-55-6 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 90.1 | 64.4 | 122 | | EP074-UT: Carbon Tetrachloride | 56-23-5 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 90.2 | 58.4 | 127 | | EP074-UT: 1.2-Dichloroethane | 107-06-2 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 96.2 | 72.9 | 114 | | EP074-UT: Trichloroethene | 79-01-6 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 88.7 | 64.7 | 115 | | EP074-UT: 1.1.2-Trichloroethane | 79-00-5 | 0.04 | mg/kg | <0.04 | 0.1 mg/kg | 91.6 | 72.6 | 116 | | EP074-UT: Tetrachloroethene | 127-18-4 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 90.6 | 60.0 | 119 | | EP074-UT: 1.1.1.2-Tetrachloroethane | 630-20-6 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 87.0 | 71.8 | 116 | | EP074-UT: 1.1.2.2-Tetrachloroethane | 79-34-5 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 90.2 | 66.1 | 116 | | EP074-UT: Hexachlorobutadiene | 87-68-3 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 78.0 | 39.8 | 128 | | EP074-UT: Chlorobenzene | 108-90-7 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 89.6 | 70.3 | 113 | | EP074-UT: 1.4-Dichlorobenzene | 106-46-7 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 82.0 | 62.6 | 113 | | EP074-UT: 1.2-Dichlorobenzene | 95-50-1 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 84.2 | 70.8 | 110 | | EP074-UT: 1.2.4-Trichlorobenzene | 120-82-1 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 76.4 | 48.4 | 120 | | EP074I: Volatile Halogenated Compounds (QCLot: 429) | 3294) | | | | | | | | | EP074-UT: Vinyl chloride | 75-01-4 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 100 | 47.0 | 138 | | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 92.3 | 57.6 | 125 | | EP074-UT: Methylene chloride | 75-09-2 | 0.4 | mg/kg | <0.4 | 2.1 mg/kg | 88.3 | 72.3 | 115 | | EP074-UT: trans-1.2-Dichloroethene | 156-60-5 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 92.1 | 60.5 | 122 | | EP074-UT: cis-1.2-Dichloroethene | 156-59-2 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 90.2 | 70.3 | 112 | | EP074-UT: Chloroform | 67-66-3 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 91.9 | 66.6 | 115 | | EP074-UT: 1.1.1-Trichloroethane | 71-55-6 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 92.6 | 64.4 | 122 | | EP074-UT: Carbon Tetrachloride | 56-23-5 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 89.0 | 58.4 | 127 | | EP074-UT: 1.2-Dichloroethane | 107-06-2 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 96.2 | 72.9 | 114 | | EP074-UT: Trichloroethene | 79-01-6 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 88.9 | 64.7 | 115 | | EP074-UT: 1.1.2-Trichloroethane | 79-00-5 | 0.04 | mg/kg | <0.04 | 0.1 mg/kg | 89.5 | 72.6 | 116 | | EP074-UT: Tetrachloroethene | 127-18-4 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 89.4 | 60.0 | 119 | Page : 32 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | |
Laboratory Control Spike (LC | S) Report | | |--|---------------------|------|-------|-------------------|---------------|------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP074I: Volatile Halogenated Compounds (QCLot: 4 | 293294) - continued | | | | | | | | | EP074-UT: 1.1.1.2-Tetrachloroethane | 630-20-6 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 85.6 | 71.8 | 116 | | EP074-UT: 1.1.2.2-Tetrachloroethane | 79-34-5 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 83.5 | 66.1 | 116 | | EP074-UT: Hexachlorobutadiene | 87-68-3 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 87.6 | 39.8 | 128 | | EP074-UT: Chlorobenzene | 108-90-7 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 89.5 | 70.3 | 113 | | EP074-UT: 1.4-Dichlorobenzene | 106-46-7 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 79.0 | 62.6 | 113 | | EP074-UT: 1.2-Dichlorobenzene | 95-50-1 | 0.02 | mg/kg | <0.02 | 0.1 mg/kg | 83.7 | 70.8 | 110 | | EP074-UT: 1.2.4-Trichlorobenzene | 120-82-1 | 0.01 | mg/kg | <0.01 | 0.1 mg/kg | 72.4 | 48.4 | 120 | | EP075A: Phenolic Compounds (Halogenated) (QCLo | ot: 4293314) | | | | | | | | | EP075-EM: 2-Chlorophenol | 95-57-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.1 | 74.5 | 126 | | EP075-EM: 2.4-Dichlorophenol | 120-83-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.2 | 72.7 | 126 | | EP075-EM: 2.6-Dichlorophenol | 87-65-0 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.4 | 73.5 | 132 | | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 89.7 | 72.8 | 128 | | EP075-EM: 2.4.5-Trichlorophenol | 95-95-4 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 83.5 | 73.3 | 134 | | EP075-EM: 2.4.6-Trichlorophenol | 88-06-2 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 82.0 | 72.4 | 128 | | EP075-EM: 2.3.5.6-Tetrachlorophenol | 935-95-5 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 77.6 | 69.4 | 126 | | EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol | 4901-51-3/5 | 0.05 | mg/kg | <0.05 | 4 mg/kg | 84.4 | 71.9 | 128 | | | 8-90-2 | | | | | | | | | EP075-EM: Pentachlorophenol | 87-86-5 | 0.2 | mg/kg | <0.2 | 4 mg/kg | 85.0 | 54.4 | 135 | | EP075A: Phenolic Compounds (Halogenated) (QCLo | ot: 4293317) | | | | | | | | | EP075-EM: 2-Chlorophenol | 95-57-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 100.0 | 74.5 | 126 | | EP075-EM: 2.4-Dichlorophenol | 120-83-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 97.8 | 72.7 | 126 | | EP075-EM: 2.6-Dichlorophenol | 87-65-0 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 98.8 | 73.5 | 132 | | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 97.8 | 72.8 | 128 | | EP075-EM: 2.4.5-Trichlorophenol | 95-95-4 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 97.8 | 73.3 | 134 | | EP075-EM: 2.4.6-Trichlorophenol | 88-06-2 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 95.4 | 72.4 | 128 | | EP075-EM: 2.3.5.6-Tetrachlorophenol | 935-95-5 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 92.1 | 69.4 | 126 | | EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol | 4901-51-3/5 | 0.05 | mg/kg | <0.05 | 4 mg/kg | 102 | 71.9 | 128 | | | 8-90-2 | | | | | | | 1 | | EP075-EM: Pentachlorophenol | 87-86-5 | 0.2 | mg/kg | <0.2 | 4 mg/kg | 92.8 | 54.4 | 135 | | EP075A: Phenolic Compounds (Non-halogenated) (| QCLot: 4293314) | | | | | | | | | EP075-EM: Phenol | 108-95-2 | 1 | mg/kg | <1 | 2 mg/kg | 91.5 | 71.5 | 130 | | EP075-EM: 2-Methylphenol | 95-48-7 | 1 | mg/kg | <1 | 2 mg/kg | 90.4 | 73.4 | 129 | | EP075-EM: 3- & 4-Methylphenol | 1319-77-3 | 1 | mg/kg | <1 | 4 mg/kg | 94.5 | 74.3 | 129 | | EP075-EM: 2-Nitrophenol | 88-75-5 | 1 | mg/kg | <1 | 2 mg/kg | 88.3 | 70.9 | 133 | | EP075-EM: 2.4-Dimethylphenol | 105-67-9 | 1 | mg/kg | <1 | 2 mg/kg | 85.5 | 71.8 | 132 | | EP075-EM: 2.4-Dinitrophenol | 51-28-5 | 5 | mg/kg | <5 | 10 mg/kg | 65.2 | 41.0 | 156 | | EP075-EM: 4-Nitrophenol | 100-02-7 | 5 | mg/kg | <5 | 10 mg/kg | 96.0 | 65.3 | 134 | | EP075-EM: 2-Methyl-4.6-dinitrophenol | 8071-51-0 | 5 | mg/kg | <5 | 10 mg/kg | 77.8 | 43.6 | 128 | Page : 33 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) Report | | Laboratory Control Spike (LCS | S) Report | | |---|-------------------------|-------|-------|--------------------------|---------------|-------------------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP075A: Phenolic Compounds (Non-halogenated) | (QCLot: 4293314) - cont | inued | | | | | | | | EP075-EM: Dinoseb | 88-85-7 | 5 | mg/kg | <5 | 10 mg/kg | 86.9 | 62.0 | 128 | | EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol | 131-89-5 | 5 | mg/kg | <5 | 10 mg/kg | 74.7 | 34.5 | 137 | | EP075A: Phenolic Compounds (Non-halogenated) | (QCLot: 4293317) | | | | | | | | | EP075-EM: Phenol | 108-95-2 | 1 | mg/kg | <1 | 2 mg/kg | 99.4 | 71.5 | 130 | | EP075-EM: 2-Methylphenol | 95-48-7 | 1 | mg/kg | <1 | 2 mg/kg | 95.8 | 73.4 | 129 | | EP075-EM: 3- & 4-Methylphenol | 1319-77-3 | 1 | mg/kg | <1 | 4 mg/kg | 97.6 | 74.3 | 129 | | EP075-EM: 2-Nitrophenol | 88-75-5 | 1 | mg/kg | <1 | 2 mg/kg | 95.7 | 70.9 | 133 | | EP075-EM: 2.4-Dimethylphenol | 105-67-9 | 1 | mg/kg | <1 | 2 mg/kg | 98.4 | 71.8 | 132 | | EP075-EM: 2.4-Dinitrophenol | 51-28-5 | 5 | mg/kg | <5 | 10 mg/kg | 71.8 | 41.0 | 156 | | EP075-EM: 4-Nitrophenol | 100-02-7 | 5 | mg/kg | <5 | 10 mg/kg | 113 | 65.3 | 134 | | EP075-EM: 2-Methyl-4.6-dinitrophenol | 8071-51-0 | 5 | mg/kg | <5 | 10 mg/kg | 86.6 | 43.6 | 128 | | EP075-EM: Dinoseb | 88-85-7 | 5 | mg/kg | <5 | 10 mg/kg | 96.7 | 62.0 | 128 | | EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol | 131-89-5 | 5 | mg/kg | <5 | 10 mg/kg | 76.3 | 34.5 | 137 | | EP075B: Polynuclear Aromatic Hydrocarbons (QC | Lot: 4293314) | | | | | | | | | EP075-EM: Naphthalene | 91-20-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 87.8 | 73.0 | 131 | | EP075-EM: Acenaphthene | 83-32-9 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 83.4 | 76.3 | 130 | | EP075-EM: Acenaphthylene | 208-96-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 83.4 | 72.0 | 135 | | EP075-EM: Fluorene | 86-73-7 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 85.4 | 74.4 | 131 | | EP075-EM: Phenanthrene | 85-01-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 90.1 | 73.3 | 130 | | EP075-EM: Anthracene | 120-12-7 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 91.0 | 78.4 | 127 | | EP075-EM: Fluoranthene | 206-44-0 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 87.4 | 75.3 | 132 | | EP075-EM: Pyrene | 129-00-0 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 90.6 | 75.4 | 130 | | EP075-EM: Benz(a)anthracene | 56-55-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 90.5 | 69.6 | 133 | | EP075-EM: Chrysene | 218-01-9 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 90.3 | 75.0 | 133 | | EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2 | 1 | mg/kg | <1.0 | 4 mg/kg | 89.8 | 75.8 | 133 | | | 207-08-9 | | | | | | | | | EP075-EM: Benzo(a)pyrene | 50-32-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 88.4 | 65.1 | 130 | | EP075-EM: Indeno(1.2.3.cd)pyrene | 193-39-5 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 86.2 | 72.1 | 134 | | EP075-EM: Dibenz(a.h)anthracene | 53-70-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 87.4 | 72.9 | 135 | | EP075-EM: Benzo(g.h.i)perylene | 191-24-2 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 85.7 | 71.3 | 134 | | EP075B: Polynuclear Aromatic Hydrocarbons (QC | Lot: 4293317) | | | | | | | | | EP075-EM: Naphthalene | 91-20-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 102 | 73.0 | 131 | | EP075-EM: Acenaphthene | 83-32-9 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 102 | 76.3 | 130 | | EP075-EM: Acenaphthylene | 208-96-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 102 | 72.0 | 135 | | EP075-EM: Fluorene | 86-73-7 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 104 | 74.4 | 131 | | EP075-EM: Phenanthrene | 85-01-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 104 | 73.3 | 130 | | EP075-EM: Anthracene | 120-12-7 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 104 | 78.4 | 127 | | EP075-EM: Fluoranthene | 206-44-0 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 104 | 75.3 | 132 | Page : 34 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | Method Blank (MB) | Laboratory Control Spike (LCS) Report | | | | | |--|--------------------------|------|-------------------|---------------------------------------|---------------|--------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP075B: Polynuclear Aromatic Hydrocarbons (QCI | Lot: 4293317) - continue | ed | | | | | | | | EP075-EM: Pyrene | 129-00-0 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 105 | 75.4 | 130 | | EP075-EM: Benz(a)anthracene | 56-55-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 105 | 69.6 | 133 | | EP075-EM: Chrysene | 218-01-9 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 109 | 75.0 | 133 | | EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2 | 1 | mg/kg | <1.0 | 4 mg/kg | 109 | 75.8 | 133 | | | 207-08-9 | | | | | | | | | EP075-EM: Benzo(a)pyrene | 50-32-8 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 109 | 65.1 | 130 | | EP075-EM: Indeno(1.2.3.cd)pyrene | 193-39-5 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 110 | 72.1 | 134 | | EP075-EM: Dibenz(a.h)anthracene | 53-70-3 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 110 | 72.9 | 135 | | EP075-EM: Benzo(g.h.i)perylene | 191-24-2 | 0.5 | mg/kg | <0.5 | 2 mg/kg | 110 | 71.3 | 134 | | EP075I: Organochlorine Pesticides (QCLot: 429331 | 4) | | | | | | | | | EP075-EM: alpha-BHC | 319-84-6 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 87.0 | 71.0 | 129 | | EP075-EM: Hexachlorobenzene (HCB) | 118-74-1 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 87.0 | 74.8 | 126 | | EP075-EM: beta-BHC | 319-85-7 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.2 | 75.7 | 130 | | EP075-EM: gamma-BHC | 58-89-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.3 | 70.8 | 130 | | EP075-EM: delta-BHC | 319-86-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 89.6 | 76.5 | 134 | | EP075-EM: Heptachlor | 76-44-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.2 | 75.5 | 131 | | EP075-EM: Aldrin |
309-00-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 87.3 | 76.8 | 130 | | EP075-EM: Heptachlor epoxide | 1024-57-3 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.2 | 73.6 | 130 | | EP075-EM: cis-Chlordane | 5103-71-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 86.6 | 75.0 | 133 | | EP075-EM: trans-Chlordane | 5103-74-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 85.7 | 75.3 | 131 | | EP075-EM: Endosulfan 1 | 959-98-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 90.4 | 69.4 | 134 | | EP075-EM: 4.4`-DDE | 72-55-9 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 89.1 | 71.0 | 132 | | EP075-EM: Dieldrin | 60-57-1 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 86.4 | 78.0 | 133 | | EP075-EM: Endrin aldehyde | 7421-93-4 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 86.2 | 69.0 | 143 | | EP075-EM: Endrin | 72-20-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 80.7 | 55.7 | 145 | | EP075-EM: Endosulfan 2 | 33213-65-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 87.1 | 71.4 | 135 | | EP075-EM: 4.4`-DDD | 72-54-8 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 86.8 | 74.8 | 134 | | EP075-EM: Endosulfan sulfate | 1031-07-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.4 | 70.2 | 135 | | EP075-EM: 4.4`-DDT | 50-29-3 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 85.9 | 77.7 | 133 | | EP075-EM: Methoxychlor | 72-43-5 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 88.6 | 63.6 | 135 | | EP075l: Organochlorine Pesticides (QCLot: 429331 | 7) | | | | | | | | | EP075-EM: alpha-BHC | 319-84-6 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 104 | 71.0 | 129 | | EP075-EM: Hexachlorobenzene (HCB) | 118-74-1 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 105 | 74.8 | 126 | | EP075-EM: beta-BHC | 319-85-7 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 104 | 75.7 | 130 | | EP075-EM: gamma-BHC | 58-89-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 104 | 70.8 | 130 | | EP075-EM: delta-BHC | 319-86-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 106 | 76.5 | 134 | | EP075-EM: Heptachlor | 76-44-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 102 | 75.5 | 131 | | EP075-EM: Aldrin | 309-00-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 103 | 76.8 | 130 | | EP075-EM: Heptachlor epoxide | 1024-57-3 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 104 | 73.6 | 130 | Page : 35 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |--|-------------------|---------------|-------|-------------------|---------------|------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP075I: Organochlorine Pesticides (QCLot: 4293317) - | - continued | | | | | | | | | EP075-EM: cis-Chlordane | 5103-71-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 105 | 75.0 | 133 | | EP075-EM: trans-Chlordane | 5103-74-2 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 105 | 75.3 | 131 | | EP075-EM: Endosulfan 1 | 959-98-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 104 | 69.4 | 134 | | EP075-EM: 4.4`-DDE | 72-55-9 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 106 | 71.0 | 132 | | EP075-EM: Dieldrin | 60-57-1 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 106 | 78.0 | 133 | | EP075-EM: Endrin aldehyde | 7421-93-4 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 107 | 69.0 | 143 | | EP075-EM: Endrin | 72-20-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 118 | 55.7 | 145 | | EP075-EM: Endosulfan 2 | 33213-65-9 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 105 | 71.4 | 135 | | EP075-EM: 4.4`-DDD | 72-54-8 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 106 | 74.8 | 134 | | EP075-EM: Endosulfan sulfate | 1031-07-8 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 107 | 70.2 | 135 | | EP075-EM: 4.4`-DDT | 50-29-3 | 0.05 | mg/kg | <0.05 | 2 mg/kg | 104 | 77.7 | 133 | | EP075-EM: Methoxychlor | 72-43-5 | 0.03 | mg/kg | <0.03 | 2 mg/kg | 107 | 63.6 | 135 | | EP080/071: Total Petroleum Hydrocarbons (QCLot: 429 | 93292) | | | | | | | | | EP074-UT: C6 - C9 Fraction | | 10 | mg/kg | <10 | 39.6 mg/kg | 92.8 | 61.1 | 119 | | EP080/071: Total Petroleum Hydrocarbons (QCLot: 429 | 93294) | | | | | | | | | EP074-UT: C6 - C9 Fraction | | 10 | mg/kg | <10 | 39.6 mg/kg | 91.9 | 61.1 | 119 | | EP080/071: Total Petroleum Hydrocarbons (QCLot: 429 | 3315) | | | | | | | | | EP071-EM: C10 - C14 Fraction | | 50 | mg/kg | <50 | 700 mg/kg | 93.9 | 74.4 | 129 | | EP071-EM: C15 - C28 Fraction | | 100 | mg/kg | <100 | 2930 mg/kg | 108 | 81.0 | 123 | | EP071-EM: C29 - C36 Fraction | | 100 | mg/kg | <100 | 1380 mg/kg | 111 | 81.8 | 121 | | EP071-EM: C10 - C36 Fraction (sum) | | 50 | mg/kg | <50 | 5010 mg/kg | 107 | 70.0 | 130 | | EP080/071: Total Petroleum Hydrocarbons (QCLot: 429 | 3330) | | | | | | | | | EP071-EM: C10 - C14 Fraction | | 50 | mg/kg | <50 | 700 mg/kg | 88.3 | 74.4 | 129 | | EP071-EM: C15 - C28 Fraction | | 100 | mg/kg | <100 | 2930 mg/kg | 101 | 81.0 | 123 | | EP071-EM: C29 - C36 Fraction | | 100 | mg/kg | <100 | 1380 mg/kg | 104 | 81.8 | 121 | | EP071-EM: C10 - C36 Fraction (sum) | | 50 | mg/kg | <50 | 5010 mg/kg | 99.8 | 70.0 | 130 | | | 042 Eventions (OC | | | | | | | | | EP080/071: Total Recoverable Hydrocarbons - NEPM 20
EP074-UT: C6 - C10 Fraction | C6_C10 | 10 | mg/kg | <10 | 48.9 mg/kg | 92.6 | 59.9 | 119 | | | | 10 | mg/kg | <10 | 40.9 mg/kg | 92.0 | J9.9
 | | | EP074-UT: C6 - C10 Fraction minus BTEX (F1) | C6_C10-BTE
X | 10 | mg/kg | 110 | | | | | | ED000/074: Total Danayarahla Hydrocarbara NEDM 20 | | Let. 4202204) | | | | | | | | EP080/071: Total Recoverable Hydrocarbons - NEPM 20
EP074-UT: C6 - C10 Fraction | C6 C10 | 10 | mg/kg | <10 | 48.9 mg/kg | 91.5 | 59.9 | 119 | | | C6 C10-BTE | 10 | mg/kg | <10 | | 31.5 | | | | EP074-UT: C6 - C10 Fraction minus BTEX (F1) | C6_C10-B1E | 10 | mg/kg | 10 | | | | | | EP080/071: Total Recoverable Hydrocarbons - NEPM 20 | | Lot: 4292245) | | | | | | | | EP071-EM: >C10 - C16 Fraction | 713 Fractions (QC | 50 | mg/kg | <50 | 1030 mg/kg | 99.7 | 75.4 | 132 | | EP071-EM: >C10 - C16 Fraction | | 100 | mg/kg | <100 | 3680 mg/kg | 113 | 80.8 | 120 | | EP071-EM: >C16 - C34 Fraction | | 100 | mg/kg | <100 | 270 mg/kg | 98.9 | 73.3 | 136 | | LFU/ 1-LIVI. >034 - 040 FIAULIUII | | 100 | mg/kg | -100 | 270 mg/kg | 50.8 | 7 0.0 | 100 | Page : 36 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |---|------------------------|-------------------|----------|-------------------|---------------|------------------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP080/071: Total Recoverable Hydrocarbons - NEPN | M 2013 Fractions (QCLo | ot: 4293315) - co | ontinued | | | | | | | EP071-EM: >C10 - C40 Fraction (sum) | | 50 | mg/kg | <50 | 4980 mg/kg | 110 | 70.0 | 130 | | EP080/071: Total Recoverable Hydrocarbons - NEPN | M 2013 Fractions (QCLo | t: 4293320) | | | | | | | | EP071-EM: >C10 - C16 Fraction | | 50 | mg/kg | <50 | 1030 mg/kg | 93.7 | 75.4 | 132 | | EP071-EM: >C16 - C34 Fraction | | 100 | mg/kg | <100 | 3680 mg/kg | 105 | 80.8 | 120 | | EP071-EM: >C34 - C40 Fraction | | 100 | mg/kg | <100 | 270 mg/kg | 91.8 | 73.3 | 136 | | EP071-EM: >C10 - C40 Fraction (sum) | | 50 | mg/kg | <50 | 4980 mg/kg | 102 | 70.0 | 130 | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 429 | 4640) | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.0002 | mg/kg | <0.0002 | 0.00111 mg/kg | 97.6 | 72.0 | 128 | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.0002 | mg/kg | <0.0002 | 0.00118 mg/kg | 90.6 | 73.0 | 123 | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.0002 | mg/kg | <0.0002 | 0.0014 mg/kg | 76.6 | 67.0 | 130 | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.0002 | mg/kg | <0.0002 | 0.00119 mg/kg | 93.2 | 70.0 | 132 | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.0002 | mg/kg | <0.0002 | 0.00116 mg/kg | 102 | 68.0 | 136 | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.0002 | mg/kg | <0.0002 | 0.00121 mg/kg | 96.8 | 59.0 | 134 | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 429 | 4641) | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.0002 | mg/kg | <0.0002 | 0.00111 mg/kg | 95.2 | 72.0 | 128 | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.0002 | mg/kg | <0.0002 | 0.00118 mg/kg | 95.8 | 73.0 | 123 | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.0002 | mg/kg | <0.0002 | 0.0014 mg/kg | 79.9 | 67.0 | 130 | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.0002 | mg/kg | <0.0002 | 0.00119 mg/kg | 102 | 70.0 | 132 | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.0002 | mg/kg | <0.0002 | 0.00116 mg/kg | 90.7 | 68.0 | 136 | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.0002 | mg/kg | <0.0002 | 0.00121 mg/kg | 89.8 | 59.0 | 134 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 1294640) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.001 | mg/kg | <0.001 | 0.00625 mg/kg | 110 | 71.0 | 135 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 114 | 69.0 | 132 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 106 | 70.0 | 132 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 89.0 | 71.0 | 131 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 100 | 69.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 92.7 | 72.0 | 129 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 105 | 69.0 | 133 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 83.8 | 64.0 | 136 | | EP231X:
Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 94.0 | 69.0 | 135 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 85.4 | 66.0 | 139 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 95.5 | 69.0 | 133 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 1294641) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.001 | mg/kg | <0.001 | 0.00625 mg/kg | 96.2 | 71.0 | 135 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 104 | 69.0 | 132 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 95.6 | 70.0 | 132 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 94.5 | 71.0 | 131 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 97.4 | 69.0 | 133 | Page : 37 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Method Blank (MB) | Laboratory Control Spike (LCS) Report | | | | |---|------------------|--------|-------|-------------------|---------------------------------------|--------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 42946 | 641) - continued | | | | | | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 96.2 | 72.0 | 129 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 91.4 | 69.0 | 133 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 91.5 | 64.0 | 136 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 97.6 | 69.0 | 135 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 88.6 | 66.0 | 139 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 96.4 | 69.0 | 133 | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294640) | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 101 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 105 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 100 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 92.0 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 105 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 95.2 | 63.0 | 144 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 83.6 | 61.0 | 139 | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294641) | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 92.0 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 104 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 95.6 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 96.5 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.0005 | mg/kg | <0.0005 | 0.00312 mg/kg | 98.7 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 106 | 63.0 | 144 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.0002 | mg/kg | <0.0002 | 0.00125 mg/kg | 95.0 | 61.0 | 139 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 42 | 94640) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <0.0005 | 0.00117 mg/kg | 101 | 62.0 | 145 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.0005 | mg/kg | <0.0005 | 0.00119 mg/kg | 100 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0005 | mg/kg | <0.0005 | 0.0012 mg/kg | 97.4 | 65.0 | 137 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005 | 0.00121 mg/kg | 116 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 42 | 94641) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <0.0005 | 0.00117 mg/kg | 96.0 | 62.0 | 145 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.0005 | mg/kg | <0.0005 | 0.00119 mg/kg | 96.6 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0005 | mg/kg | <0.0005 | 0.0012 mg/kg | 99.9 | 65.0 | 137 | Page : 38 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | L | | | | | Laboratory Control Spike (LCS) Report | | | | |---|---------------------|--------|-------|-------------------|---------------|------------------------------|---------------------------------------|------------|--|--| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: | 4294641) - continue | d | | | | | | | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005 | 0.00121 mg/kg | 96.0 | 70.0 | 130 | | | | EP231P: PFAS Sums (QCLot: 4294640) | | | | | | | | | | | | EP231X: Sum of PFAS | | 0.0002 | mg/kg | <0.0002 | | | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17 | 0.0002 | mg/kg | <0.0002 | | | | | | | | | 63-23-1 | | | | | | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.0002 | mg/kg | <0.0002 | | | | | | | | EP231P: PFAS Sums (QCLot: 4294641) | | | | | | | | | | | | EP231X: Sum of PFAS | | 0.0002 | mg/kg | <0.0002 | | | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17 | 0.0002 | mg/kg | <0.0002 | | | | | | | | | 63-23-1 | | | | | | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.0002 | mg/kg | <0.0002 | | | | | | | | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | CS) Report | | | | | out mann man | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42945 | 52) | | | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 106 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 99.9 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 93.2 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 92.6 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 89.2 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 87.5 | 53.0 | 142 | | | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42972 | 10) | | | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 111 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 101 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 102 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 106 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 96.3 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 99.6 | 53.0 | 142 | | | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42972 | 76) | | | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 104 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 94.4 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 96.4 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 102 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 87.3 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 84.8 | 53.0 | 142 | | | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 42973 | 26) | | | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 106 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 95.5 | 71.0 | 127 | | | Page : 39 of 55 Work Order : EM2206998 Client : AGON
ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |--|------------------|------|------|-------------------|---------------|------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4297 | 326) - continued | | | | | | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 95.6 | 68.0 | 131 | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 92.7 | 69.0 | 134 | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 99.2 | 65.0 | 140 | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 91.4 | 53.0 | 142 | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4298 | 480) | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 103 | 72.0 | 130 | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 103 | 71.0 | 127 | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 100 | 68.0 | 131 | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 116 | 69.0 | 134 | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 112 | 65.0 | 140 | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 107 | 53.0 | 142 | | EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4298 | 483) | | | | | | | | | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.02 | μg/L | <0.02 | 0.222 μg/L | 93.8 | 72.0 | 130 | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.02 | μg/L | <0.02 | 0.235 μg/L | 105 | 71.0 | 127 | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.01 | μg/L | <0.01 | 0.228 μg/L | 103 | 68.0 | 131 | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 122 | 69.0 | 134 | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.01 | μg/L | <0.01 | 0.232 μg/L | 113 | 65.0 | 140 | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.02 | μg/L | <0.02 | 0.241 μg/L | 111 | 53.0 | 142 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 294552) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 84.3 | 73.0 | 129 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.8 | 72.0 | 129 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 99.5 | 72.0 | 129 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.9 | 72.0 | 130 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 95.7 | 71.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 103 | 69.0 | 130 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 104 | 71.0 | 129 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 97.4 | 69.0 | 133 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 102 | 72.0 | 134 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 90.7 | 65.0 | 144 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 102 | 71.0 | 132 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4: | 297210) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 97.2 | 73.0 | 129 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.5 | 72.0 | 129 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 97.8 | 72.0 | 129 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 72.0 | 130 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 98.5 | 71.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 102 | 69.0 | 130 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 109 | 71.0 | 129 | Page : 40 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |---|---------------------|------|------|-------------------|---------------|------------------------------|------------|------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 297210) - continued | | | | | | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 95.2 | 69.0 | 133 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 107 | 72.0 | 134 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 101 | 65.0 | 144 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 130 | 71.0 | 132 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 297276) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 90.2 | 73.0 | 129 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 91.0 | 72.0 | 129 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 95.9 | 72.0 | 129 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.1 | 72.0 | 130 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 95.1 | 71.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 96.0 | 69.0 | 130 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 104 | 71.0 | 129 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 95.4 | 69.0 | 133 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 94.7 | 72.0 | 134 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 102 | 65.0 | 144 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 122 | 71.0 | 132 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 297326) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 89.7 | 73.0 | 129 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 91.8 | 72.0 | 129 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 104 | 72.0 | 129 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 103 | 72.0 | 130 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 97.8 | 71.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 99.3 | 69.0 | 130 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 107 | 71.0 | 129 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 96.4 | 69.0 | 133 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 97.3 | 72.0 | 134 | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 80.9 | 65.0 | 144 | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 129 | 71.0 | 132 | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4 | 298480) | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 89.4 | 73.0 | 129 | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 110 | 72.0 | 129 | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 99.1 | 72.0 | 129 | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 72.0 | 130 | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 97.1 | 71.0 | 133 | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 101 | 69.0 | 130 | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 91.2 | 71.0 | 129 | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 101 | 69.0 | 133 | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 72.0 | 134 | Page : 41 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | · · · | | | | |---|------------------|------|------|-------------------|---------------|------------------------------|------------|------------|--|--| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | Limits (%) | | | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4298 | 480) - continued | | | | | | | | | | | EP231X: Perfluorotridecanoic acid
(PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 94.2 | 65.0 | 144 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 122 | 71.0 | 132 | | | | EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4298 | 483) | | | | | | | | | | | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.1 | μg/L | <0.1 | 1.25 μg/L | 92.5 | 73.0 | 129 | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 106 | 72.0 | 129 | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 100 | 72.0 | 129 | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 106 | 72.0 | 130 | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.01 | μg/L | <0.01 | 0.25 μg/L | 98.5 | 71.0 | 133 | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 110 | 69.0 | 130 | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 93.1 | 71.0 | 129 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 99.6 | 69.0 | 133 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 104 | 72.0 | 134 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.9 | 65.0 | 144 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 117 | 71.0 | 132 | | | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4294552 |) | | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 97.3 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 104 | 68.0 | 141 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 97.5 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 89.6 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 100 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 103 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 96.5 | 61.0 | 135 | | | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297210 |) | | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 102 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 112 | 68.0 | 141 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 102 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 102 | 70.0 | 130 | | | | P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 102 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 116 | 65.0 | 136 | | | | P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 120 | 61.0 | 135 | | | Page : 42 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LCS | S) Report | | |---|-------------|------|------|-------------------|---------------|-------------------------------|-----------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptabl | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297276) | - continued | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 101 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 92.8 | 68.0 | 141 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 91.2 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 99.8 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 98.6 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 98.3 | 65.0 | 136 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 106 | 61.0 | 135 | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4297326) | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 107 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 113 | 68.0 | 141 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 92.7 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 92.4 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 103 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 97.0 | 65.0 | 136 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 103 | 61.0 | 135 | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298480) | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 109 | 68.0 | 141 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 105 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 113 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 91.7 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 94.2 | 65.0 | 136 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 106 | 61.0 | 135 | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298483) | | | | | | | | | | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 67.0 | 137 | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 104 | 68.0 | 141 | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 120 | 70.0 | 130 | Page : 43 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |---|----------------|------|------|-------------------|---------------|------------------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231C: Perfluoroalkyl Sulfonamides (QCLot: 4298483 | 3) - continued | | | | | | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 104 | 70.0 | 130 | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.05 | μg/L | <0.05 | 0.625 μg/L | 95.3 | 70.0 | 130 | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 105 | 65.0 | 136 | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.02 | μg/L | <0.02 | 0.25 μg/L | 115 | 61.0 | 135 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | 294552) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 99.5 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 102 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 113 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 120 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | 297210) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 108 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 116 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 116 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 84.1 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | 297276) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 102 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 107 | 64.0 |
140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 118 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 94.8 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | 297326) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 105 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 102 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 110 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 89.1 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 96.1 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 105 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 108 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 86.9 | 70.0 | 130 | | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 4 | 298483) | | | | | | | | | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.05 | μg/L | <0.05 | 0.234 μg/L | 96.8 | 63.0 | 143 | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.05 | μg/L | <0.05 | 0.238 μg/L | 113 | 64.0 | 140 | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.05 | μg/L | <0.05 | 0.24 μg/L | 106 | 67.0 | 138 | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05 | 0.242 μg/L | 84.3 | 70.0 | 130 | Page : 44 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 | Sub-Matrix: WATER | | | | Method Blank (MB) | | Laboratory Control Spike (LC | S) Report | | |------------------------------------|------------------------|------|------|-------------------|---------------|------------------------------|------------|--------------| | | | | | Report | Spike | Spike Recovery (%) | Acceptable | e Limits (%) | | Method: Compound | CAS Number | LOR | Unit | Result | Concentration | LCS | Low | High | | EP231P: PFAS Sums (QCLot: 4294552) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | | EP231P: PFAS Sums (QCLot: 4297210) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | | EP231P: PFAS Sums (QCLot: 4297276) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | | EP231P: PFAS Sums (QCLot: 4297326) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | | EP231P: PFAS Sums (QCLot: 4298480) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | | EP231P: PFAS Sums (QCLot: 4298483) | | | | | | | | | | EP231X: Sum of PFAS | | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFHxS and PFOS | 355-46-4/17
63-23-1 | 0.01 | μg/L | <0.01 | | | | | | EP231X: Sum of PFAS (WA DER List) | | 0.01 | μg/L | <0.01 | | | | | ## Matrix Spike (MS) Report The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference. | Sub-Matrix: SOIL | | | Ma | trix Spike (MS) Repor | t | | |---|------------------|------------|---------------|-----------------------|--------------|------------| | | | | Spike | SpikeRecovery(%) | Acceptable L | Limits (%) | | Laboratory sample ID Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4293364) | | | | | | | Page : 45 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | sub-Matrix: SOIL | | | | Ma | atrix Spike (MS) Report | | | |---------------------|--|---|-------------|---------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | aboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | G005(ED093)T: T | otal Metals by ICP-AES (QCLot: 4293364) - continue | d | | | | | | | EM2206998-002 | SX _20220416_08_34_SS_Duplicate_ALS | EG005T: Nickel | 7440-02-0 | 50 mg/kg | 109 | 78.0 | 120 | | EM2206998-002 | SX_20220416_08_34_SS_Duplicate_ALS | EG005T: Arsenic | 7440-38-2 | 50 mg/kg | 84.0 | 78.0 | 124 | | | | EG005T: Cadmium | 7440-43-9 | 50 mg/kg | 89.8 | 79.7 | 116 | | | | EG005T: Chromium | 7440-47-3 | 50 mg/kg | 81.9 | 79.0 | 121 | | | | EG005T: Copper | 7440-50-8 | 250 mg/kg | 98.7 | 80.0 | 120 | | | | EG005T: Lead | 7439-92-1 | 250 mg/kg | 89.7 | 80.0 | 120 | | | | EG005T: Zinc | 7440-66-6 | 250 mg/kg | 80.4 | 80.0 | 120 | | G005(ED093)T: T | otal Metals by ICP-AES (QCLot: 4293367) | | | | | | | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EG005T: Nickel | 7440-02-0 | 50 mg/kg | # 67.2 | 78.0 | 120 | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EG005T: Arsenic | 7440-38-2 | 50 mg/kg | 86.0 | 78.0 | 124 | | | | EG005T: Cadmium | 7440-43-9 | 50 mg/kg | 96.0 | 79.7 | 116 | | | | EG005T: Chromium | 7440-47-3 | 50 mg/kg | 118 | 79.0 | 121 | | | | EG005T: Copper | 7440-50-8 | 250 mg/kg | 102 | 80.0 | 120 | | | | EG005T: Lead | 7439-92-1 | 250 mg/kg | 94.9 | 80.0 | 120 | | | | EG005T: Zinc | 7440-66-6 | 250 mg/kg | 85.6 | 80.0 | 120 | | G035T: Total Red | coverable Mercury by FIMS (QCLot: 4293365) | | | | | | | | EM2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EG035T: Mercury | 7439-97-6 | 0.5 mg/kg | 97.6 | 76.0 | 116 | | G035T: Total Red | coverable Mercury by FIMS (QCLot: 4293366) | | | | | | | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EG035T: Mercury | 7439-97-6 | 0.5 mg/kg | 102 | 76.0 | 116 | | G048: Hexavalen | Chromium (Alkaline Digest) (QCLot: 4293431) | | | | | | | | M2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg | 59.4 | 58.0 | 114 | | EM2206998-002 | SX_20220416_08_34_SS_Duplicate_ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg | 71.3 | 58.0 | 114 | | G048: Hexavalen | t Chromium (Alkaline Digest) (QCLot: 4293432) | | | | | | | | M2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg | 94.8 | 58.0 | 114 | | EM2206998-024 | SX IB 20220419 00 01 SS Primary ALS | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg | 101 | 58.0 | 114 | | | N by Segmented Flow Analyser (QCLot: 4293594) | EGO40G. HEXAVAIGH GINOHIUM | .00.00 20 0 | 2099 | .0. | 00.0 | | | M2206998-001 | SX 20220416 08 31 SS Primary ALS | EK026SF: Total Cyanide | 57-12-5 | 20 mg/kg | 92.7 | 70.0 | 130 | | | | ER020SF. Total Cyanide | 37-12-3 | 20 Hig/kg | 32.1 | 70.0 | 130 | | | N by Segmented Flow Analyser (QCLot: 4293595) | | 57.40.5 | 00 # | 00.4 | 70.0 | 400 | | EM2206998-023 | SX_IB_20220418_20_01_SS_Primary_ALS | EK026SF: Total Cyanide | 57-12-5 | 20 mg/kg | 93.1 | 70.0 | 130 | | K040T: Fluoride | Total (QCLot: 4293424) | | | | | | | | M2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EK040T: Fluoride | 16984-48-8 | 400 mg/kg | 70.4 | 70.0 | 130 | | K040T: Fluoride | Total (QCLot: 4293425) | | | | | | | | M2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EK040T: Fluoride | 16984-48-8 | 400 mg/kg | 70.0 | 70.0 | 130 | | P066: Polychlorin | nated Biphenyls (PCB) (QCLot: 4293316) | | | | | | | | EM2206998-005 | SX_IB_20220416_12_04_SS_Primary_ALS | EP066-EM: Total Polychlorinated biphenyls | | 1 mg/kg | 85.0 | 59.6 | 152 | Page : 46 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | M | atrix Spike (MS) Report | | | |----------------------|---|--|------------|--------------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EP066: Polychlori | nated Biphenyls (PCB) (QCLot: 4293319) | | | | | | | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EP066-EM: Total Polychlorinated biphenyls | | 1 mg/kg | 112 | 59.6 | 152 | | EP074A: Monocyc | clic Aromatic Hydrocarbons (QCLot: 4293292) | | | | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EP074-UT: Benzene | 71-43-2 | 2 mg/kg | 88.9 | 53.7 | 130 | | | | EP074-UT: Toluene | 108-88-3 | 2 mg/kg | 92.7 | 55.1 | 124 | | EP074A: Monocyc | clic Aromatic Hydrocarbons (QCLot: 4293294) | | | | | | | | EM2206998-024 | SX IB
20220419 00 01 SS Primary ALS | EP074-UT: Benzene | 71-43-2 | 2 mg/kg | 75.0 | 53.7 | 130 | | | | EP074-UT: Toluene | 108-88-3 | 2 mg/kg | 76.2 | 55.1 | 124 | | EP074I: Volatile H | alogenated Compounds (QCLot: 4293292) | | | | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 2 mg/kg | 76.5 | 38.4 | 145 | | | | EP074-UT: Trichloroethene | 79-01-6 | 2 mg/kg | 81.3 | 48.1 | 128 | | | | EP074-UT: Chlorobenzene | 108-90-7 | 2 mg/kg | 86.9 | 55.5 | 122 | | EP074I: Volatile H | alogenated Compounds (QCLot: 4293294) | | | | | | | | EM2206998-024 | SX IB 20220419 00 01 SS Primary ALS | EP074-UT: 1.1-Dichloroethene | 75-35-4 | 2 mg/kg | 66.2 | 38.4 | 145 | | | ossss | EP074-UT: Trichloroethene | 79-01-6 | 2 mg/kg | 69.6 | 48.1 | 128 | | | | EP074-UT: Chlorobenzene | 108-90-7 | 2 mg/kg | 71.0 | 55.5 | 122 | | FP075A: Phenolic | Compounds (Halogenated) (QCLot: 4293314) | | | | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EP075-EM: 2-Chlorophenol | 95-57-8 | 3 mg/kg | 95.9 | 44.0 | 143 | | LW220000 002 | 5X20220110_00_01_00_Bupilouto_Xt20 | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 3 mg/kg | 91.5 | 41.5 | 139 | | | | EP075-EM: Pentachlorophenol | 87-86-5 | 3 mg/kg | 60.3 | 10.0 | 144 | | FP075A: Phenolic | Compounds (Halogenated) (QCLot: 4293317) | | | J | | | | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EP075-EM: 2-Chlorophenol | 95-57-8 | 3 mg/kg | 95.4 | 44.0 | 143 | | | ossss | EP075-EM: 4-Chloro-3-methylphenol | 59-50-7 | 3 mg/kg | 88.9 | 41.5 | 139 | | | | EP075-EM: Pentachlorophenol | 87-86-5 | 3 mg/kg | 75.6 | 10.0 | 144 | | EP075A: Phenolic | Compounds (Non-halogenated) (QCLot: 4293314) | | | | | | | | EM2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EP075-EM: Phenol | 108-95-2 | 3 mg/kg | 108 | 44.2 | 134 | | | oxox | EP075-EM: 2-Nitrophenol | 88-75-5 | 3 mg/kg | 50.6 | 34.2 | 129 | | EP075A: Phenolic | Compounds (Non-halogenated) (QCLot: 4293317) | 2. 0.0 2 2.1.11.05.13.13. | | 3 3 | | | | | EM2206998-024 | SX IB 20220419 00 01 SS Primary ALS | EP075-EM: Phenol | 108-95-2 | 3 mg/kg | 93.6 | 44.2 | 134 | | LW2200990-024 | 5X_1B_20220419_00_01_55_1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | EP075-EM: Prierioi EP075-EM: 2-Nitrophenol | 88-75-5 | 3 mg/kg | 81.5 | 34.2 | 129 | | EP075R: Polynuci | ear Aromatic Hydrocarbons (QCLot: 4293314) | El 070-Elw. 2-Milophienoi | 33.70 | 0g.n.g | 00 | V <u>-</u> | | | EM2206998-002 | SX_20220416_08_34_SS_Duplicate_ALS | EDOZE EM Assesshifters | 83-32-9 | 3 ma/ka | 90.1 | 42.6 | 138 | | LIVIZZUU990-UUZ | 5720220410_00_34_33_Duplicate_AL3 | EP075-EM: Acenaphthene | 129-00-0 | 3 mg/kg
3 mg/kg | 90.1 | 37.8 | 152 | | ED075B. Bahmani | Aramatia Undraggub ana (OCI et. 4002247) | EP075-EM: Pyrene | 123-00-0 | J mg/kg | 37.0 | 37.0 | 132 | | | ear Aromatic Hydrocarbons (QCLot: 4293317) | | 00.00.0 | 0 | 01.0 | 40.0 | 400 | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EP075-EM: Acenaphthene | 83-32-9 | 3 mg/kg | 91.2 | 42.6 | 138 | | | | EP075-EM: Pyrene | 129-00-0 | 3 mg/kg | 96.8 | 37.8 | 152 | Page : 47 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | M | atrix Spike (MS) Report | | | |----------------------|--|--|------------|-------------------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EP080/071: Total I | Petroleum Hydrocarbons (QCLot: 4293292) | | | | | | | | EM2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EP074-UT: C6 - C9 Fraction | | 28 mg/kg | 84.8 | 42.3 | 111 | | EP080/071: Total I | Petroleum Hydrocarbons (QCLot: 4293294) | | | | | | | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EP074-UT: C6 - C9 Fraction | | 28 mg/kg | 74.1 | 42.3 | 111 | | | Petroleum Hydrocarbons (QCLot: 4293315) | 21 074 01: 00 0011404011 | | | | 1-1- | | | EM2206998-006 | | EDOZA EM OAO OAA Evretina | | 700 mg/kg | 95.2 | 71.3 | 126 | | EM2200990-000 | SX_IB_20220416_16_12_SS_Primary_ALS | EP071-EM: C10 - C14 Fraction | | 700 mg/kg
2930 mg/kg | 108 | 71.3 | 120 | | | | EP071-EM: C15 - C28 Fraction | | | 112 | | 120 | | | | EP071-EM: C29 - C36 Fraction | | 1380 mg/kg | | 78.1 | | | | | EP071-EM: C10 - C36 Fraction (sum) | | 5010 mg/kg | 107 | 70.0 | 130 | | EP080/071: Total I | Petroleum Hydrocarbons (QCLot: 4293320) | | | | | | | | EM2206998-025 | SX_IB_20220419_03_59_SS_Primary_ALS | EP071-EM: C10 - C14 Fraction | | 680 mg/kg | 90.5 | 71.3 | 126 | | | | EP071-EM: C15 - C28 Fraction | | 2830 mg/kg | 103 | 75.1 | 123 | | | | EP071-EM: C29 - C36 Fraction | | 1340 mg/kg | 106 | 78.1 | 120 | | | | EP071-EM: C10 - C36 Fraction (sum) | | 4850 mg/kg | 102 | 70.0 | 130 | | EP080/071: Total I | Recoverable Hydrocarbons - NEPM 2013 Fractions | (QCLot: 4293292) | | | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EP074-UT: C6 - C10 Fraction | C6 C10 | 33 mg/kg | 83.4 | 39.9 | 109 | | ED090/074: Total I | Recoverable Hydrocarbons - NEPM 2013 Fractions | | | 3 3 | | | | | | | | 00.040 | 22 | 70.4 | 20.0 | 400 | | EM2206998-024 | SX_IB_20220419_00_01_SS_Primary_ALS | EP074-UT: C6 - C10 Fraction | C6_C10 | 33 mg/kg | 73.1 | 39.9 | 109 | | EP080/071: Total I | Recoverable Hydrocarbons - NEPM 2013 Fractions | (QCLot: 4293315) | | | | | | | EM2206998-006 | SX_IB_20220416_16_12_SS_Primary_ALS | EP071-EM: >C10 - C16 Fraction | | 1030 mg/kg | 101 | 71.5 | 130 | | | | EP071-EM: >C16 - C34 Fraction | | 3680 mg/kg | 113 | 76.9 | 119 | | | | EP071-EM: >C34 - C40 Fraction | | 270 mg/kg | 100 | 65.3 | 139 | | | | EP071-EM: >C10 - C40 Fraction (sum) | | 4980 mg/kg | 110 | 70.0 | 130 | | EP080/071: Total I | Recoverable Hydrocarbons - NEPM 2013 Fractions | (QCLot: 4293320) | | | | | | | EM2206998-025 | SX IB 20220419 03 59 SS Primary ALS | EP071-EM: >C10 - C16 Fraction | | 980 mg/kg | 97.8 | 71.5 | 130 | | | | EP071-EM: >C16 - C34 Fraction | | 3210 mg/kg | 119 | 76.9 | 119 | | | | EP071-EM: >C34 - C40 Fraction | | 270 mg/kg | 92.5 | 65.3 | 139 | | | | EP071-EM: >C10 - C40 Fraction (sum) | | 4460 mg/kg | 113 | 70.0 | 130 | | FP231A: Parfluor | palkyl Sulfonic Acids (QCLot: 4294640) | El el l'Ellis el el el l'addell (call) | | 3 3 | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EDOOAN Death combuter a sulfania said (DEDO) | 375-73-5 | 0.00111 mg/kg | 88.0 | 72.0 | 128 | | EIVI2200996-002 | 3A20220410_06_34_33_Duplicate_AL3 | EP231X: Perfluorobutane sulfonic acid (PFBS) | 2706-91-4 | | 87.3 | 73.0 | 123 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | | 0.00118 mg/kg | | | | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.00114 mg/kg | 94.7 | 67.0 | 130
132 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.00119 mg/kg | 95.8 | 70.0 | _ | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.00116 mg/kg | 94.5 | 68.0 | 136 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.00121 mg/kg | 109 | 59.0 | 134 | | EP231A: Perfluoro | palkyl Sulfonic Acids (QCLot: 4294641) | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_SS_Primary_ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.00111 mg/kg | 97.6 | 72.0 | 128 | Page : 48 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: SOIL | | | | Ma | atrix Spike (MS) Report | | | |----------------------|---|---|------------|---------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EP231A: Perfluoro | alkyl Sulfonic Acids (QCLot: 4294641) - continued | | | | | | | | EM2206998-023 | SX IB 20220418 20 01 SS Primary ALS | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.00118 mg/kg | 78.2 | 73.0 | 123 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.00114 mg/kg | 88.3 | 67.0 | 130 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.00119 mg/kg | 97.1 | 70.0 | 132 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.00116 mg/kg | 94.6 | 68.0 | 136 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.00121 mg/kg | 102 | 59.0 | 134 | | EP231B: Perfluore | palkyl Carboxylic Acids (QCLot: 4294640) | | | | | | ' | | EM2206998-002 | SX _20220416_08_34_SS_Duplicate_ALS | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.00625 mg/kg | 101 | 71.0 | 135 | | EMELOCOCO COL | 0/ | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.00125 mg/kg | 108 | 69.0 | 132 | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.00125 mg/kg | 106 | 70.0 | 132 | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.00125 mg/kg | 95.6 | 71.0 | 131 | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.00125 mg/kg | 94.3 | 69.0 | 133 | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.00125 mg/kg | 93.4 | 72.0 | 129 | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.00125 mg/kg | 102 | 69.0 | 133 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.00125 mg/kg | 89.7 | 64.0 | 136 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.00125 mg/kg | 89.0 | 69.0 | 135 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.00125 mg/kg | 77.6 | 66.0 | 139 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.00312 mg/kg | 102 | 69.0 | 133 | | EP231B: Perfluore | palkyl Carboxylic Acids (QCLot: 4294641) | | | | | | | | EM2206998-023 | SX IB 20220418 20 01 SS Primary ALS | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 0.00625 mg/kg | 98.0 | 71.0 | 135 | | LINEECOCOC CEC
| 0/C15_20220110_20_01_00_11111d1y_7/20 | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.00125 mg/kg | 107 | 69.0 | 132 | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.00125 mg/kg | 91.4 | 70.0 | 132 | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.00125 mg/kg | 93.4 | 71.0 | 131 | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.00125 mg/kg | 94.7 | 69.0 | 133 | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.00125 mg/kg | 88.1 | 72.0 | 129 | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.00125 mg/kg | 101 | 69.0 | 133 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.00125 mg/kg | 87.1 | 64.0 | 136 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.00125 mg/kg | 95.6 | 69.0 | 135 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.00125 mg/kg | 79.0 | 66.0 | 139 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.00312 mg/kg | 97.1 | 69.0 | 133 | | EP231C: Perfluoro | alkyl Sulfonamides (QCLot: 4294640) | | | | | | | | EM2206998-002 | SX 20220416 08 34 SS Duplicate ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.00125 mg/kg | 95.2 | 67.0 | 137 | | _1412200000-002 | 0.1 | EP231X: Pernuorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.00123 mg/kg | 112 | 70.0 | 130 | | | | (MeFOSA) | | 0.00012 mg/kg | | | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.00312 mg/kg | 110 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.00312 mg/kg | 82.1 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.00312 mg/kg | 108 | 70.0 | 130 | Page : 49 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | ub-Matrix: SOIL | | | | Ma | atrix Spike (MS) Report | | | |---------------------|---|---|-------------|---------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | aboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4294640) - continued | | | | | | | | EM2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.00125 mg/kg | 97.7 | 63.0 | 144 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.00125 mg/kg | 95.0 | 61.0 | 139 | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4294641) | | | | | | | | EM2206998-023 | SX_IB_20220418_20_01_SS_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.00125 mg/kg | 96.0 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.00312 mg/kg | 113 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.00312 mg/kg | 96.7 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.00312 mg/kg | 87.3 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.00312 mg/kg | 102 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.00125 mg/kg | 107 | 63.0 | 144 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.00125 mg/kg | 99.9 | 61.0 | 139 | | P231D: (n:2) Fluc | protelomer Sulfonic Acids (QCLot: 4294640) | | | | | | | | M2206998-002 | SX20220416_08_34_SS_Duplicate_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.00117 mg/kg | 87.7 | 62.0 | 145 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.00119 mg/kg | 101 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0012 mg/kg | 100 | 65.0 | 137 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.00121 mg/kg | 74.0 | 70.0 | 130 | | P231D: (n:2) Fluc | protelomer Sulfonic Acids (QCLot: 4294641) | | | | | | | | M2206998-023 | SX_IB_20220418_20_01_SS_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.00117 mg/kg | 93.2 | 62.0 | 145 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.00119 mg/kg | 109 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.0012 mg/kg | 100 | 65.0 | 137 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.00121 mg/kg | 87.0 | 70.0 | 130 | | b-Matrix: WATER | | | | Ma | atrix Spike (MS) Report | | | | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | boratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | P231A: Perfluoro | alkyl Sulfonic Acids (QCLot: 4294552) | | | | | | | | M2206432-003 | Anonymous | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 μg/L | 108 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.235 μg/L | 92.1 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.228 μg/L | 91.4 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.238 μg/L | 102 | 69.0 | 134 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.241 μg/L | 84.8 | 53.0 | 142 | | P231A: Perfluoro | alkyl Sulfonic Acids (QCLot: 4297210) | | | | | | | | M2206730-002 | Anonymous | | | | | | | Page : 50 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Matrix Spike (MS) Report | | | | |----------------------|--|--|-----------------------|--|------------|--------------|------------| | | | | | Spike SpikeRecovery(%) Acceptable Limits (%) | | | Limits (%) | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EP231A: Perfluoro | oalkyl Sulfonic Acids (QCLot: 4297210) - continu | ed | | | | | | | EM2206730-002 | Anonymous | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 µg/L | 106 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.235 µg/L | 83.4 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.228 μg/L | 96.0 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.238 μg/L | 117 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.232 µg/L | 99.3 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.241 μg/L | 104 | 53.0 | 142 | | EP231A: Perfluoro | palkyl Sulfonic Acids (QCLot: 4297276) | | | | | | | | EM2206998-044 | SX IB 20220418 16 07 SS Primary ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 µg/L | 114 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.235 µg/L | 86.4 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.228 µg/L | 101 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.238 µg/L | 106 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.232 µg/L | 93.7 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.241 µg/L | 82.8 | 53.0 | 142 | | EP231A: Perfluoro | palkyl Sulfonic Acids (QCLot: 4297326) | | | | | | | | EM2206730-006 | Anonymous | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 μg/L | 104 | 72.0 | 130 | | | and the same of th | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.235 μg/L | 74.5 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.228 µg/L | 87.0 | 68.0 | 131 | | | | EP231X:
Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.238 µg/L | 108 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.232 μg/L | 93.2 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.241 µg/L | 83.3 | 53.0 | 142 | | EP231A: Porfluoro | palkyl Sulfonic Acids (QCLot: 4298480) | El 2017. I dinacioaccane canonio acia (i i 20) | | , ,,, | | | | | EM2206998-011 | | | 275 72 5 | 0.000// | 400 | 70.0 | 420 | | | SX_IB_20220417_08_07_SS_Primary_ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 µg/L | 102
106 | 72.0
71.0 | 130
127 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4
355-46-4 | 0.235 µg/L | 101 | 68.0 | 131 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | | 0.228 µg/L | | | | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8
1763-23-1 | 0.238 µg/L | 133 | 69.0
65.0 | 134
140 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 335-77-3 | 0.232 µg/L | 126
140 | 53.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 333-11-3 | 0.241 μg/L | 140 | 55.0 | 142 | | | palkyl Sulfonic Acids (QCLot: 4298483) | | | | | | | | EM2206998-031 | SX_IB_20220416_20_06_SS_Primary_ALS | EP231X: Perfluorobutane sulfonic acid (PFBS) | 375-73-5 | 0.222 μg/L | 96.2 | 72.0 | 130 | | | | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4 | 0.235 μg/L | 97.1 | 71.0 | 127 | | | | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4 | 0.228 μg/L | 102 | 68.0 | 131 | | | | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8 | 0.238 μg/L | # 156 | 69.0 | 134 | | | | EP231X: Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 0.232 μg/L | 126 | 65.0 | 140 | | | | EP231X: Perfluorodecane sulfonic acid (PFDS) | 335-77-3 | 0.241 μg/L | 139 | 53.0 | 142 | | EP231B: Perfluor | oalkyl Carboxylic Acids (QCLot: 4294552) | | | | | | | | EM2206432-003 | Anonymous | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 μg/L | 78.7 | 73.0 | 129 | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 μg/L | 104 | 72.0 | 129 | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.25 μg/L | 106 | 72.0 | 129 | Page : 51 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | Matrix Spike (MS) Report | | | | | |----------------------|---|--|------------|--------------------------|------------------|------------|------------|--| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | | EP231B: Perfluor | oalkyl Carboxylic Acids (QCLot: 4294552) - contir | nued | | | | | | | | EM2206432-003 | Anonymous | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 μg/L | 96.5 | 72.0 | 130 | | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.25 μg/L | 110 | 69.0 | 130 | | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 106 | 71.0 | 129 | | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 95.9 | 69.0 | 133 | | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 92.3 | 72.0 | 134 | | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 76.9 | 65.0 | 144 | | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 μg/L | 101 | 71.0 | 132 | | | EP231B: Perfluor | oalkyl Carboxylic Acids (QCLot: 4297210) | | | | | | | | | EM2206730-002 | Anonymous | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 μg/L | 99.3 | 73.0 | 129 | | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 μg/L | 97.4 | 72.0 | 129 | | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.25 μg/L | 107 | 72.0 | 129 | | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 μg/L | 104 | 72.0 | 130 | | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.25 μg/L | 103 | 71.0 | 133 | | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.25 μg/L | 114 | 69.0 | 130 | | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 111 | 71.0 | 129 | | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 102 | 69.0 | 133 | | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 106 | 72.0 | 134 | | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 97.9 | 65.0 | 144 | | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 µg/L | 132 | 71.0 | 132 | | | EP231B: Perfluor | oalkyl Carboxylic Acids (QCLot: 4297276) | | | | | | | | | EM2206998-044 | SX IB 20220418 16 07 SS Primary ALS | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 µg/L | 88.9 | 73.0 | 129 | | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 μg/L | 93.1 | 72.0 | 129 | | | | | EP231X: Perfluorohexanoic acid (PFHxA) | 307-24-4 | 0.25 µg/L | 100 | 72.0 | 129 | | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 μg/L | 103 | 72.0 | 130 | | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.25 μg/L | 94.8 | 71.0 | 133 | | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.25 μg/L | 104 | 69.0 | 130 | | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 107 | 71.0 | 129 | | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 92.0 | 69.0 | 133 | | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 85.0 | 72.0 | 134 | | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 87.8 | 65.0 | 144 | | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 µg/L | 101 | 71.0 | 132 | | | EP231B: Perfluor | oalkyl Carboxylic Acids (QCLot: 4297326) | | | | | | 1 | | | EM2206730-006 | Anonymous | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 µg/L | 89.4 | 73.0 | 129 | | | | | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 µg/L | 78.0 | 72.0 | 129 | | | | | EP231X: Perfluoropentarioic acid (PFHxA) | 307-24-4 | 0.25 μg/L | 108 | 72.0 | 129 | | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 µg/L | 102 | 72.0 | 130 | | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.25 μg/L | 95.3 | 71.0 | 133 | | | | | | | | | | | | Page : 52 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | M | atrix Spike (MS) Report | | | | | |---------------------|--|---|-------------------------|---------------|------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | aboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | 231B: Perfluoro | oalkyl Carboxylic Acids (QCLot: 4297326) - continued | t en | | | | | | | M2206730-006 | Anonymous | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 109 | 71.0 | 129 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 97.3 | 69.0 | 133 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 88.5 | 72.0 | 134 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 71.4 | 65.0 | 144 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 μg/L | 97.8 | 71.0 | 132 | | P231B: Perfluoro | palkyl Carboxylic Acids (QCLot: 4298480) | | | | | | | | M2206998-011 | SX_IB_20220417_08_07_SS_Primary_ALS | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 µg/L | 89.7 | 73.0 | 129 | | | 0/_IB_E0EE0 | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 µg/L | 111 | 72.0 | 129 | | | | EP231X: Perfluoropentarioic acid (PFHxA) | 307-24-4 | 0.25 μg/L | 95.3 | 72.0 | 129 | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 µg/L | 107 | 72.0 | 130 | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.25 µg/L | 97.9 | 71.0 | 133 | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.25 μg/L | 106 | 69.0 | 130 | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 85.7 | 71.0 | 129 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 97.7 | 69.0 | 133 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 104 | 72.0 | 134 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 94.8 | 65.0 | 144 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 μg/L | 120 | 71.0 | 132 | | P231B: Perfluoro | palkyl Carboxylic Acids (QCLot: 4298483) | | | | | | | | EM2206998-031 | SX IB 20220416 20 06 SS Primary ALS | EP231X: Perfluorobutanoic acid (PFBA) | 375-22-4 | 1.25 µg/L | 81.2 | 73.0 | 129 | | _W | 0/_IB_E0EE0 10_E0_00_00_1 11111dily_/IE0 | EP231X: Perfluoropentanoic acid (PFPeA) | 2706-90-3 | 0.25 µg/L | 110 | 72.0 | 129 | | | | EP231X: Perfluoropentarioic acid (PFHxA) | 307-24-4 | 0.25 μg/L | 103 | 72.0 | 129 | | | | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9 | 0.25 μg/L | 106 | 72.0 | 130 | | | | EP231X: Perfluorooctanoic acid (PFOA) | 335-67-1 | 0.25 μg/L | 102 | 71.0 | 133 | | | | EP231X: Perfluorononanoic acid (PFNA) | 375-95-1 | 0.25 μg/L | 109 | 69.0 | 130 | | | | EP231X: Perfluorodecanoic acid (PFDA) | 335-76-2 | 0.25 μg/L | 88.8 | 71.0 | 129 | | | | EP231X: Perfluoroundecanoic acid (PFUnDA) | 2058-94-8 | 0.25 μg/L | 106 | 69.0 | 133 | | | | EP231X: Perfluorododecanoic acid (PFDoDA) | 307-55-1 | 0.25 μg/L | 116 | 72.0 | 134 | | | | EP231X: Perfluorotridecanoic acid (PFTrDA) | 72629-94-8 | 0.25 μg/L | 104 | 65.0 | 144 | | | | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7 | 0.625 μg/L | 123 | 71.0 | 132 | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4294552) | | | | | | | | EM2206432-003 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 µg/L | 104 | 67.0 | 137
 | -1112200702-000 | , alonginous | EP231X: Periluorooctane suironamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.625 μg/L | 104 | 68.0 | 141 | | | | (MeFOSA) | | | | | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.625 μg/L | 90.7 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.625 μg/L | 88.0 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 108 | 70.0 | 130 | Page : 53 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | bub-Matrix: WATER | | | | Ма | atrix Spike (MS) Report | | | |--------------------|--|---|------------|---------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | boratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4294552) - continue | d d | | | | | | | M2206432-003 | Anonymous | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 99.3 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic | 2991-50-6 | 0.25 μg/L | 104 | 61.0 | 135 | | | | acid (EtFOSAA) | | | | | | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4297210) | | | | | | | | M2206730-002 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 μg/L | 105 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.625 μg/L | 116 | 68.0 | 141 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.625 μg/L | 107 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.625 μg/L | 110 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 104 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 107 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.25 μg/L | 124 | 61.0 | 135 | | P231C: Parfluoro | alkyl Sulfonamides (QCLot: 4297276) | 23.2 (23.23) | | | | | | | M2206998-044 | SX IB 20220418 16 07 SS Primary ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 μg/L | 101 | 67.0 | 137 | | IVI2200330-044 | 0A_IB_20220410_10_07_00_1 IIIIIaiy_AL0 | | 31506-32-8 | 0.625 μg/L | 76.9 | 68.0 | 141 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | | | | | | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.625 μg/L | 73.3 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.625 μg/L | 89.7 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 93.2 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 92.7 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.25 μg/L | 92.1 | 61.0 | 135 | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4297326) | | | | | | | | M2206730-006 | Anonymous | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 μg/L | 103 | 67.0 | 137 | | | , | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.625 μg/L | 113 | 68.0 | 141 | | | | (MeFOSA) | 4151-50-2 | 0.625 μg/L | 95.7 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) EP231X: N-Methyl perfluorooctane sulfonamidoethanol | 24448-09-7 | 0.625 μg/L | 101 | 70.0 | 130 | | | | (MeFOSE) EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 99.5 | 70.0 | 130 | Page : 54 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | ub-Matrix: WATER | | | | M | atrix Spike (MS) Report | | | |--------------------|--|---|-------------|---------------|-------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | boratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4297326) - continue | ed | | | | | | | M2206730-006 | Anonymous | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 113 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.25 μg/L | 108 | 61.0 | 135 | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4298480) | | | | | | | | M2206998-011 | SX IB 20220417 08 07 SS Primary ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 μg/L | 108 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.625 μg/L | 112 | 68.0 | 141 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.625 μg/L | 107 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.625 μg/L | 104 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 98.9 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 95.1 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.25 μg/L | 99.2 | 61.0 | 135 | | P231C: Perfluoro | alkyl Sulfonamides (QCLot: 4298483) | | | | | | | | M2206998-031 | SX_IB_20220416_20_06_SS_Primary_ALS | EP231X: Perfluorooctane sulfonamide (FOSA) | 754-91-6 | 0.25 μg/L | 111 | 67.0 | 137 | | | | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.625 μg/L | 118 | 68.0 | 141 | | | | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2 | 0.625 μg/L | 116 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.625 μg/L | 107 | 70.0 | 130 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) | 1691-99-2 | 0.625 μg/L | 98.9 | 70.0 | 130 | | | | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9 | 0.25 μg/L | 107 | 65.0 | 136 | | | | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6 | 0.25 μg/L | 117 | 61.0 | 135 | | 231D: (n:2) Flu | protelomer Sulfonic Acids (QCLot: 4294552) | | | | | | | | M2206432-003 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.234 μg/L | 99.0 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 105 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 118 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | 80.0 | 70.0 | 130 | | 231D: (n:2) Fluo | protelomer Sulfonic Acids (QCLot: 4297210) | | | | | | | | M2206730-002 | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.234 μg/L | 105 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 119 | 64.0 | 140 | Page : 55 of 55 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Sub-Matrix: WATER | | | | М | atrix Spike (MS) Repor | t | | |----------------------|---|---|-------------|---------------|------------------------|------------|------------| | | | | | Spike | SpikeRecovery(%) | Acceptable | Limits (%) | | Laboratory sample ID | Sample ID | Method: Compound | CAS Number | Concentration | MS | Low | High | | EP231D: (n:2) Flu | orotelomer Sulfonic Acids (QCLot: 4297210) - co | ntinued | | | | | | | EM2206730-002 | Anonymous | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 109 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | 73.6 | 70.0 | 130 | | EP231D: (n:2) Flu | orotelomer Sulfonic Acids (QCLot: 4297276) | | | | | | | | EM2206998-044 | SX_IB_20220418_16_07_SS_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.234 μg/L | 102 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 108 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 118 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | 80.3 | 70.0 | 130 | | EP231D: (n:2) Flu | orotelomer Sulfonic Acids (QCLot: 4297326) | | | | | | | | ` ' | Anonymous | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.234 μg/L | 97.3 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 110 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 114 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | 71.5 | 70.0 | 130 | | EP231D: (n:2) Flu | orotelomer Sulfonic Acids (QCLot: 4298480) | | | | | | | | EM2206998-011 | SX_IB_20220417_08_07_SS_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.234 μg/L | 96.9 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 106 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 113 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | 71.3 | 70.0 | 130 | | EP231D: (n:2) Flu | orotelomer Sulfonic Acids (QCLot: 4298483) | | | | | | | | EM2206998-031 | SX_IB_20220416_20_06_SS_Primary_ALS | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2
FTS) | 757124-72-4 | 0.234 μg/L | 98.3 | 63.0 | 143 | | | | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) | 27619-97-2 | 0.238 μg/L | 108 | 64.0 | 140 | | | | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4 | 0.24 μg/L | 115 | 67.0 | 138 | | | | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.242 μg/L | # 62.9 | 70.0 | 130 | # QA/QC Compliance Assessment to assist with Quality Review **Work Order** : **EM2206998** Page : 1 of 25 Client : AGON ENVIRONMENTAL PTY LTD Laboratory : Environmental Division Melbourne Contact : DAVID LAWSON Telephone :+61-3-8549 9600 Project : JC0927 Date Samples Received :19-Apr-2022 Sampler : ES-EP Risk, LR- EP Risk, William O'Haire- Agon No. of samples received : 48 Order number :---- No. of samples analysed : 48 This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance. Brief method summaries and references are also provided to assist in traceability. ### **Summary of Outliers** #### **Outliers: Quality Control Samples** This report highlights outliers flagged in the Quality Control (QC) Report. - NO Method Blank value outliers occur. - NO Duplicate outliers occur. - NO Laboratory Control outliers occur. - Matrix Spike outliers exist please see following pages for full details. - For all regular sample matrices, NO surrogate recovery outliers occur. #### **Outliers: Analysis Holding Time Compliance** NO Analysis Holding Time Outliers exist. #### **Outliers: Frequency of Quality Control Samples** • NO Quality Control Sample Frequency Outliers exist. Page : 2 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 **Outliers: Quality Control Samples** Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes Matrix: SOIL | Compound Group Name | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data | Limits | Comment | |--|----------------------|--------------------------|---------|------------|--------|-----------|---------------------------------------| | Matrix Spike (MS) Recoveries | | | | | | | | | EG005(ED093)T: Total Metals by ICP-AES | EM2206998024 | SX_IB_20220419_00_01_SS_ | Nickel | 7440-02-0 | 67.2 % | 78.0-120% | Recovery less than lower data quality | | | | | | | | | objective | #### Matrix: WATER | Compound Group Name | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data | Limits | Comment | |--|----------------------|--------------------------|---------------------|-------------|--------|-----------|---------------------------------------| | Matrix Spike (MS) Recoveries | | | | | | | | | EP231A: Perfluoroalkyl Sulfonic Acids | EM2206998031 | SX_IB_20220416_20_06_SS_ | Perfluoroheptane | 375-92-8 | 156 % | 69.0-134% | Recovery greater than upper data | | | | | sulfonic acid | | | | quality objective | | | | | (PFHpS) | | | | | | EP231D: (n:2) Fluorotelomer Sulfonic Acids | EM2206998031 | SX_IB_20220416_20_06_SS_ | 10:2 Fluorotelomer | 120226-60-0 | 62.9 % | 70.0-130% | Recovery less than lower data quality | | | | | sulfonic acid (10:2 | | | | objective | | | | | FTS) | | | | | ## **Analysis Holding Time Compliance** If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results. This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein. Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters. Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern. Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time. | WIGHTA: SOIL | | | | | Lvalaation | . Holding time | breach, with | ir riolaing time | |--|--|-------------|----------------|------------------------|------------|----------------|------------------|------------------| | Method | | Sample Date | Ex | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EA001: pH in soil using 0.01M CaCl extract | | | | | | | | | | Soil Glass Jar - Unpreserved (EA001) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 20-Apr-2022 | 20-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EA001) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 20-Apr-2022 | 20-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EA001) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 20-Apr-2022 | 20-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EA001) | | | | | | | | | Page : 3 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time | |--|--|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------| | Method | | Sample Date | E | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EA001: pH in soil using 0.01M CaCl extract - Continu | ied | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 26-Apr-2022 | ✓ | 20-Apr-2022 | 20-Apr-2022 | ✓ | | EA055: Moisture Content (Dried @ 105-110°C) | | | | | | | | | | Soil Glass Jar - Unpreserved (EA055) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | | | | 20-Apr-2022 | 30-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EA055) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | | | | 20-Apr-2022 | 01-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EA055) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | | | | 20-Apr-2022 | 02-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EA055) | | | | | | | 00 M 0000 | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | | | | 20-Apr-2022 | 03-May-2022 | ✓ | | EG005(ED093)T: Total Metals by ICP-AES | | | | | | | | | | Soil Glass Jar - Unpreserved (EG005T) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 14-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EG005T) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 |
20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 14-Oct-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG005T) | | | | 45.0-1.0000 | | | 45.0-4.0000 | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 15-Oct-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG005T) | OV ID 00000440 00 EC 22 T : | 40.4 | 00 4 - 0000 | 16 Oct 2022 | | 04 4 0000 | 16 Oct 2022 | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 16-Oct-2022 | ✓ | Page : 4 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = With | n holding tim | |--|--|-------------|----------------|-------------------------|------------|---------------------|-------------------|---------------| | Method | | Sample Date | E | ktraction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EG035T: Total Recoverable Mercury by FIMS | | | | | | | | | | Soil Glass Jar - Unpreserved (EG035T) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-May-2022 | ✓ | 21-Apr-2022 | 14-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EG035T) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 15-May-2022 | ✓ | 21-Apr-2022 | 15-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG035T) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 16-May-2022 | ✓ | 21-Apr-2022 | 16-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG035T) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 17-May-2022 | ✓ | 21-Apr-2022 | 17-May-2022 | ✓ | | EG048: Hexavalent Chromium (Alkaline Digest) | | | | | | | | | | Soil Glass Jar - Unpreserved (EG048G) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-May-2022 | ✓ | 20-Apr-2022 | 27-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EG048G) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 15-May-2022 | ✓ | 20-Apr-2022 | 27-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG048G) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 16-May-2022 | ✓ | 20-Apr-2022 | 27-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EG048G) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 17-May-2022 | ✓ | 20-Apr-2022 | 27-Apr-2022 | ✓ | Page : 5 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | ı: × = Holding time | breach ; ✓ = Withi | n holding tim | |--|--|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------| | Method | | Sample Date | Ex | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EK026SF: Total CN by Segmented Flow Analyser | | | | | | | | | | Soil Glass Jar - Unpreserved (EK026SF) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 21-Apr-2022 | 04-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EK026SF) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 21-Apr-2022 | 04-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EK026SF) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 21-Apr-2022 | 04-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EK026SF) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 21-Apr-2022 | 04-May-2022 | ✓ | | EK040T: Fluoride Total | | | | | | | | | | Soil Glass Jar - Unpreserved (EK040T) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-May-2022 | ✓ | 22-Apr-2022 | 14-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EK040T) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 15-May-2022 | ✓ | 22-Apr-2022 | 15-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EK040T) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 16-May-2022 | ✓ | 22-Apr-2022 | 16-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EK040T) | · | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 17-May-2022 | ✓ | 22-Apr-2022 | 17-May-2022 | ✓ | Page : 6 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC092 Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Due for extraction Evaluation Due for analysis Evaluation Date extracted Date analysed EN60: ASLP Leaching Procedure - Inorganics/PFAS (Plastic Vessel) Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 16-Apr-2022 20-Apr-2022 14-Oct-2022 SX 20220416 08 31 SS Primary ALS, SX 20220416 08 34 SS Duplicate ALS, SX IB 20220416 12 04 SS Primary ALS, SX IB 20220416 16 12 SS Primary ALS. SX IB 20220416 16 24 SS Triplicate ALS, SX IB 20220416 20 06 SS Primary ALS, SX IB 20220416 23 55 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 17-Apr-2022 20-Apr-2022 14-Oct-2022 SX IB 20220417 08 10 SS Duplicate ALS, SX IB 20220417 04 02 SS Primary ALS, 1 SX IB 20220417 12 29 SS Primary ALS, SX IB 20220417 15 57 SS Triplicate ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 14-Oct-2022 SX IB 20220417 08 07 SS Primary ALS, SX IB
20220417 15 58 SS Primary ALS 17-Apr-2022 21-Apr-2022 1 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) 18-Apr-2022 21-Apr-2022 15-Oct-2022 SX IB 20220418 03 59 SS Primary ALS, SX_IB_20220418_00_02_SS_Primary_ALS, SX IB 20220418 08 07 SS Primary ALS, SX IB 20220418 08 07 SS Duplicate ALS, SX IB 20220418 11 58 SS Primary ALS, SX IB 20220418 16 07 SS Primary ALS, SX_IB_20220418_16_10_SS_Triplicate_ALS, SX IB 20220418 20 01 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60a-P) SX IB 20220419 00 01 SS Primary ALS, SX IB 20220419 03 59 SS Primary ALS 19-Apr-2022 21-Apr-2022 16-Oct-2022 EN60-DI: Bottle Leaching Procedure - Inorganics/PFAS (Plastic Vessel) Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dia-P) SX 20220416 08 34 SS Duplicate ALS, SX IB 20220416 12 04 SS Primary ALS, 16-Apr-2022 20-Apr-2022 14-Oct-2022 1 SX IB 20220416 16 12 SS Primary ALS. SX IB 20220416 16 24 SS Triplicate ALS. SX IB 20220416 23 55 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 13-Oct-2022 16-Apr-2022 21-Apr-2022 SX 20220416 08 31 SS Primary ALS, SX IB 20220416 20 06 SS Primary ALS 1 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-DIa-P) SX IB 20220417 08 07 SS Primary ALS, 17-Apr-2022 20-Apr-2022 14-Oct-2022 SX IB 20220417 04 02 SS Primary ALS, SX IB 20220417 08 10 SS Duplicate ALS, SX IB 20220417 15 57 SS Triplicate ALS, SX IB 20220417 15 58 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 14-Oct-2022 SX IB 20220417 12 29 SS Primary ALS 17-Apr-2022 21-Apr-2022 Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) SX IB 20220418 00 02 SS Primary ALS, SX IB 20220418 03 59 SS Primary ALS, 18-Apr-2022 20-Apr-2022 15-Oct-2022 SX IB 20220418 08 07 SS Primary ALS, SX IB 20220418 08 07 SS Duplicate ALS, SX IB 20220418 11 58 SS Primary ALS, SX IB 20220418 16 07 SS Primary ALS, SX IB 20220418 16 10 SS Triplicate ALS, SX IB 20220418 20 01 SS Primary ALS Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.Hg) (EN60-Dla-P) 19-Apr-2022 20-Apr-2022 16-Oct-2022 1 SX IB 20220419 00 01 SS Primary ALS, SX IB 20220419 03 59 SS Primary ALS Page : 7 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding tim | |--|--|-------------|----------------|------------------------|------------|--------------------|--------------------|---------------| | Method | | Sample Date | Ex | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP066: Polychlorinated Biphenyls (PCB) | | | | | | | | | | Soil Glass Jar - Unpreserved (EP066-EM) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP066-EM) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP066-EM) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP066-EM) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | EP074A: Monocyclic Aromatic Hydrocarbons | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 21-Apr-2022 | 23-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 21-Apr-2022 | 24-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 21-Apr-2022 | 25-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | · | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 26-Apr-2022 | ✓ | 21-Apr-2022 | 26-Apr-2022 | ✓ | Page : 8 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL Method | | Sample Date | | ktraction / Preparation | Lvaidatioi | I. Tiolding time | breach; ✓ = Withi | in notaling th | |---|--|-------------|----------------|-------------------------|------------|------------------|-------------------|----------------| | Container / Client Sample ID(s) | | Sample Date | | | F -1 -0 | | . , | F .1 .0. | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP074H: Naphthalene | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | _ | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 21-Apr-2022 | 23-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | _ | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 21-Apr-2022 | 24-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | 05.4 0000 | | | 0 | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 21-Apr-2022 | 25-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | 00.4 0000 | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 26-Apr-2022 | ✓ | 21-Apr-2022 | 26-Apr-2022 | ✓ | | EP074I: Volatile Halogenated Compounds | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 21-Apr-2022 | 23-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 21-Apr-2022 | 24-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 21-Apr-2022 | 25-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 |
26-Apr-2022 | ✓ | 21-Apr-2022 | 26-Apr-2022 | ✓ | Page : 9 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL Method | | Sample Date | | Extraction / Preparation | | | on: ■ Holding time breach; ■ Within holding Analysis | | | |--|--|-------------|----------------|--------------------------|------------|---------------|---|------------|--| | Container / Client Sample ID(s) | | Sample Date | | • | F .1 .0. | | . , | F -1 -0: | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | | EP075A: Phenolic Compounds (Halogenated) | | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | 00.4 0000 | | | 00.14 | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | EP075A: Phenolic Compounds (Non-halogenated) | | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | Page : 10 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Method | | Sample Date | F | ktraction / Preparation | |] | breach; ✓ = Withi | <u> </u> | |---|--|-------------|----------------|-------------------------|------------|---------------|-------------------|------------| | Container / Client Sample ID(s) | | Sample Date | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP075B: Polynuclear Aromatic Hydrocarbons | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_20220416_08_31_SS_Primary_ALS, | SX 20220416 08 34 SS Duplicate ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | 1 | 20-Apr-2022 | 30-May-2022 | 1 | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX IB 20220416 16 12 SS Primary ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX IB 20220416 20 06 SS Primary ALS, | | | | | | | | | SX IB 20220416 23 55 SS Primary ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | EP075I: Organochlorine Pesticides | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP075-EM) | | | | 00 May 2000 | | | 00 14 0000 | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | Page : 11 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | n: × = Holding time | breach ; ✓ = With | n holding tin | |---|--|-------------|----------------|------------------------|------------|---------------------|-------------------|---------------| | Method | | Sample Date | E | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP080/071: Total Petroleum Hydrocarbons | | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 21-Apr-2022 | 23-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved
(EP074-UT) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 21-Apr-2022 | 24-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 21-Apr-2022 | 25-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 26-Apr-2022 | ✓ | 21-Apr-2022 | 26-Apr-2022 | ✓ | Page : 12 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | | | Evaluation | i: × = Holding time | breach ; ✓ = With | n holding tin | |--|--|-------------|----------------|-------------------------|------------|---------------------|-------------------|---------------| | Method | | Sample Date | E | ktraction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP080/071: Total Recoverable Hydrocarbons - NEPN | 1 2013 Fractions | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 30-Apr-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 23-Apr-2022 | ✓ | 21-Apr-2022 | 23-Apr-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 01-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 24-Apr-2022 | ✓ | 21-Apr-2022 | 24-Apr-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 02-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 25-Apr-2022 | ✓ | 21-Apr-2022 | 25-Apr-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | Soil Glass Jar - Unpreserved (EP071-EM) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 03-May-2022 | ✓ | 20-Apr-2022 | 30-May-2022 | ✓ | | Soil Glass Jar - Unpreserved (EP074-UT) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 26-Apr-2022 | ✓ | 21-Apr-2022 | 26-Apr-2022 | ✓ | Page : 13 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | _ | | Evaluation | i: × = Holding time | breach ; ✓ = Withi | n nolding til | |---|--|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------| | Method | | Sample Date | Ex | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231A: Perfluoroalkyl Sulfonic Acids | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | EP231B: Perfluoroalkyl Carboxylic Acids | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | 44.0.4.000 | | | 22.14 | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | Page : 14 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: SOIL | | | _ | | Evaluation | i: × = Holding time | breach ; ✓ = With | n holding tin | |--|--|-------------|----------------|------------------------|------------|---------------------|-------------------|---------------| | Method | | Sample Date | Ex | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for
extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231C: Perfluoroalkyl Sulfonamides | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | EP231D: (n:2) Fluorotelomer Sulfonic Acids | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | <u> </u> | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | Page : 15 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 Container / Client Sample ID(s) Due for analysis Evaluation | Matrix: SOIL | | | | | Evaluation | ı: 🗴 = Holding time | breach; ✓ = Withi | n holding tim | |---|--|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------| | Method | | Sample Date | E | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231P: PFAS Sums | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 16-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS | | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX_IB_20220417_08_07_SS_Primary_ALS, | 17-Apr-2022 | 20-Apr-2022 | 14-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | 18-Apr-2022 | 20-Apr-2022 | 15-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS | | | | | | | | | HDPE Soil Jar (EP231X) | | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS | 19-Apr-2022 | 20-Apr-2022 | 16-Oct-2022 | ✓ | 21-Apr-2022 | 30-May-2022 | ✓ | | Matrix: WATER | | | | | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding tim | | Method | | Sample Date | | | | | | | Evaluation Date analysed Page : 16 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: WATER | | | | | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time | |---|---|-------------|----------------|-------------------------|------------|---------------------|--------------------|----------------| | Method | | Sample Date | E | xtraction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231A: Perfluoroalkyl Sulfonic Acids | | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220416_09_36_SR_Rinsate_ALS, | SX_IB_20220416_09_38_SB_Blank_ALS | 16-Apr-2022 | 20-Apr-2022 | 13-Oct-2022 | 1 | 20-Apr-2022 | 13-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 20-Apr-2022 | 21-Apr-2022 | 17-Oct-2022 | ✓ | 21-Apr-2022 | 17-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS, | SX_IB_20220417_04_02_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | | | | | | | | | SX IB 20220416 12 04 SS Primary ALS, | SX IB 20220416 16 12 SS Primary ALS, | | | | | | | | | SX IB 20220416 16 24 SS Triplicate ALS, | SX IB 20220416 23 55 SS Primary ALS, | | | | | | | | | SX IB 20220417 04 02 SS Primary ALS, | SX IB 20220417 08 07 SS Primary ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_15_57_SS_Triplicate_ALS, | | | | | | | | | SX IB 20220417 15 58 SS Primary ALS, | SX IB 20220418 00 02 SS Primary ALS, | | | | | | | | | SX IB 20220418 03 59 SS Primary ALS, | SX IB 20220418 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220418 08 07 SS Duplicate ALS, | SX IB 20220418 11 58 SS Primary ALS, | | | | | | | | | SX IB 20220418 16 07 SS Primary ALS, | SX IB 20220418 16 10 SS Triplicate ALS, | | | | | | | | | SX IB 20220418 20 01 SS Primary ALS, | SX IB 20220419 00 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 03 59 SS Primary ALS | 5X_IB_20220419_00_01_00_11IIIIaly_ALG, | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_12_29_SS_Primary_ALS | | 21-Apr-2022 | 21-Apr-2022 | 18-Oct-2022 | ✓ | 21-Apr-2022 | 18-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_08_07_SS_Primary_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS, | 21-Apr-2022 | 22-Apr-2022 | 18-Oct-2022 | 1 | 22-Apr-2022 | 18-Oct-2022 | ✓ | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS, | | | | | | | | | SX IB 20220419 00 01 SS Primary ALS, | SX IB 20220419 03 59 SS Primary ALS, | | | | | | | | | SX 20220416 08 31 SS Primary ALS, | SX IB 20220416 20 06 SS Primary ALS | | | | | | | | Page : 17 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: WATER | | | | | Evaluation | n: × = Holding time | e breach ; ✓ = Withi | n holding time | |---|---|-------------|----------------|-------------------------|------------|---------------------|----------------------|----------------| | Method | | Sample Date | E) | ktraction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231B: Perfluoroalkyl Carboxylic Acids | | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220416_09_36_SR_Rinsate_ALS, | SX_IB_20220416_09_38_SB_Blank_ALS | 16-Apr-2022 | 20-Apr-2022 | 13-Oct-2022 | ✓ | 20-Apr-2022 | 13-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | |
SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 20-Apr-2022 | 21-Apr-2022 | 17-Oct-2022 | ✓ | 21-Apr-2022 | 17-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS, | SX_IB_20220417_04_02_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_23_55_SS_Primary_ALS, | | | | | | | | | SX IB 20220417 04 02 SS Primary ALS, | SX IB 20220417 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220417 08 10 SS Duplicate ALS, | SX IB 20220417 15 57 SS Triplicate ALS, | | | | | | | | | SX_IB_20220417_15_58_SS_Primary_ALS, | SX IB 20220418 00 02 SS Primary ALS, | | | | | | | | | SX IB 20220418 03 59 SS Primary ALS, | SX IB 20220418 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220418 08 07 SS Duplicate ALS, | SX IB 20220418 11 58 SS Primary ALS, | | | | | | | | | SX_IB_20220418_16_07_SS_Primary_ALS, | SX_IB_20220418_16_10_SS_Triplicate_ALS, | | | | | | | | | SX IB 20220418 20 01 SS Primary ALS, | SX IB 20220419 00 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 03 59 SS Primary ALS | | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_12_29_SS_Primary_ALS | | 21-Apr-2022 | 21-Apr-2022 | 18-Oct-2022 | ✓ | 21-Apr-2022 | 18-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_08_07_SS_Primary_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS, | 21-Apr-2022 | 22-Apr-2022 | 18-Oct-2022 | ✓ | 22-Apr-2022 | 18-Oct-2022 | ✓ | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS, | | | | | | | | | SX_IB_20220419_00_01_SS_Primary_ALS, | SX_IB_20220419_03_59_SS_Primary_ALS, | | | | | | | | | SX_20220416_08_31_SS_Primary_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS | | | | | | | | Page : 18 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Method | | Sample Date | E | xtraction / Preparation | | | Analysis | | |---|---|-------------|----------------|-------------------------|------------|---------------|------------------|------------| | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231C: Perfluoroalkyl Sulfonamides | | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220416_09_36_SR_Rinsate_ALS, | SX_IB_20220416_09_38_SB_Blank_ALS | 16-Apr-2022 | 20-Apr-2022 | 13-Oct-2022 | 1 | 20-Apr-2022 | 13-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 20-Apr-2022 | 21-Apr-2022 | 17-Oct-2022 | ✓ | 21-Apr-2022 | 17-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS, | SX_IB_20220417_04_02_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_23_55_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX IB 20220417 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220417 08 10 SS Duplicate ALS, | SX IB 20220417 15 57 SS Triplicate ALS, | | | | | | | | | SX IB 20220417 15 58 SS Primary ALS, | SX IB 20220418 00 02 SS Primary ALS, | | | | | | | | | SX IB 20220418 03 59 SS Primary ALS, | SX IB 20220418 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220418 08 07 SS Duplicate ALS, | SX IB 20220418 11 58 SS Primary ALS, | | | | | | | | | SX IB 20220418 16 07 SS Primary ALS, | SX IB 20220418 16 10 SS Triplicate ALS, | | | | | | | | | SX IB 20220418 20 01 SS Primary ALS, | SX IB 20220419 00 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 03 59 SS Primary ALS | o/ | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_12_29_SS_Primary_ALS | | 21-Apr-2022 | 21-Apr-2022 | 18-Oct-2022 | ✓ | 21-Apr-2022 | 18-Oct-2022 | 1 | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_08_07_SS_Primary_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS, | 21-Apr-2022 | 22-Apr-2022 | 18-Oct-2022 | 1 | 22-Apr-2022 | 18-Oct-2022 | ✓ | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX IB 20220418 16 10 SS Triplicate ALS, | SX IB 20220418 20 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 00 01 SS Primary ALS, | SX IB 20220419 03 59 SS Primary ALS, | | | | | | | | | SX 20220416 08 31 SS Primary ALS, | SX IB 20220416 20 06 SS Primary ALS | | | | | | | | Page : 19 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Matrix: WATER | | | | | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding tim | |--|--|-------------|----------------|------------------------|------------|--------------------|--------------------|---------------| | Method | | Sample Date | E | traction / Preparation | | | Analysis | | | Container / Client Sample ID(s) | | | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation | | EP231D: (n:2) Fluorotelomer Sulfonic Acids | Date extracted Date extracted Date or extraction Date extr | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220416_09_36_SR_Rinsate_ALS, | SX_IB_20220416_09_38_SB_Blank_ALS | 16-Apr-2022 | 20-Apr-2022 | 13-Oct-2022 | ✓ | 20-Apr-2022 | 13-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 20-Apr-2022 | 21-Apr-2022 | 17-Oct-2022 | ✓ | 21-Apr-2022 | 17-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS, | SX_IB_20220417_04_02_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | | | | | | | | | SX IB 20220416 12 04 SS Primary ALS, | SX IB 20220416 16 12 SS Primary ALS, | | | | | | | | | SX IB 20220416 16 24 SS Triplicate ALS, | SX IB 20220416 23 55 SS Primary ALS, | 5/(_15_25225115_55_51_65_1 | | | | | | | | | | | | | | | | | | | SX_IB_20220417_12_29_SS_Primary_ALS | | 21-Apr-2022 | 21-Apr-2022 | 18-Oct-2022 | ✓ | 21-Apr-2022 | 18-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_08_07_SS_Primary_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS, | 21-Apr-2022
 22-Apr-2022 | 18-Oct-2022 | ✓ | 22-Apr-2022 | 18-Oct-2022 | ✓ | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX_IB_20220418_16_10_SS_Triplicate_ALS, | SX_IB_20220418_20_01_SS_Primary_ALS, | | | | | | | | | SX IB 20220419 00 01 SS Primary ALS, | SX IB 20220419 03 59 SS Primary ALS, | | | | | | | | | SX 20220416 08 31 SS Primary ALS, | SX IB 20220416 20 06 SS Primary ALS | | | | | | | | Page : 20 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Method | Sample Date | E | ktraction / Preparation | | Analysis | | | | |---|---|----------------|-------------------------|-------------|---------------|------------------|-------------|----------| | Container / Client Sample ID(s) | | Date extracted | | Evaluation | Date analysed | Due for analysis | Evaluation | | | EP231P: PFAS Sums | | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220416_09_36_SR_Rinsate_ALS, | SX_IB_20220416_09_38_SB_Blank_ALS | 16-Apr-2022 | 20-Apr-2022 | 13-Oct-2022 | ✓ | 20-Apr-2022 | 13-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX20220416_08_31_SS_Primary_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | 20-Apr-2022 | 21-Apr-2022 | 17-Oct-2022 | ✓ | 21-Apr-2022 | 17-Oct-2022 | ✓ | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_16_24_SS_Triplicate_ALS, | SX_IB_20220416_20_06_SS_Primary_ALS, | | | | | | | | | SX_IB_20220416_23_55_SS_Primary_ALS, | SX_IB_20220417_04_02_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_08_10_SS_Duplicate_ALS, | SX_IB_20220417_12_29_SS_Primary_ALS, | | | | | | | | | SX_IB_20220417_15_57_SS_Triplicate_ALS, | SX20220416_08_34_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220416_12_04_SS_Primary_ALS, | SX_IB_20220416_16_12_SS_Primary_ALS, | | | | | | | | | SX IB 20220416 16 24 SS Triplicate ALS, | SX IB 20220416 23 55 SS Primary ALS, | | | | | | | | | SX_IB_20220417_04_02_SS_Primary_ALS, | SX IB 20220417 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220417 08 10 SS Duplicate ALS, | SX IB 20220417 15 57 SS Triplicate ALS, | | | | | | | | | SX IB 20220417 15 58 SS Primary ALS, | SX IB 20220418 00 02 SS Primary ALS, | | | | | | | | | SX IB 20220418 03 59 SS Primary ALS, | SX IB 20220418 08 07 SS Primary ALS, | | | | | | | | | SX IB 20220418 08 07 SS Duplicate ALS, | SX IB 20220418 11 58 SS Primary ALS, | | | | | | | | | SX IB 20220418 16 07 SS Primary ALS, | SX IB 20220418 16 10 SS Triplicate ALS, | | | | | | | | | SX IB 20220418 20 01 SS Primary ALS, | SX IB 20220419 00 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 03 59 SS Primary ALS | o,sus_s | | | | | | | | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_12_29_SS_Primary_ALS | | 21-Apr-2022 | 21-Apr-2022 | 18-Oct-2022 | 1 | 21-Apr-2022 | 18-Oct-2022 | ✓ | | HDPE (no PTFE) (EP231X) | | | | | | | | | | SX_IB_20220417_08_07_SS_Primary_ALS, | SX_IB_20220417_15_58_SS_Primary_ALS, | 21-Apr-2022 | 22-Apr-2022 | 18-Oct-2022 | ✓ | 22-Apr-2022 | 18-Oct-2022 | ✓ | | SX_IB_20220418_00_02_SS_Primary_ALS, | SX_IB_20220418_03_59_SS_Primary_ALS, | | | | | | | , i | | SX_IB_20220418_08_07_SS_Primary_ALS, | SX_IB_20220418_08_07_SS_Duplicate_ALS, | | | | | | | | | SX_IB_20220418_11_58_SS_Primary_ALS, | SX_IB_20220418_16_07_SS_Primary_ALS, | | | | | | | | | SX IB 20220418 16 10 SS Triplicate ALS, | SX IB 20220418 20 01 SS Primary ALS, | | | | | | | | | SX IB 20220419 00 01 SS Primary ALS, | SX IB 20220419 03 59 SS Primary ALS, | | | | | | | | | SX 20220416 08 31 SS Primary ALS, | SX IB 20220416 20 06 SS Primary ALS | | | | | | | | Page : 21 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC0927 # **Quality Control Parameter Frequency Compliance** The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers. the expected rate. A listing of breaches is provided in the Summary of Outliers. | Matrix: SOIL | | | | Evaluatio | n: × = Quality Co | ntrol frequency i | not within specification; ✓ = Quality Control frequency within specification. | | |---|------------|-------|---------|-----------|-------------------|-------------------|---|--| | Quality Control Sample Type | | Count | | Rate (%) | | | Quality Control Specification | | | Analytical Methods | Method | QC | Reaular | Actual | Expected | Evaluation | | | | Laboratory Duplicates (DUP) | | | | | | | | | | Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Moisture Content | EA055 | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | PCB - VIC EPA 448.3 Screen | EP066-EM | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 3 | 24 | 12.50 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | pH in soil using a 0.01M CaCl2 extract | EA001 | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Semivolatile Organic Compounds - Waste Classification | EP075-EM | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Cyanide by Segmented Flow Analyser | EK026SF | 3 | 24 | 12.50 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Fluoride | EK040T | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Mercury by FIMS | EG035T | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Metals by ICP-AES | EG005T | 4 | 23 | 17.39 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | TRH - Semivolatile Fraction | EP071-EM | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Volatile Organic Compounds - Ultra-trace | EP074-UT | 3 | 23 | 13.04 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Laboratory Control Samples (LCS) | | | | | | | | | | Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G | 4 | 23 | 17.39 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | PCB - VIC EPA 448.3 Screen | EP066-EM | 2 | 23 | 8.70 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2 | 24 | 8.33 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | pH in soil using a 0.01M CaCl2 extract | EA001 | 4 | 23 | 17.39 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Semivolatile Organic Compounds - Waste Classification | EP075-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Cyanide by Segmented Flow Analyser | EK026SF | 2 | 24 | 8.33 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Fluoride | EK040T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Mercury by FIMS | EG035T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Metals by ICP-AES | EG005T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | TRH - Semivolatile Fraction | EP071-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Volatile Organic Compounds - Ultra-trace | EP074-UT | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Method Blanks (MB) | | | | | | | | | | Deionised Water Leach - Plastic Leaching Vessel | EN60-Dla-P | 4 | 31 | 12.90 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G | 2 | 23 | 8.70 | 5.00 | <u>√</u> | NEPM 2013 B3 & ALS QC Standard | | | PCB - VIC EPA 448.3 Screen | EP066-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2 | 24 | 8.33 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | Semivolatile Organic Compounds - Waste Classification | EP075-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Cyanide by Segmented Flow Analyser | EK026SF | 2 | 24 | 8.33 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Fluoride | EK040T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Mercury by FIMS | EG035T | 2 | 23 | 8.70 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | Total Metals by ICP-AES | EG005T | 2 | 23 | 8.70 | 5.00 | √ | NEPM 2013 B3 & ALS QC Standard | | | TRH - Semivolatile Fraction | EP071-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Volatile Organic Compounds - Ultra-trace | EP074-UT | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | Page : 22 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Matrix Spikes (MS) Project : JC0927 | Quality Control Sample Type | | Count | | Rate (%) | | | Quality Control Specification | | |---|----------|-------|---------|------------|-------------------|------------------|---|--| | Analytical Methods | Method | OC | Regular | Actual | Expected | Evaluation | quality control opcomedien | | | Matrix Spikes (MS) | | | | | | | | | | Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G | 4 | 23 | 17.39 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | PCB - VIC EPA 448.3 Screen | EP066-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2 | 24 | 8.33 | 5.00 | ✓ | NEPM 2013
B3 & ALS QC Standard | | | Semivolatile Organic Compounds - Waste Classification | EP075-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Cyanide by Segmented Flow Analyser | EK026SF | 2 | 24 | 8.33 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Fluoride | EK040T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Mercury by FIMS | EG035T | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Total Metals by ICP-AES | EG005T | 4 | 23 | 17.39 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | TRH - Semivolatile Fraction | EP071-EM | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Volatile Organic Compounds - Ultra-trace | EP074-UT | 2 | 23 | 8.70 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Matrix: WATER | | | | Evaluation | n: × = Quality Co | ontrol frequency | not within specification ; ✓ = Quality Control frequency within specification | | | Quality Control Sample Type | | Count | | Rate (%) | | | Quality Control Specification | | | Analytical Methods | Method | QC | Regular | Actual | Expected | Evaluation | | | | Laboratory Duplicates (DUP) | | | | | | | | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 10 | 80 | 12.50 | 10.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Laboratory Control Samples (LCS) | | | | | | | | | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 6 | 80 | 7.50 | 5.00 | ✓ | NEPM 2013 B3 & ALS QC Standard | | | Method Blanks (MB) | | | | | | | | | 80 80 7.50 7.50 5.00 5.00 NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard EP231X EP231X 6 6 Page : 23 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD Project : JC092 ## **Brief Method Summaries** The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions. | Analytical Methods | Method | Matrix | Method Descriptions | | | | |--|----------|--------|---|--|--|--| | pH in soil using a 0.01M CaCl2 extract | EA001 | SOIL | In house: Referenced to Rayment and Lyons 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3). | | | | | Moisture Content | EA055 | SOIL | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3). | | | | | Total Metals by ICP-AES | EG005T | SOIL | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3) | | | | | Total Mercury by FIMS | EG035T | SOIL | In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3) | | | | | Hexavalent Chromium by Alkaline
Digestion and DA Finish | EG048G | SOIL | In house: Referenced to USEPA SW846, Method 3060. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3) | | | | | Total Cyanide by Segmented Flow
Analyser | EK026SF | SOIL | In house: Referenced to APHA 4500-CN C / ASTM D7511 / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3). | | | | | Total Fluoride | EK040T | SOIL | (In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution. | | | | | PCB - VIC EPA 448.3 Screen | EP066-EM | SOIL | In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3). | | | | | TRH - Semivolatile Fraction | EP071-EM | SOIL | In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. | | | | | Volatile Organic Compounds -
Ultra-trace | EP074-UT | SOIL | In house: Referenced to USEPA SW 846 - 8260 Extracts are analysed by Purge and Trap, Capillary GC/MS in partial SIM/Scan mode. Quantification is by comparison against an established multi-point calibration curves. This method is compliant with NEPM Schedule B(3). | | | | Page : 24 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Analytical Methods | Method | Matrix | Method Descriptions | |---|--------------|--------|---| | Volatile Organic Compounds -
Ultra-trace - Summations | EP074-UT-SUM | SOIL | Summation of MAHs and VHCs | | Semivolatile Organic Compounds -
Waste Classification | EP075-EM | SOIL | In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3). | | SVOC - Waste Classification (Sums) | EP075-EM-SUM | SOIL | Summations for EP075 (EM variation) | | Per- and Polyfluoroalkyl Substances
(PFAS) by LCMSMS | EP231X | SOIL | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. | | Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | WATER | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and
a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. | | Preparation Methods | Method | Matrix | Method Descriptions | | NaOH leach for CN in Soils | CN-PR | SOIL | In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH. | | pH in soil using a 0.01M CaCl2 extract | EA001-PR | SOIL | In house: Referenced to Rayment and Lyons 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3). | | Alkaline digestion for Hexavalent
Chromium | EG048PR | SOIL | In house: Referenced to USEPA SW846, Method 3060A. | | Total Fluoride | EK040T-PR | SOIL | In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux. | | ASLP for Non & Semivolatile Analytes -
Plastic Leaching Vessel | EN60a-P | SOIL | In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates. | | Deionised Water Leach - Plastic
Leaching Vessel | EN60-Dla-P | SOIL | In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates | | Hot Block Digest for metals in soils sediments and sludges | EN69 | SOIL | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3). | | Methanolic Extraction of Soils -
Ultra-trace. | ORG16-UT | SOIL | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS. | | Tumbler Extraction of Solids - VIC EPA
Screen | ORG17-EM | SOIL | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis. | Page : 25 of 25 Work Order : EM2206998 Client : AGON ENVIRONMENTAL PTY LTD | Preparation Methods | Method | Matrix | Method Descriptions | |--|--------|--------|---| | QuECheRS Extraction of Solids | ORG71 | SOIL | In house: Sequential extractions with Acetonitrile/Methanol by shaking. Extraction efficiency aided by the addition of salts under acidic conditions. Where relevant, interferences from co-extracted organics are removed with dispersive clean-up media (dSPE). The extract is either diluted or concentrated and exchanged into the analytical solvent. | | Solid Phase Extraction (SPE) for PFAS in water | ORG72 | SOIL | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements. | | Solid Phase Extraction (SPE) for PFAS in water | ORG72 | WATER | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements. |