# Information sheet for environmental audits and preliminary risk screen assessments (PRSAs)



Publication 2009 June 2021

#### Victoria's audit system

An environmental audit system has operated in Victoria since 1989. The *Environment Protection Act 2017* (the Act) provides for the appointment of environmental auditors. It also provides for Environment Protection Authority (EPA or the Authority) to have a system of preliminary risk screen assessments (PRSAs) and environmental audits. These are used in the planning, approval, regulation and management of activities, and in protection of human health and the environment.

Under the Act, the functions of an environmental auditor include to:

- conduct PRSAs and environmental audits
- prepare and issue PRSA statements and reports, and environmental audit statements and reports.

The purpose of a PRSA is to:

- assess the likelihood of the presence of contaminated land
- determine if an environmental audit is required
- recommend a scope for the environmental audit if an environmental audit is required.

The purpose of an environmental audit is to:

- assess the nature and extent of the risk of harm to human health or the environment from contaminated land, waste, pollution, or any activity
- recommend measures to manage the risk of harm to human health or the environment from contaminated land, waste, pollution, or any activity
- make recommendations to manage any contaminated land, waste, pollution or activity.

Upon completion, all PRSAs and environmental audits require preparation of either a PRSA statement, accompanied by a PRSA report, or an environmental audit statement, accompanied by an environmental audit report.

A person may engage an environmental auditor to conduct a PRSA or an environmental audit.

EPA administers the environmental audit system and ensures an acceptable quality of environmental auditing is maintained. This is achieved by assessing auditor applications and conducting a quality assurance program. These measures ensure that PRSAs and environmental audits that environmental auditors undertake are completed in accordance with the relevant sections of the Act or any other Act, and with the guidelines the Authority or other government agencies have published.

#### File structures

EPA stores digital statements and reports from PRSAs and environmental audits in three parts:

- Part A, the PRSA or environmental audit report
- Part B, report appendices
- Part C, the PRSA statement and executive summary or environmental audit statement and executive summary.

Report executive summaries, findings and recommendations should be read and relied upon only in the context of the whole document, including any appendices and the PRSA statement or environmental audit statement.

## Currency of PRSAs and environmental audits

PRSAs and environmental audits are based on the conditions encountered and information reviewed at the time of preparation. They don't represent any changes that may have occurred since the completion date. As it's not possible for the PRSA or audit report to present all data that could be of interest to all readers, consideration should be made to any appendices or referenced documentation for further information.

When information about the site changes from what was available at the time the PRSA or environmental audit was completed, or where an administrative error is identified, an environmental auditor may amend or withdraw PRSA or environmental audit statements and/or reports. Users are advised to check EPA's website to ensure documents' currency.

#### PDF searchability and printing

EPA can only provide PRSAs and environmental audit statements, reports and appendices that the environmental auditor provided to EPA via the EPA portal on the EPA website.

All statements and reports should be in a Portable Document Format (PDF) and searchable; however at times some appendices may be provided as image-only PDFs, which can affect searchability.

The PDF is compatible with Adobe Acrobat Reader, which is downloadable free from Adobe's Website (www.adobe.com).

#### **Further information**

For more information on Victoria's environmental audit system, visit EPA's website or contact EPA's Environmental Audit Unit.

Web: www.epa.vic.gov.au

Email: environmental.audit@epa.vic.gov.au



For languages other than English, please call **131 450**. Visit **epa.vic.gov.au/language-help** for next steps. If you need assistance because of a hearing or speech impairment, please visit **relayservice.gov.au** 



#### Under Part 8.3 of the Environment Protection Act 2017

Publication F1031 published September 2021

This statement is a summary of the findings of a preliminary risk screen assessment conducted under Part 8.3 of the *Environment Protection Act 2017* for:

#### 215 – 219 Albion Street, Brunswick, VIC

Further details are provided in the preliminary risk screen assessment report that accompanies this statement.

#### Section 1: Preliminary risk screen assessment overview

#### Environmental auditor details

| Name:    | Phillip Mulvey                        |
|----------|---------------------------------------|
| Company: | Environmental Earth Sciences          |
| Address: | 98 Maribyrnong St, Footscray VIC 3011 |
| Phone:   | 9687 1666                             |
| Email:   | pmulvey@eesigroup.com                 |
|          |                                       |

#### Site owner/occupant

| Name:    | Nightingale Albion Land Holding Pty Ltd |
|----------|-----------------------------------------|
| Company: | Nightingale Albion Land Holding Pty Ltd |

#### Environmental auditor engaged by

| Name:                       | Simon Pearce                           |
|-----------------------------|----------------------------------------|
| Company:                    | Nightingale Albion Development Pty Ltd |
| Relationship to site owner: | Development manager                    |

#### Reason for preliminary risk screen assessment

| Planning scheme: | Moreland                                      |
|------------------|-----------------------------------------------|
| Other:           | MPS/2020/555 requirement due to audit overlay |





#### Section 2: Assessment scope

#### Site details

| Address:         | 215 – 219 Albion Street, Brunswick, VIC           |
|------------------|---------------------------------------------------|
| Title details:   | Lot 1 TP694780, Lot-1-TP567753 and Lot-1-TP712069 |
| Area (hectares): | 0.21926                                           |

a plan of the site is attached

#### Use or proposed use assessed

- Sensitive use (including land used for residential use, a child care centre, pre-school, or primary school) or secondary school or children's playground
  - ⊠ high density
  - □ other (lower density)
- □ Recreation/open space
- Parks and reserves
- □ Agricultural
- ⊠ Commercial
- Industrial
- □ Other

#### Environmental elements assessed

#### ⊠ Ambient air

- ⊠ all environmental values were considered **OR**
- □ all environmental values other than the following were considered:

#### □ Ambient sound

- □ all environmental values were considered **OR**
- □ all environmental values other than the following were considered:

#### ⊠ Land

- $\boxtimes$  all environmental values that apply to the land use category were considered **OR**
- all environmental values that apply to the land use category, other than the following, were considered:

#### □ Water

#### □ Surface water

- $\square$  all environmental values that apply to the applicable segment were considered **OR**
- □ all environmental values that apply to the applicable segment, other than the following, were considered:

#### Groundwater

- □ all environmental values that apply to the applicable segment were considered **OR**
- □ all environmental values that apply to the applicable segment, other than the following, were considered:

#### Standards considered

**Environment Reference Standard 2021** 

National Environment Protection (Assessment of Site Contamination) Measure 1999



National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013

#### Assumptions made during the assessment or any limitations

Development to occur as per provided plans or equivalent level structure (ground floor commercial, overlying floors high density residential).

#### Exclusions from the assessment and the rationale for these

#### This statement is accompanied by the following preliminary risk screen assessment report

| Title:     | Preliminary Risk Screening Assessment - 215-219 Albion St, Brunswick, VIC |
|------------|---------------------------------------------------------------------------|
| Report no: | 220096_PRSA_V1                                                            |
| Date:      | 16/12/21                                                                  |



#### Section 3: Assessment outcome

Based on my assessment, I am of the opinion that an environmental audit is **not required** for the following land uses, **including** the use or proposed use for which the site has been assessed:

- Sensitive use (including land used for residential use, a child care centre, pre-school, or primary school) or secondary school or children's playground
  - ⊠ high density
  - □ other (lower density)
- □ Recreation/open space
- Parks and reserves
- □ Agricultural
- ⊠ Commercial
- Industrial
- □ Other

#### Other information

Note: An assessment that an audit is not required does not include any judgement as to whether responsibilities under section 39 of the *Environment Protection Act 2017* (duty to manage contaminated land) exist for the person in management or control of the land. Please refer to EPA publication 1977, *Assessing and controlling contaminated land risks: A guide to meeting the duty to manage for those in management or control of land* (https://www.epa.vic.gov.au/about-epa/publications/1977).



#### Section 4: Environmental auditor's declaration

I state that:

- I am appointed as an environmental auditor by the Environment Protection Authority Victoria under the *Environment Protection Act 2017*.
- The findings contained in this statement represents a true and accurate summary of the findings of the preliminary risk screen assessment that I have completed.

| Date: 16/12/21        |    |     |
|-----------------------|----|-----|
| Signed:               | Ч. | · · |
| Name: Phillip Mulvey  |    |     |
| Environmental Auditor |    |     |



For languages other than English, please call **131 450**. Visit **epa.vic.gov.au/language-help** for next steps. If you need assistance because of a hearing or speech impairment, please visit **relayservice.gov.au** 



#### Delivered by LANDATA®, timestamp 30/11/2020 13:44 Page 1 of 4

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

Entered in the Register Book Vol. 4802 Fol. 960318 VICTORIA. ertificate of C tle. UNDER THE "TRANSFER OF LAND ACT 1915. Donald Macdonald Gentleman and Frances Macdonald Married Woman both of 34 ---Albion Street West Brunswick are now joint proprietors now the proprietor of an Estate in Fee-simple, subject to the Encumbrances notified hereunder in All that piece of Land, delineated and coloured to be dealt with outside the Titles Office. red on the map in the margin being part of Crown Portion One hundred and -ORIGINAL CERTIFICATE. twenty-five at Brunswick Parish of Jika Jika County of Bourke Daled the Fifteenth dar o Not thousand nine hundled and twenty-four. nt Reoi r of Titles. ENCUMBRANCES REFERRED TO. 00 SYDNEY T04802-318-1-7 589.67 ALBION STREET

#### Delivered by LANDATA®, timestamp 30/11/2020 13:44 Page 1 of 2

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

Entered in the Register Book, Vol 3768 .... 753516 4 - . . . v LCTORIA. le, ertificate of UNDER THE "TRANSFER OF LAND ACT 1890." Arthur Henry Bates Noble of 32 Albion Street Brunswick Jeweller is now the proprietor of an Estate in Fee-simple, subject to the Encumbrances notified hereunder in All that piece of Land, delineated and coloured red on the map in the margin, being part of Crown Portion One hundred and -----twenty-five Parish of Jika Jika County of Bourke Together with a right of ----to be dealt with outside the Titles Office. carriage way over the roads colored brown on the said map ------ORIGINAL OHOWN GRANT. "OÉRTHFICATE FULLY CONVERTED TITLE SUPERSEDED VOLIO OF THE R for this Folio have been fully convert Waled the Twenty-first thousand nine hundred and fourteen. t Rea Vot ENCUMBRANCES REFEREE STUART STREET STREET ALBION T03768-516-1-4 The Mean

#### Delivered by LANDATA®, timestamp 30/11/2020 13:55 Page 1 of 2

© State of Victoria. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

Entered in the Register Book Vol 751 Fol. 950084 T04751-084-1-8 VICTORIA. rtificate of Citle. UNDER THE "TRANSFER OF LAND ACT 1915." Joseph Renshaw of 30 albion Street West Brunswick Engineer is - - - now the proprietor of an Estate in Fee-simple, subject to the Encumbrances notified hereunder in All that piece of Land, delineated and coloured red on the map in the margin being part of Grown Portion One hundred and twenty-five at Brunswick Parish of Jika Jika County of Bourke Together with a right of - - to be dealt with outside the Titles Office ORIGINAL CERTIFICATE. carriage way over the roads colored brown on the said map -Dalid the One Fifth day of thousand nine hundred and twenty-three Assistant Registrar of Titles. Vot ENCUMBRANCES REFERRED TO. STUART STREET ALBION STREET 10.22-260 et and mokes



# PRELIMINARY RISK SCREEN ASSESSMENT - 215-219 ALBION ST, BRUNSWICK, VIC NIGHTINGALE ALBION DEVELOPMENT PTY LTD

16 DECEMBER 2021 220096 VERSION 1



16 December 2021

Nightingale Albion Development Pty Ltd 1/6 Florence Street Brunswick VIC 3056

Attention: Simon Pearce Development Manager

Dear Simon

#### Preliminary Risk Screen Assessment - 215-219 Albion St, Brunswick, VIC

Please find enclosed a copy of our report entitled as above. Thank you for the opportunity to undertake this work.

As a result of the investigation we have concluded that an audit is unnecessary. Note all material disposed offsite will require waste classification.

Should you have any queries, please do not hesitate to contact us on (03) 96871666.

For and on behalf of **Environmental Earth Sciences VIC** 

Author Phillip Mulvey Environmental Auditor (Contaminated Land) appointed pursuant to the *Environment Protection Act 2017* 

220096\_PRSA\_V1



Glaeba (03) Pty Ltd trading as Environmental Earth Sciences VIC 98 Maribyrnong Street, Footscray, VIC, 3011 P. 61 3 9687 1666 E. info@eesigroup.com www.eesigroup.com





# EXECUTIVE SUMMARY

## Table 1: Summary of Audit Information

| Item                                                                      | Details                                                      |
|---------------------------------------------------------------------------|--------------------------------------------------------------|
| Auditor                                                                   | Phillip Mulvey                                               |
| Auditor account number                                                    | 101441                                                       |
| Name of person requesting audit or PRSA                                   | Simon Pearce                                                 |
| Relationship of person requesting audit or PRSA to site                   | Development Manager                                          |
| Name of site owner                                                        | Nightingale Albion Land Holding Pty Ltd                      |
| Date of auditor engagement                                                | 16/11/2020 Project delayed and recommenced<br>September 2021 |
| Completion date of the audit or PRSA                                      | 16/12/2021                                                   |
| Reason for audit or PRSA                                                  | Audit overlay                                                |
| Elements of the environment assessed                                      | Air and land                                                 |
| Planning permit number or requirement detail if applicable                | MPS/2020/555                                                 |
| EPA Region                                                                | Metro                                                        |
| Municipality                                                              | Moreland                                                     |
| Dominant — Lot on plan                                                    | Lot 1 TP694780                                               |
| Additional — Lot on plan(s)                                               | Lot-1-TP567753<br>Lot-1-TP712069                             |
| Site/premises name                                                        | -                                                            |
| Street/Lot — Lower No.                                                    | 215                                                          |
| Street/Lot — Upper No                                                     | 219                                                          |
| Street Name                                                               | Albion                                                       |
| Street type (For example, road, court)                                    | Street                                                       |
| Street suffix (For example, North, South)                                 |                                                              |
| Suburb                                                                    | Brunswick                                                    |
| Postcode                                                                  | 3056                                                         |
| Site area (in square metres)                                              | 2192.6                                                       |
| Plan of site/ premises/ location showing the audit site boundary attached | Yes                                                          |
| Members and categories of support team utilised                           | Patrick Carroll – Auditor assistant                          |
| Further work or requirements                                              | None                                                         |
| Nature and extent of continuing risk of harm                              | -                                                            |



| Item                       | Details                                                                                      |
|----------------------------|----------------------------------------------------------------------------------------------|
| Outcome of the PRSA report | Outcome 2 - Likely that contaminated land is present, but no environmental audit is required |

# Table 2: Physical Site Information

| Item                                                                                          | Details                                                                                         |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Historical land use                                                                           | Residential and clothing manufacture                                                            |
| Current land use                                                                              | Builders site shed (219) and vacant warehouse                                                   |
| Proposed land use                                                                             | Mixed land use (commercial/carpark on ground floor with high density residential from level1-8) |
| Current land use zoning                                                                       | Commercial 1 Zone (C1Z)                                                                         |
| Proposed land use zoning                                                                      | Commercial 1 Zone (C1Z)                                                                         |
| Surrounding land use – north                                                                  | Commercial and industrial                                                                       |
| Surrounding land use – south                                                                  | Albion Street, Industrial/commercial                                                            |
| Surrounding land use – east                                                                   | Ilhan Lane, residential and commercial.                                                         |
| Surrounding land use – west                                                                   | Upfield train line, industrial to Cassels Road.                                                 |
| Has EPA been notified about the site under Section 40 of the Environment Protection Act 2017? | Νο                                                                                              |
| Nearest surface water receptor – name                                                         | Merri Creek                                                                                     |
| Nearest surface water receptor – direction                                                    | East                                                                                            |
| Site aquifer formation                                                                        | Newer Volcanics                                                                                 |
| Groundwater segment                                                                           | A2 – B (inferred)                                                                               |



# TABLE OF CONTENTS

| 1 | INTRODUCTION1                   |                         |                                                               |     |
|---|---------------------------------|-------------------------|---------------------------------------------------------------|-----|
| 2 | OBJECTIVE                       |                         |                                                               | . 1 |
| 3 | SCOPE OF WORK                   |                         |                                                               |     |
| 4 | SITE IDENTIFICATION             |                         |                                                               |     |
|   | 4.1 SITE DEFINITION AND ZONING  |                         |                                                               | 2   |
|   | 4.2                             | 4.2 CURRENT SITE STATUS |                                                               |     |
|   | 4.3                             | SURRO                   | DUNDING LAND USES                                             | 3   |
|   | 4.4                             | PROPO                   | DSED DEVELOPMENT                                              | 3   |
| 5 | CON                             | CEPTUA                  | AL SITE MODEL DEVELOPMENT                                     | . 3 |
|   | TOPC                            | GRAPH                   | HY AND DRAINAGE                                               | 4   |
|   | 5.1                             | SOILS                   |                                                               | 4   |
|   | GEOL                            | OGY                     |                                                               | 4   |
|   | HYDF                            | ROLOGY                  | Y AND HYDROGEOLOGY                                            | 4   |
|   |                                 | 5.1.1                   | Groundwater aquifers and potentiometric surface               | 4   |
|   |                                 | 5.1.2                   | Groundwater salinity                                          | 5   |
|   |                                 | 5.1.3                   | Groundwater dependent ecosystems (GDE)                        | 5   |
|   |                                 | 5.1.4                   | Groundwater resource utilisation                              | 5   |
|   | 5.2 ENVIRONMENTAL REPORT REVIEW |                         | ONMENTAL REPORT REVIEW                                        | 6   |
|   |                                 | 5.2.1                   | Compass Environmental (2018) – Preliminary site investigation | 6   |
|   |                                 | 5.2.2                   | GeoAust (2021) – Geotechnical report                          | 6   |
|   | 5.3                             | NEARBY AUDIT REPORTS    |                                                               | 7   |
|   | 5.4                             | EPA VI                  | CTORIA RECORDS                                                | 7   |
|   | 5.5                             | SITE H                  | ISTORY                                                        | 1   |
|   |                                 | 5.5.1                   | Historical titles                                             | 1   |
|   |                                 | 5.5.2                   | Royal Historical Society Victoria (RHSV)                      | 2   |
|   |                                 | 5.5.3                   | Aerial imagery                                                | 3   |
|   | 5.6                             | SITE IN                 | ISPECTION                                                     | 4   |
|   | 5.7                             | SITE H                  | ISTORY SUMMARY                                                | 4   |
|   | 5.8                             | POTEN                   | ITIAL SOURCES AND CONTAMINANTS OF POTENTIAL CONCERN           | 5   |
| 6 | FIELD                           | ) PROG                  | RAM                                                           | . 6 |
|   | 6.1                             | SOIL IN                 | VESTIGATION                                                   | 6   |
|   |                                 | 6.1.1                   | Rationale for sampling locations                              | 6   |
|   |                                 | 6.1.2                   | Soil sampling methodology                                     | 6   |
|   |                                 | 6.1.3                   | Soil sampling observations                                    | 6   |
|   | 6.2 VAPOUR INVESTIGATION        |                         |                                                               | 7   |

#### ENVIRONMENTAL EARTH SCIENCES CONTAMINATION RESOLVED

| 7  | LABORATORY ANALYSIS                           |                                                      |    |  |  |
|----|-----------------------------------------------|------------------------------------------------------|----|--|--|
|    | 7.1                                           | PROCEDURES FOR QUALITY CONTROL AND QUALITY ASSURANCE | 8  |  |  |
| 8  | ENVIRONMENTAL QUALITY OBJECTIVES AND CRITERIA |                                                      |    |  |  |
|    | 8.1                                           | LAND ENVIRONMENTAL VALUES                            | 9  |  |  |
|    |                                               | 8.1.1 Screening criteria                             | 11 |  |  |
|    | 8.2                                           | SURFACE WATER                                        | 12 |  |  |
|    | 8.3                                           | AIR                                                  | 12 |  |  |
| 9  | RESULTS                                       |                                                      |    |  |  |
|    | 9.1                                           | SOIL                                                 | 13 |  |  |
|    | 9.2                                           | VAPOUR                                               | 14 |  |  |
| 10 | DISCUSSION                                    |                                                      |    |  |  |
|    | 10.1                                          | SOIL                                                 | 14 |  |  |
|    | 10.2                                          | VAPOUR                                               | 15 |  |  |
| 11 | PRSA                                          | OUTCOME                                              | 15 |  |  |
| 12 | CON                                           | CLUSION AND RECOMMENDATIONS                          | 16 |  |  |
|    | 12.1                                          | PRSA OUTCOME                                         | 16 |  |  |
| 13 | LIMIT                                         | ATIONS                                               | 17 |  |  |
| 14 | REFE                                          | RENCES                                               | 17 |  |  |

# Table of Figures

Figure 1: Site layout and sampling locations

# Tables

- Table 1: Summary of Audit Information
- Table 2: Physical Site Information
- Table 3: Site Details
- Table 4: Summary of nearby Audits
- Table 5: Title history
- Table 6: Review of available aerial images
- Table 7: Groundwater bore installation details
- Table 8: Land Environmental Values



Table 9: Indicators and objectives for land Table 10: Site specific EILs Table 11: Soil analytical results Table 12: Vapour analytical results Table 13: Soil RPDs Table 14: Vapour RPDs Table 15: Field blank result

# Appendices

- APPENDIX A: Development plans
- APPENDIX B: Registered bore search
- APPENDIX C: Historical titles
- APPENDIX D: RHSV Transcript
- APPENDIX E: Aerial imagery
- APPENDIX F: Site photographs
- APPENDIX G: Geological borelogs
- APPENDIX H: Vapour sampling field sheets
- APPENDIX I: Laboratory documentation
- APPENDIX J: Quality assurance and quality control
- APPENDIX K: EIL calculation



# 1 INTRODUCTION

On 16 November 2020, Nightingale Albion Development Pty Ltd (Nightingale) requested the Environmental Auditor (Phil Mulvey of Environmental Earth Sciences) to complete an Preliminary Risk Screen Assessment (PRSA) of the property located at 215, 217 and 219 Albion Street, Brunswick, Victoria (herein after referred to as "the site"). The audit was put on hold and did not start due to site constraints associated with COVID. In 2021 the permit conditions were upgraded to account for the regulations of the updated Environment Protection Act 2017.

The site is subject to an Environmental Audit Overlay (EAO) as per the Moreland City Council Planning Scheme. The Moreland City Council, Notice of Decision to Grant a Planning Permit (Application No. MPS/2020/555) states that

Prior to the commencement of construction or carrying out of buildings and works associated with a sensitive use, or where no buildings and works are proposed, prior to the commencement of the permitted sensitive use:

a) A preliminary risk screen assessment statement in accordance with the Environment Protection Act 2017 must be issued stating that an environmental audit is not required for the use and development allowed by this permit.

A upon initial engagement (prior to the introduction of PRSA), Phil Mulvey of Environmental Earth Sciences was engaged to undertake a 53X audit of the site, however, following an update to the planning permit requirements by Moreland City Council, a PRSA was opted for to determine if an audit would be required.

The regional location and investigation boundary are shown in **Figure 1**, with the Development plans provided in **Appendix A.** 

# 2 OBJECTIVE

The objective of the PRSA is to

- Assess the potential for contamination to be present at the site;
- Conclude whether an Audit of the site will be required to determine that the land is suitable for the proposed high density residential use; and
- If an Audit is considered by the Auditor to be required, an outline scope for Audit will be provided.



# 3 SCOPE OF WORK

The scope of work undertaken comprised the following:

- Review previous assessor reports (e.g. Compass Environmental (2018) Preliminary Site Investigation)
- Undertake a detailed desktop historical review and development of conceptual site model;
- Advancement of 8 soil investigation bores to a maximum depth of 1.5m bgl.
- Collection of one soil vapour sample from a previously installed deep bore onsite;
- Analysis of soil and vapour samples for identified contaminants of concern;
- Undertake a site inspection by the auditor (to confirm the condition of the site); and
- Preparation of this report.

# 4 SITE IDENTIFICATION

## 4.1 Site definition and zoning

Key site information is summarised in Table 3. Refer to Figure 1 for site layout and location.

#### Table 3: Site Details

| Item               | Details                                     |  |  |  |
|--------------------|---------------------------------------------|--|--|--|
| Site address       | 215 - 219 Albion Street Brunswick, Victoria |  |  |  |
| Site area          | 2192.6 m <sup>2</sup>                       |  |  |  |
| Lot and plan       | Lot-1-TP567753                              |  |  |  |
|                    | Lot-1-TP694780                              |  |  |  |
|                    | Lot-1-TP712069                              |  |  |  |
| Current site owner | Nightingale Albion Developments Pty Ltd     |  |  |  |
| Local government   | Moreland City Council                       |  |  |  |
| Current zoning     | Commercial 1 Zone (C1Z)                     |  |  |  |
| Planning overlays  | Environmental Audit Overlay (EAO)           |  |  |  |

# 4.2 Current site status

At the time of PRSA completion, the site was covered by three commercial buildings, including the following with the following uses:



- 215 Albion Street Vacant warehouse
- 217 Albion Street Vacant warehouse
- 219 Albion Street Commercial building site office, lunch room and material lay down area for building operations occurring at 216 Albion Street.

# 4.3 Surrounding land uses

The surrounding land uses at the time of reporting included the following:

- North: Commercial land use including; Youthworx, Pea Green Boat and Natasha Jordan Bauer (hat shop) south of Tinning Street.
- East: Ilhan Lane, residential and vacant land with commercial (YourCoffee) less than 50m east of 215 Albion Street.
- South: bound by Albion Street, Anstey Train Station, Commercial land uses (Nerudas Brunswick) followed by high density residential north of Florence Street.
- West: Upfield train line to the immediate west of 219 Albion Street, followed by large commercial land use then residential from 227 Albion Street (west if Cassels Road).

# 4.4 Proposed development

The proposed development includes:

- Mixed use 9-storey high density residential (apartment);
- Commercial facilities on the ground and first floors (carparks, office space, studio and courtyard in the centre).
- Residential premises on elevated levels;
- Development will not involve extensive soil removal and will involve importation of material for levelling purposes, to be utilised predominantly in the southern portion of the site.
- The proposed development plans are provided in Appendix A.

# 5 CONCEPTUAL SITE MODEL DEVELOPMENT

A key component of a total assessment of the risk of harm to beneficial uses is the development of a conceptual site model (CSM). This identifies potential sources of contamination, potential migration pathways along which identified contaminants could migrate and potential receptors which may become exposed.



# Topography and drainage

The surface elevation at site is approximately 54 mAHD in the north and 53 mAHD, sloping from north to south (DELWP, 2021). The regional topography is generally sloping downwards towards the Yarra River in the south.

Merri Creek (36mAHD) is also located approximately 1.8km east of 215 Albion St.

# 5.1 Soils

Van de Graaf and Wootton (1996) describes the soils typically found in the region to consist of Sodosols. The subsoil is described as having a strong texture contrast between A horizons and sodic B horizons. According to the Australian Soil Resource Information System (ASRIS), the soils are classified as Sodosols which are soil profiles which have a strong texture contrast between A and subsoil B horizons (CSIRO 2016).

Given that the underlying geology is basalt it is likely that the site is not underlain by Sodosols which are associated with the Dargile formation.

A review of the ASRIS Acid Sulfate Soils map indicates that the site is extremely low probability the potential for coastal or inland acid sulfate soils.

# Geology

A review of the Geological Survey of Victoria 1:63,360 series Melbourne Map Sheet scale map sheet (GSV, 1974) indicate that:

- The surface geology at the site is Quaternary aged Newer Volcanics (Qvn) comprising of Olivine labradorite basalt.
- The basement layer of this area as indicated on this Map sheet is Silurian Aged Dargile Formation (Sud) (Melbourne Formation) consisting of sandstone and siltstone.

# Hydrology and Hydrogeology

#### 5.1.1 Groundwater aquifers and potentiometric surface

Groundwater is anticipated to be present within the Newer Volcanic unit and is likely To be present at depths ranging 5 – 10m below ground level (m bgl) (VVG 2021).

Based on surface topography, groundwater is likely to flow in a south – south easterly direction from the site towards Yarra River, approximately 5 km south of the site.

Information presented in the audit report (AECOM 2019) for 216 Albion Street Brunswick (20m south of the site) suggests that:

- Depth to groundwater is likely to exist at depths approximately 13-16 m bgl.
- Groundwater flow direction is likely to tend to the south;



## 5.1.2 Groundwater salinity

The groundwater salinity is expected to range 1,001 - 3,500mg/L (VVG, 2021), reported as total dissolved salts (TDS). Therefore, groundwater beneath the site is likely to be classified as Segment C according to *Environmental Reference Standard* (ERS).

Under this policy, the Environmental Values (EVs) that are to be protected under Segment C include:

- Water dependent ecosystems and species;
- Potable mineral water supply
- Agriculture and irrigation (stock watering)
- Industrial and commercial;
- Water-based recreation (primary contact recreation);
- Traditional Owner cultural values;
- Culture and spiritual values;
- Buildings and structures; and
- Geothermal properties.

#### 5.1.3 Groundwater dependent ecosystems (GDE)

The Bureau of Meteorology (2021) Groundwater Dependent Ecosystems (GDE) map did not identify any terrestrial GDE within 2km of the site.

#### 5.1.4 Groundwater resource utilisation

A search of the Department of Environment, Land, Water and Planning (DELWP) Water Measurement Information System was conducted to identify bores within a 1 km radius of the site

- Groundwater bores in the vicinity of the site are utilised for observation purposes;
- Groundwater bores installed for observation purposes are drilled to depths ranging 11 25 m bgl.

The nearest potential surface water receptors are Merri Creek (1.8 km east of site) and Moonee Ponds Creek (2.3 km west of site).

The results of the registered bore search are presented in Appendix B.



# 5.2 Environmental report review

## 5.2.1 Compass Environmental (2018) – Preliminary site investigation

Compass Environmental conducted a site history review of 215-219 Albion Street, Brunswick which included a site inspection on 4 October 2018.

The following was noted:

**215 Albion Street:** Ground floor is vacant, no cracking or staining on concrete floor. The first floor was occupied by videographers and used as a studio.

**217 Albion Street:** Large ground floor was vacant. The south west corner of this property was a car space with some oil staining. The first floor has tenants who also occupy 219.

**219 Albion Street:** Ground floor was occupied by a clothing manufacturer with a small office in the southeast of the floor. This building was primarily a large warehouse filled with textile equipment and clothing. There is a boiler (believed to be powered by gas) servicing and ironing functions associated lines, air extraction and multiple ironing set ups. General laundry products and a flocculant were in use. There was no access to the first floor.

Compass Environmental stated that historical industrial/commercial land use as textile, (including sheepskins) could be a potential source of metals, monoaromatic hydrocarbons, PAH chlorinated solvents, petroleum hydrocarbons, oils, greases, organochlorine, pesticides and nitrates.

Imported fill material and building demolition rubble could also be a potential source of ground contamination.

Compass environmental also noted the potential presence of underground storage tanks could contribute to contamination onsite.

Compass environmental also noted that there is a moderate potential of contamination impact from off site source, mainly associated with historical nearby commercial and industrial properties.

# 5.2.2 GeoAust (2021) – Geotechnical report

A geotechnical investigation was undertaken by GeoAust at the site. The following information presented in the report is relevant to the existing environmental condition of the site:

- One groundwater bore was drilled onsite to a maximum depth of 10m bgl;
- Ground conditions consisted of clayey silt (completely weathered basalt) from surface to 0.6m bgl and distinctly weathered basalt from 0.6 – 10m bgl
- A description of the basalt is as follows "The basalt was slightly fractured to fragmented with a distinct banding pattern... Most of the fractures were infilled extremely weathered seams. A number of fractures were also infilled with with a clay veneer or clay seams up to 30mm in thickness"



- Several regions of core loss were encountered during drilling indicating extremely weathered basalt or clay seams (1.95 – 2.1, 4.95 – 5.4, 7.35 – 7.5, 8.6 – 9.0m bgl)
- No groundwater was encountered during the advancement of the groundwater bores, however, groundwater was measured at a depth of 6.94m bgl following installation (however, NMLC diamond core was used, introducing water in the drilling process).

# 5.3 Nearby Audit reports

A summary of key information from nearby completed Audits is provided in Table 4.

The following was noted:

- Regional diffuse chlorinated hydrocarbon (CHC) groundwater contamination is stated to be present throughout the area as a result of historical industrial activity.
- A vapour risk assessment (VRA) was undertaken by Beverage Williams as part of the audit completed at 208 Albion Street Brunswick, CARMs 57628-1.
- The VRA concluded that there was low risk associated with low level CHC concentrations.
- The audits completed at 216 and 210 Albion St cite the findings of the Beveridge Williams VRA as grounds for determining observed groundwater concentrations low risk.

# 5.4 EPA Victoria Records

The Priority Sites Register lists properties which EPA have issued a clean-up notice or pollution abatement notice under the *Environment Protection Act 1970*. A search conducted on the Priority Sites Register, identified that the site is not listed.

A review of the Victorian Landfill Register (VLR) revealed a closed landfill Located on Lee Street Brunswick East approximately 2km south east of 215 Albion Street (landfill register number: 10965). Another (closed) landfill is located 3.85km east of the site (landfill register number: 10590) on Brickworks Lane, Northcote.



# Table 4: Summary of nearby audits

| Address                                    | Distance<br>and<br>direction<br>from site | CARMS & date            | Groundwater<br>depth and<br>flow<br>direction                  | Groundwater<br>salinity | Site History                                                                 | Contaminants                                                                                                                                                        | Outcome                          |
|--------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 216 Albion<br>Street,<br>Brunswick<br>3056 | 20m,<br>South                             | 74970-2<br>(18/12/2019) | 13-16 mBGL<br>South /<br>southwest<br>and south /<br>southeast | 601-1,200<br>mg/L       | Light industrial (clothing and beverage manufacturing)                       | Nitrogen and nitrate. Also present in<br>groundwater (but not considered<br>pollution) are metals (cobalt, copper,<br>manganese, nickel, sodium,<br>vanadium, zinc) | Statement (GQRUZ<br>recommended) |
| 210 Albion<br>Street,<br>Brunswick<br>3056 | 50m,<br>South                             | 67364-1<br>(15/10/2010) | 14.2Mbgl,<br>flow to the<br>south                              | 720mg/L                 | Residential, Clothing<br>Manufacturing Business (cutting<br>and sewing only) | Dichloromethene (DCE) and<br>Tetrachloroethene (PCE). TRH (C15-<br>C36). BaP and total PAH                                                                          | Statement                        |
| 208 Albion<br>Street<br>Brunswick          | 60m,<br>South<br>East                     | 57628-1,<br>17/11/2006  | No groundwate                                                  | er investigation        | Bakery and residence, pharmaceuticals, fuel merchants                        | Dichloromethene (DCE) and<br>Tetrachloroethene (PCE). Metals;<br>Boron, chromium, copper, zinc.                                                                     | Statement                        |
| 204-206<br>Albion<br>Street<br>Brunswick   | 100m<br>South<br>East                     | 75410-1,<br>11/07/2018  | No groundwate                                                  | er investigation        | Nut company                                                                  | Benzoapyrene (BaP) and lead.                                                                                                                                        | Statement                        |
| 200 Albion<br>St<br>Brunswick              | 150M<br>South<br>East                     | 54059-1,<br>22/02/2005  | 10.5-<br>13mBGL, S-<br>SW                                      | 1,001-<br>3,500mg/L     | Residential, commercial chemical storage.                                    | 1,1-DCE, PCE, 1,1 – DCE, 1,1-DCA,<br>Barium, manganese, B(a)P, total<br>PAH.                                                                                        | Statement                        |
| 1-7<br>Colebrook<br>St,<br>Brunswick       | 270m<br>North<br>West                     | 62297-1,<br>22/05/2008  | No groundwat                                                   | er investigation        | Light industrial/commercial<br>(warehousing)                                 | No contamination                                                                                                                                                    | Certificate                      |



# 5.5 Site history

#### 5.5.1 Historical titles

A review of the historical titles indicate that

- Nightingale Albion land Holdings Pty Ltd is the current land owner for all three lots (215 219 Albion St) acquiring the last lot in July 2020.
- Uses at the site include residential (estimated until approximately 1965 at 217 219 Albion St and 1967 at 215 Albion St) and clothing manufacture (1967 onwards).
- The three buildings appear to have evidence of being utilised for clothing manufacture from the 1965 onwards, the proprietors Barden Clothing Pty Ltd, H.D. Lee (Australia) Pty Ltd and Ugg Australia Pty Ltd are all linked to clothing manufacture and or sheep skin footwear.

A summary of the title history is presented below in Table 5.

## Table 5: Title history

| Volume            | Folio | Registered Proprietor                                 | Date       | Status  |  |  |  |
|-------------------|-------|-------------------------------------------------------|------------|---------|--|--|--|
| 215 Albion Street |       |                                                       |            |         |  |  |  |
| <b>11429</b> 999  |       | Nightingale Albion Land Holding Pty Ltd               | 6/11/2018  | Current |  |  |  |
|                   |       | Flask Walk Holdings Pty Ltd                           | 29/02/2016 | History |  |  |  |
|                   |       | Ugg Australia Pty Ltd                                 | 22/10/1996 | History |  |  |  |
| 4751              | 84    | Motek Brajtberg                                       | 14/07/1992 | History |  |  |  |
|                   |       | Motek Brajtberg & Bluma Brajtberg (Company Directors) | 31/10/1968 | History |  |  |  |
|                   |       | Kynd Investments Pty Ltd                              | 14/04/1967 | History |  |  |  |
|                   |       | Joseph Charles Cyril Renshaw (Engineer)               | 30/09/1966 | History |  |  |  |
|                   |       | Joseph Renshaw (Engineer)                             | 5/09/1923  | History |  |  |  |
|                   |       | 217 Albion Street                                     |            |         |  |  |  |
| <b>3768</b> 516   | 516   | Nightingale Albion Land Holding Pty Ltd               | 9/11/2018  | Current |  |  |  |
|                   |       | Flask Walk Holdings Pty Ltd                           | 29/02/2016 | History |  |  |  |
|                   |       | Ugg Australia Pty Ltd                                 | 28/08/2008 | History |  |  |  |
|                   |       | G.O.R.M. Pty Ltd                                      | 14/07/2003 | History |  |  |  |
|                   |       | Rubino Loriso & Michelina Loriso                      | 2/12/1994  | History |  |  |  |
|                   |       | Giuseppe Loriso & Ortenzia Loriso                     | 9/10/1992  | History |  |  |  |
|                   |       | Palmlea Pty Ltd                                       | 1/09/1989  | History |  |  |  |
|                   |       | H.D. Lee (Australia) Pty Ltd                          | 18/12/1987 | History |  |  |  |
|                   |       | Barden Clothing Pty Ltd                               | 7/12/1965  | History |  |  |  |
|                   |       | Norman Joseph Heymanson (Manufacturer)                | 9/09/1958  | History |  |  |  |



| Volume | Folio                                                    | Registered Proprietor                   | Date       | Status  |
|--------|----------------------------------------------------------|-----------------------------------------|------------|---------|
|        |                                                          | Catherine Maud Noble                    | 17/07/1956 | History |
|        |                                                          | Arthur Henry Bates Noble (Jeweller)     | 21/02/1914 | History |
|        |                                                          | 219 Albion Street                       |            |         |
| 4802   | 318                                                      | Nightingale Albion Land Holding Pty Ltd | 2/07/2020  | Current |
|        |                                                          | KI Portfolio Pty Ltd                    | 17/03/2000 | History |
|        |                                                          | Zamozip Australia Pty Ltd               | 21/11/1996 | History |
| -      | Ekrem Unalan, Mahmut Gundogdu, Nusret Goc & Cavit<br>Goc | 7/03/1995                               | History    |         |
|        | Super Action Pty Ltd                                     | 8/08/1989                               | History    |         |
|        | H.D. Lee (Australia) Pty Ltd                             | 18/12/1987                              | History    |         |
|        |                                                          | Barden Clothing Pty Ltd                 | 7/12/1965  | History |
|        |                                                          | Norman Joseph Heymanson (Manufacturer)  | 30/06/1959 | History |
|        |                                                          | Thelma Mary Hosking                     | 14/10/1958 | History |
|        |                                                          | Richard John Davies (Driver)            | 7/09/1931  | History |
|        |                                                          | Donald Macdonald & Frances Macdonald    | 15/01/1924 | History |

Copies of historical titles are included in Appendix C.

# 5.5.2 Royal Historical Society Victoria (RHSV)

The Royal Historical Society of Victoria (RHSV) conducted a search of available historical records, namely the Sand and McDougall directories, to determine historical business activities at the site. A summary is provided below:

- The area of Brunswick was grazing land between 1850s to 1880s before the railway (Upfield Train line to the west of site) and tramway were established on Sydney Road in 1884.
- The area was subdivided and private residences were built along Albion Street. This particular site was "under investigation" and buildings were first constructed in 1912.
- Sands & McDougall directory listed the site as "3 vacant houses" with number 30, 32 and 34 respectively in 1912.
- The house numbers changed in the 1950s to 215, 217 and 219.
- The current warehouse buildings were first listed in the 1971 directory.
  - 215 Albion St was listed as a clothes manufacturer, 215A was a motor accessory retailer;
  - 217 Albion St as an apartment; and



- 219 Albion St was listed as a clothing manufacturer.
- In 1974 number 217 Albion St was listed as: Yakka clothing manufacturer, while 215 and 219 remained as previously stated.

A copy of the RHSV transcript is presented in Appendix D.

## 5.5.3 Aerial imagery

A review of the available aerial images is presented in Table 6 below. Copies of aerial imagery are presented in Appendix E.

| Year | Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Site surrounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1951 | Three buildings are present at the site<br>situated in the southern portion of the site.<br>What appears to be trees present in the<br>northern portions of 219 and 217 Albion St.<br>The roofing layout of the buildings present is<br>similar to houses which are present (and<br>remain present to this day) west of the site<br>along Albion St.                                                                                                                                   | <ul> <li>Albion St, Sydney Road, Anstey Rail station<br/>are present.</li> <li>Large residential are west of the railway line,<br/>commercial area to the north of site along<br/>Sydney Road. Small warehouses appear<br/>south of Albion Street.</li> <li>Regionally, A G Gillion Oval (approximately<br/>950 south west of the site) is present. The<br/>area where Gilpin Park is south of Albert St,<br/>approximately 1.25 km south east. Appears to<br/>be a quarry</li> </ul> |
| 1968 | 219 AlbionBuildings are present in the southern portion<br>of the lot as per 1951.The northern portion of has a roof extending<br>on it 1/3 of the block from the northern<br>adjacent property.217 AlbionBuildings are present in the southern portion<br>of the lot as per 1951.A tree appears to be present in the centre of<br>the lot as per 1951.215 Albion215 Albion St Appears vacant with the only<br>clear building outline present existing in the<br>north western corner. | Large residential are west of the railway line,<br>commercial area to the north of site along<br>Sydney Road. Small warehouses appear<br>south of Albion Street.<br>Regionally, A G Gillion Oval (approximately<br>950 south west of the site) is present. The<br>area where Gilpin Park is south of Albert St,<br>approximately 1.25km south east. Appears to<br>be a quarry                                                                                                         |
| 1989 | The site appears in its current configuration,<br>3 warehouse buildings covering the majority<br>of the lots.                                                                                                                                                                                                                                                                                                                                                                          | Commercial/industrial development has<br>increased north of site along Sydney.<br>Regionally, Gilpin Park appears to be more<br>like an open park.                                                                                                                                                                                                                                                                                                                                    |
| 2001 | A new roof appears to be present at 215<br>Albion St. Others as per 1989.                                                                                                                                                                                                                                                                                                                                                                                                              | Similar to above, more industrial/warehouse growth west of the trainline, north east of the site.                                                                                                                                                                                                                                                                                                                                                                                     |
| 2009 | As above                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | As above, further commercial/industrial growth<br>in the south of Albion St, west of Sydney<br>Road.                                                                                                                                                                                                                                                                                                                                                                                  |

#### Table 6: Review of available aerial images



| Year              | Site                                                                                         | Site surrounds                                                                             |
|-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                   |                                                                                              | Evidence of high density/mixed use land use along Sydney Road, South of Albion St.         |
| 2020<br>(Nearmap) | Warehouses on 217 and 219 Albion St<br>appear to have elongated to the north of the<br>site. | As above, construction evident on the immediate west of the trainline, south of Albion St. |

# 5.6 Site inspection

The Auditor undertook a site inspection of the site on 26 November 2021, the following observations were made:

- The ground floor of all buildings was suspended in the south and apparently on ground level at the North.
- There was no evidence of hydrocarbon staining or USTs.
- There no evidence of any use of heavy machinery on the floors which were continuous concrete.
- The large opening buildings with some minor areas partitioned for offices are consistent with the use of clothing manufacture.
- There was no sunken areas consistent with vats used for tanning.
- The was no evidence of any use apart from clean uses of open warehouses such as clothing manufacture.

Photos collected during the site inspection are presented in Appendix F.

# 5.7 Site history summary

A review of available historical records indicates the following about the site's history:

- The three lots were used for residential purposes up until the 1965 Based upon aerial imagery, title history and Sand and McDougall records;
- Residential premises were demolished to build the current warehouse buildings between 1968 and 1971 – based upon aerial imagery and Sands and McDougall records;
- Each of the lots were used for clothing manufacture from the 1960's onwards Based upon title history and Sand and McDougall records;
- The sites have no evidence of being utilised for textile processing such as dying or leather tanning based on their layout which was implied by Compass Environmental (2018). The site inspection indicates the use was a non-staining use of a smooth floored warehouse, consistent with clothing manufacture.



# 5.8 Potential sources and contaminants of potential concern

Based on the historical review, the potential for contamination exists from the following historical site uses and surrounding land uses/ features. The site history and site layout suggests that the historical use of the site for:

- Clothing manufacture purposes is likely limited to cutting, ironing and sewing of fabric.
- Sheep skinning (as stated in Compass 2020) refers to assembling and of "Ugg" boots and the removal and tanning of sheep skins. The tannery associated with Ugg Australia Pty Ltd exists in Laverton. Only sewing of sheep skins was likely to have occurred at site.
- The inference of the potential presence of underground ground storage tanks (USTs) in Compass (2018) is not supported by site observations.

As a result the potential contamination sources applicable to the site include the following.

#### **Onsite sources of contamination**

Imported fill.

#### Offsite sources of contamination

• Regional diffuse groundwater as reported in Audit reports south on Albion street less than 200m of the site.

Based on these potential sources of contamination, the following chemicals of potential concern (CoPC) were identified:

#### Imported fill

- Heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc, mercury);
- Polycyclic aromatic hydrocarbons (PAH);
- Total recoverable hydrocarbons (TRH);

#### Offsite sources of contamination

 Chlorinated solvents (vinyl chloride, TCE, DCE and PCE) in groundwater and soil vadose zone.



# 6 FIELD PROGRAM

# 6.1 Soil investigation

## 6.1.1 Rationale for sampling locations

Sampling density is informed by Table E1 *Minimum Sampling Required for Site Characterisation Based on Detection of Circular Hot Spots Using a square grid*, AS 4482.1-2005. Based on the size of the site, a minimum of 8 soil sampling locations were recommended to be advanced.

## 6.1.2 Soil sampling methodology

Soil sampling was conducted using a hand auger at all locations. Soil sampling locations are presented in **Figure 1**.

Soil sampling was conducted in accordance with Standards Australia (1999) and Standards Australia (2005).

Field logging at all soil profiles was undertaken, describing the soil characteristics including lithology, extent of lithology, colour, odour, field pH measurements, moisture content (dry, moist, wet), and other inclusions. Field headspace readings were from sub samples of soil collected down the soil profile using a calibrated Photo Ionisation Detector (PID) to provide an indication of presence of VOCs.

Samples were generally collected using the following rationale at each test pit/borehole location:

- Regular intervals (i.e. immediately beneath the concrete slab (0.1 0.2), 0.5, 1.0 and 1.5m); and/or
- Change of lithology; and/or
- Areas where potential soil contamination was identified (based on visual/ olfactory indicators or elevated PID levels).

Samples were collected by hand using dedicated disposable nitrile gloves, with soil placed directly into a clean glass jar supplied by the nominated NATA accredited laboratory. Samples are to be placed immediately into a chilled (i.e. <4°C) container for transport to the laboratory under full chain-of-custody documentation.

## 6.1.3 Soil sampling observations

The following observations were made during soil sampling:

- Fill material was present up to a maximum depth of 1.5m bgl;
- Fill material was described generally consisting of grey/ brown clay and sand with gravel throughout. Clearly not a Sodosol;



- Natural soil material was encountered and consisted of dark grey/brown, firm clay;
- No odours or staining were noted during sampling;
- PID readings were between 0.1 and 0.4 ppm;

Geological borelogs are presented in Appendix G.

# 6.2 Vapour Investigation

One primary soil vapour sample and one duplicate sample were collected from an existing groundwater bore at the site. The groundwater bore was previously installed by GeoAust (geotechnical consultants) to determine the presence of groundwater at the site. The groundwater bore was dry at the time of vapour sampling. The installation details of the groundwater bore are presented below in Table 6.

#### Table 7: Groundwater bore installation details

| Bore               | Top of casing<br>(mAHD) | Total<br>depth (m) | Auger drilling<br>(m) | Diamond<br>core drilling<br>(m) | Screen<br>interval (m) | Filter pack<br>interval (m) |
|--------------------|-------------------------|--------------------|-----------------------|---------------------------------|------------------------|-----------------------------|
| GTB01 <sup>1</sup> | 52.56                   | 10.0               | 0 – 1.5               | 1.5 – 10.0                      | 4.0 - 10.0             | 1.5 – 10.0                  |

Notes:

1. Name assigned to borehole by Environmental Earth Sciences

Soil vapour samples were collected on 9 November 2021. Calibration records are provided in Appendix J and soil vapour sampling field sheets are provided in Appendix H. The soil-vapour samples were collected in general accordance with the methods listed below:

- TO-15 (USEPA, 1999) using summa canister;
- USEPA (2002); and
- ASTM 2001.

Prior to the collection of soil-vapour, air was purged from the groundwater bore using a multi gas meter (GA5000). Given the large holding volume of air within the standpipe, air was purged for a nominal amount of time (25min) and stabilised gas reading were obtained, considered to be representative of sub soil concentrations.

Vapour was collected from the groundwater bore via a J Plug fitting using summa canisters with laboratory calibrated flow rate controllers (set at 60ml/minute).

To assess the likelihood of ambient air entering the sampling line during the sampling, leak testing was conducted using isopropyl alcohol. Isopropyl alcohol was placed on a rag within the headworks of the bore. The vapour sample was then analysed for isopropyl alcohol to assess the potential for ambient air leakage into the canister.



# 7 LABORATORY ANALYSIS

Samples were analysed by ALS Environmental (ALS) and Eurofins MGT. All laboratories are accredited with the National Association of Testing Authorities (NATA) for the methods used. Inter- and intra-laboratory duplicates, rinsate and trip blanks were analysed as part of our Quality Assurance and Quality Control (QA/QC) procedure.

The following chemical of potential concern were variously analysed for within the soil:

- Heavy metals (arsenic, cadmium, chromium, copper, nickel, lead, tin, zinc and mercury);
- Polycyclic aromatic hydrocarbons (PAHs, 16 priority compounds).
- Chlorinated hydrocarbons (TCE, PCE and others);
- Total recoverable/petroleum hydrocarbons (TRH/TPH);
- Benzene, toluene, ethyl benzene, total xylene and naphthalene (BTEXN);
- EPA Victoria 1828.2 Table 2 Broad screen of contaminants for waste classification;
- Soil characterisation analytes (Fe, TOC, pH and CEC).

The following chemical of potential concern were variously analysed for within the vapour sample collected:

- Chlorinated hydrocarbons (TCE, PCE and others); and
- Isopropyl alcohol (for quality assurance purposes)

Laboratory transcripts and documentation are provided in Appendix I.

# 7.1 Procedures for quality control and quality assurance

Quality control is achieved by using NATA registered laboratories using ASTM standard methods supported by internal duplicates, the checking of high, abnormal or otherwise anomalous results against background and other chemical results for the sample concerned.

Quality assurance is achieved by confirming that field results, or anticipated results based upon comparison with field observations, are consistent with laboratory results, and that sampling and decontamination methods are appropriate. In addition, the laboratory undertakes additional duplicate analysis as part of their internal quality assurance program on the basis of one duplicate analysis for every 20 samples analysed.

Field observations are compared with laboratory results when they are not as expected. Confirmation, re-sampling and re-analysis of a sample are undertaken if the results are not consistent with field observations and/or measurements. In addition, field duplicate sample results have to be within the acceptable range of reproducibility.

Laboratory QC calculations are presented in Tables 13 and 14 (Tables Appendix).



The overall assessment of the data quality is as follows:

- No analysis holding time breaches were identified;
- Calculated RPDs were generally within acceptable ranges;
- Field observations and measurements were generally comparable to laboratory data;
- Internal laboratory quality data is considered acceptable;
- The use of field instruments was acceptable;
- The dataset as a whole is considered suitable for basing the conclusions made in this report.

A complete explanation of quality assurance and quality control (QAQC) practices and objectives is presented in Appendix J.

# 8 ENVIRONMENTAL QUALITY OBJECTIVES AND CRITERIA

The Victorian Government has prepared an *Environmental Reference Standard* (ERS) in accordance with Clause 93 of the *Environment Protection Act* 2017. The ERS provides the framework for the assessment and reporting on environmental conditions in Victoria. It sets out the environmental values (EVs) of the ambient air, ambient sound, land, and water environments that are sought to be achieved or maintained in Victoria and standards to support those values.

Standards for the environmental values are comprised of objectives for supporting different uses of the environment and indicators that can be measured to determine whether those objectives are being met. The ERS is not a compliance standard, but the indicators and objectives provide a basis for assessment and reporting on environmental conditions in Victoria and the ERS is required to be considered by Auditors when carrying out their functions under the Act, including PRSA's.

The PRSA process requires that the levels of contamination reported be assessed in the context of the future land use. The applicable sections of the environment which need to be considered, such as soil, groundwater, surface water and air, are discussed in more detail below.

# 8.1 Land environmental values

Part 4 of the ERS sets out EVs applicable to various land use categories. These are summarised in **Table 8**.



## Table 8: Land Environmental Values

|                                             |                             | Land use              |              |                 |                             |                           |              |              |  |
|---------------------------------------------|-----------------------------|-----------------------|--------------|-----------------|-----------------------------|---------------------------|--------------|--------------|--|
|                                             |                             |                       | a            | Sensitive use   |                             | ,> e                      | al           | _            |  |
| Environmental Values                        |                             | Parks and<br>reserves | Agricultural | High<br>Density | Other<br>(Iower<br>density) | Recreation/<br>open space | Commercial   | Industrial   |  |
| ant<br>and                                  | Natural ecosystems          | $\checkmark$          |              |                 |                             |                           |              |              |  |
| Land dependant<br>ecosystems and<br>species | Modified ecosystems         | $\checkmark$          | $\checkmark$ |                 | $\checkmark$                | $\checkmark$              |              |              |  |
| Land<br>ecosy<br>s                          | Highly modified ecosystems  | $\checkmark$          | $\checkmark$ | $\checkmark$    | $\checkmark$                | $\checkmark$              | $\checkmark$ | ✓            |  |
| H                                           | Human Health                | $\checkmark$          | ~            | ~               | ~                           | $\checkmark$              | $\checkmark$ | $\checkmark$ |  |
| Build                                       | Building and structures     |                       | $\checkmark$ | ~               | ~                           | $\checkmark$              | $\checkmark$ | $\checkmark$ |  |
| Aesthetics                                  |                             | $\checkmark$          |              | ~               | ~                           | $\checkmark$              | $\checkmark$ |              |  |
| Production                                  | o of food, flora, and fibre | $\checkmark$          | $\checkmark$ |                 | $\checkmark$                |                           |              |              |  |

The site is proposed for high density residential and commercial use, for which EVs are:

- Highly modified ecosystems
- Human Health
- Buildings and Structures
- Aesthetics.

The land EVs considered to be applicable to the site are defined by the proposed use, mixed commercial and residential. In considering the approved development (Appendix A) it is noted that:

- The proposed development is to have no access to soil and as such the EV Aesthetics is not considered to be relevant.
- The Human health EV is considered relevant to the site with regards to underlying natural soil material
- The Buildings and structures EV is considered to be relevant to the site given that development will occur at the site in the future.



## Table 9: Indicators and objectives for land

| Beneficial use            | Indicators                                                                                                                                                               | Objectives                                                                                                                                                                                                                                                                                                            |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintenance of ecosystems | Concentration of contaminants.                                                                                                                                           | Contamination must not adversely affect the maintenance of relevant ecosystems and the level of any indicator must not be greater than any ecological investigation level (EIL) developed in accordance with the NEPM (NEPC, 2013) or levels approved by EPA Victoria.                                                |
| Human health              | Concentration of contaminants.                                                                                                                                           | Contamination must not cause an adverse effect on human<br>health and the level of any indicator must not be greater than the<br>investigation level specified for human health in NEPC (2013) or<br>levels derived using a risk assessment methodology described<br>in the NEPM, or levels approved by EPA Victoria. |
| Buildings and structures  | pH; sulfate; ORP;<br>salinity; other<br>substance or waste that<br>may have a detrimental<br>impact on the structural<br>integrity of buildings<br>and other structures. | Contamination must not cause the land to be corrosive to or adversely affect the integrity of structures or building materials.                                                                                                                                                                                       |

## 8.1.1 Screening criteria

Soil analytical results were compared to ASC NEPM (2013) Schedule B(1): Guideline on the Investigation Levels for Soil and Groundwater:

- Health investigation level (HIL) human exposure setting B (High density Residential).
- Ecological investigation levels (EILs), aged soil. Residential land use
- Ecological Screening Levels (ESLs) for TRH fractions and BTEXN in soil. Residential land use.
- Management Limits for TPH/TRH in soil. Residential land use.
- Health Screening Levels (HSLs) for Petroleum Hydrocarbons in Soil and Groundwater, Summary, Technical Report 10, September 2011 (CRC Care, 2011). Residential land use.

Site specific derived EIL calculations are provided below.

The EILs assigned by ASC NEPM (2013) Schedule B5a - *Guideline on Ecological Risk Assessment* are adopted for this assessment. This guideline presents the methodology for deriving terrestrial EILs using both fresh and aged (i.e. > 2 years old) contamination for soil.

The methodology has been developed to protect soil processes, soil biota (flora and fauna) and terrestrial invertebrates and vertebrates. The proposed use for the site is high density residential and thus EILs for "urban residential and public open space" have been adopted for this assessment.



The values presented for zinc, chromium (III), copper and lead are added contaminant limits (ACLs) based on added concentrations. The EIL is calculated from summing the ACL and the ambient background concentration (ABC) to derive the site-specific soil quality guideline (SQG) taking into account the effect caused by pH, exchangeable cations, iron and total organic carbon in soil that can affect concentration toxicity data.

Values presented for arsenic, naphthalene and DDT are generic EILs based on total concentrations of aged (arsenic) and fresh contaminants. The EIL for lead has been calculated using the most conservative SQG value.

A summary of the EILs for aged contamination in soil (>2 years) for the adopted proposed land use is presented in Table 10 below. EIL calculation spreadsheets are presented in Appendix K.

| Analyte      | Ambient background concentration (mg/kg)1 | EIL – Urban Residential and public open space (mg/kg) |
|--------------|-------------------------------------------|-------------------------------------------------------|
| Arsenic      | 25                                        | 100                                                   |
| Naphthalene  |                                           | 170                                                   |
| DDT          |                                           | 180                                                   |
| Chromium III | 222                                       | 870                                                   |
| Copper       | 39                                        | 85                                                    |
| Lead         | 14                                        | 1100                                                  |
| Nickel       | 61                                        | 330                                                   |
| Zinc         | 74                                        | 510                                                   |

### Table 10: Site specific EILs

#### Notes:

2. Ambient background concentrations (ABC) were calculated as per Hamon et al (2004);

Added contaminant limits were determined using Tables 1B(1-5), Schedule B1, NEPC (2013) (via the NEPC EIL calculation spreadsheet) using a pH of 6.1 and CEC of 20.5 cmol/kg; clay content of 43% and organic carbon content of 0.7%

4. EILs have been rounded in accordance with Schedule B1, NEPC (2013)

## 8.2 Surface water

No surface water bodies are located on the site or in the immediate vicinity. In addition, there are unlikely to be any in the future. As such, the Environmental Auditor has not considered this environmental aspect in further detail.

## 8.3 Air

Ambient air is a segment of the environment that requires protection as per the ERS. The relevant EVs applicable to potential volatile contamination at the site includes:

• Life, health and well-being of humans



• Life, health and well-being of other forms of life, including the protection of ecosystems and biodiversity

Specific indicators for volatile contamination relevant to the site are not defined within the ERS, however, screening values presented by NEPM (2013) are utilised for the purposes of comparison to determine if the above listed EVs are considered to be protected or compromised.

The NEPM (2013) includes interim soil vapour Health Investigation Levels (HILs) for selected volatile chlorinated organic compounds, including:

- tetrachloroethylene (PCE);
- trichloroethylene (TCE);
- cis-1,2-dichloroethylene (DCE);
- 1,1,1-trichloroethane (1,1,1-TCA); and
- vinyl chloride (VC).

# 9 RESULTS

Tabulated results, compared to adopted screening criteria are presented in Table 11 and Table 12 (soil and vapour, respectively) in the tables appendix.

## 9.1 Soil

The following exceedances of adopted screening criteria were identified:

Benzo (a) pyrene (BAP) Toxicity Equivalent Quotient (TEQ) exceeded the adopted HIL (3 mg/kg) in sample BH04\_0.2 (11.1 mg/kg).

All other analytes were below adopted screening criteria.

Elevated concentrations (greater than the anticipated background concentration) of the following analytes were noted, however, were below the adopted screening level:

- TRH >C16-C34 Fraction in sample BH04\_0.2;
- Heavy metals, zinc and lead at sample locations BH02\_0.2, BH03\_0.2, BH04\_0.2, BH05\_0.2, BH08\_0.2;
- Polycyclic aromatic hydrocarbons (PAHs) at sample locations BH03\_0.2 and BH05\_0.2.



## 9.2 Vapour

No exceedances of adopted screening criteria were noted in the vapour sample collected at the site.

- TCE was detected in the samples collected (one primary one duplicate) at a concentration of 0.0188 mg/m<sup>3</sup>, less than the adopted NEPM (2013) screening criteria (0.02 mg/m<sup>3</sup>).
- No other volatile organic contaminants (VOCs) were detected above the LOR.

## 10 DISCUSSION

## 10.1 Soil

The results of the soil investigation conducted indicate that:

- The presence of elevated BAP TEQ within fill material is considered likely to be resultant from disposal of combustion by-products such as ash during the use of the site as residences.
- Low level PAH concentrations, inclusive of BAP, are ubiquitous throughout historical fill material.
- By comparison of reported individual PAH species concentrations to reported concentrations of reference PAH sources (such as black/brown coal tar, ash from black/brown coal combustion, coke, bitumen, creosote and waste diesel/petrol), the concentrations of PAHs observed in all samples is likely to be representative of black coal ash or coke (Environmental Earth Sciences 2021).
- Concentrations of BAP TEQ in the duplicate and triplicate samples collected (DUP\_01 and SPLIT\_01) were reported below adopted guideline values suggesting that elevated concentrations of BAP and other PAHs are likely representative of small inclusions within the soil samples collected and of heterogeneous contamination. This is consistent with the source being soot or char associated with ash.
- The proposed development at the site is a mixed commercial/ high density residential development with no access to underlying soil material. The primary exposure pathway for human PAH exposure is ingestion of soil material and no pathway for residential land user exposure will exist as a result of the proposed development.
- No pathway between residential receptors and identified BAP TEQ contamination will exist as a result of the proposed development, risk to human receptors at the site is considered to be low.
- The presence of elevated BAP and other PAHs within fill material indicates that the site is likely to be considered 'contaminated land', however, the presence of contamination is not considered to impose any risk or restriction to the proposed use of the site (as



described by the proposed plans) and as such, an environmental audit is not considered to be required to further assess risks presented by the contamination. This soil would need to be classified if any soil was to be disposed offsite. Any change of use from slab on ground will also require investigation and potential disposal of soil. This is normal remediation practices and would not require a higher level of validation than any development.

## 10.2 Vapour

The results of the vapour investigation conducted indicate that:

- The presence of detectable concentrations of TCE within the collected soil vapour sample indicates the presence of TCE within the vadose zone or the groundwater table.
- The adopted screening criteria is applicable to direct sub slab soil vapour concentrations (assuming a concentration attenuation factor of 0.1 between sub slab and ambient indoor concentrations) and is considered a highly conservative screening criteria.
- The collected vapour sample is considered to be representative of concentrations arising from immediately overlying the groundwater table before diffusing through the upper 7 metres or so of clayey soil. It is considered likely that considerable concentration attenuation will occur throughout the overlying soil profile, reducing potential vapour risk.
- The reported results are consistent with the assumption of low level diffuse, regional chlorinated hydrocarbon concentrations in groundwater, supported by completed environmental assessments on nearby properties (EPA Audit CARMS 67364-1, 57628-1 and 54059-1).
- The proposed development at the site is to include commercial usage on the ground floor, mitigating residential exposure to potential volatile contamination at the site.
- The risk to human receptors at the site posed by low level detectable TCE concentration in soil vapour (less than NEPM 2013 conservative tier 1 screening criteria) is considered to be very low.
- The presence of detectable TCE within soil vapour at the site indicates that groundwater at the site has the potential to be 'contaminated', however, the presence of contamination is not considered to impose any risk or restriction to the proposed use of the site (as described by the proposed plans) and as such, an environmental audit is not considered to be required to further assess risks presented by the potential offsite contamination.

# 11 PRSA OUTCOME

As a result of the investigations completed to date, the outcome of the PRSA is:

 Outcome 2 - Likely that contaminated land is present, but no environmental audit is required.



# 12 CONCLUSION AND RECOMMENDATIONS

The investigations undertaken identified the following:

- The site history indicates the site is likely to have been utilised for residential purposes (>1965) and clothing manufacturing from the 1965 onwards;
- The current site layout of three warehouses is likely to have been developed between 1968 and 1971 (based on aerial imagery and Sands and McDougall archives).
- Soil sampling at the site identified fill material to a maximum depth of 1.5m bgl;
- Natural soil at the site consists of dark grey basaltic clay;
- Laboratory analysis of collected soil samples identified that Benzo (a) pyrene (BAP) Toxicity Equivalent Quotient (TEQ) exceeded the adopted HIL (3 mg/kg) in sample BH04\_0.2 (11.1 mg/kg).
- The presence of elevated BAP TEQ within fill material is considered likely to be resultant from disposal of combustion by products from residences such as ash.
- No pathway between residential receptors and identified BAP TEQ contamination will exist as a result of the proposed development, risk to human receptors at the site is considered to be low.
- The presence of elevated BAP and other PAHs within fill material indicates that the site is likely to be considered ' contaminated land', however, the presence of contamination is not considered to impose any risk or restriction to the proposed use of the site (as described by the proposed plans) and as such, an environmental audit is not considered to be required to further assess risks presented by the contamination.
- TCE was detected in the samples collected (one primary and one duplicate) at a concentration of 0.0188 mg/m<sup>3</sup>, less than the adopted NEPM (2013) screening criteria (0.02 mg/m<sup>3</sup>).
- The reported results are consistent with the assumption of low level diffuse, regional chlorinated hydrocarbon concentrations in groundwater, supported by completed environmental assessments on nearby properties (EPA Audit CARMS 67364-1, 57628-1 and 54059-1).
- The presence of detectable TCE within soil vapour at the site indicates that groundwater at the site has the potential to be 'contaminated' from an offsite source, however, the presence of contamination is not considered to impose any risk or restriction to the proposed use of the site (as described by the proposed plans) and as such, an environmental audit is not considered to be required to further assess risks presented by the potential contamination.

## 12.1 PRSA outcome

As a result of the investigations completed to date, the outcome of the PRSA is:



 Outcome 2 - Likely that contaminated land is present, but no environmental audit is required.

# 13 LIMITATIONS

This report has been prepared by Environmental Earth Sciences VIC ACN 109 404 024 in response to and subject to the following limitations:

- 1. The specific instructions received from Nightingale Albion Development Pty Ltd
- The specific scope of works set out in PO220214 issued by Environmental Earth Sciences VIC for and on behalf of Nightingale Albion Development Pty Ltd, is included in Section 3 (Scope of Work) of this report;
- 3. May not be relied upon by any third party not named in this report for any purpose except with the prior written consent of Environmental Earth Sciences VIC (which consent may or may not be given at the discretion of Environmental Earth Sciences VIC);
- 4. This report comprises the formal report, documentation sections, tables, figures and appendices as referred to in the index to this report and must not be released to any third party or copied in part without all the material included in this report for any reason;
- The report only relates to the site referred to in the scope of works being located 215 219 Albion Street, Brunswick, VIC ("the site");
- 6. The report relates to the site as at the date of the report as conditions may change thereafter due to natural processes and/or site activities;
- 7. No warranty or guarantee is made in regard to any other use than as specified in the scope of works and only applies to the depth tested and reported in this report;
- 8. Fill, soil, groundwater and rock to the depth tested on the site may be fit for the use specified in this report. Unless it is expressly stated in this report, the fill, soil and/or rock may not be suitable for classification as clean fill if deposited off site;
- 9. This report is not a geotechnical report suitable for planning or zoning purposes; and
- 10. Our General Limitations set out at the back of the body of this report.

# 14 REFERENCES

- AECOM (2019) *Environmental Audit Report: 216 Albion Street, Brunswick,* report prepared for Nightingale Anstey Development Pty Ltd
- Beveridge Williams (2006) Contamination Assessment, 208 Albion Street Brunswick, report prepared for Crestwood Developments Pty Ltd.



- Compass Environmental Pty Ltd (2018), *Site History Review: 215-219 Albion Street, Brunswick VIC,* (report reference: 18140CC20181011).
- CRC CARE (2017), Risk-based management and remediation guidance for benzo(a)pyrene. Technical Report 39.
- CSIRO (2016), The Australian Soil Classification |
- CSIRO (2020), Australian Soil Resource Information System (ASRIS), http://www.asris.csiro.au/index\_other.html
- Bureau of Meteorology (2021) *Groundwater Dependent Ecosystems Atlas* <u>http://www.bom.gov.au/water/groundwater/gde/map.shtml</u>
- Department of Environment, Land, Water and Planning (DELWP) (2020). *Mapshare*, <u>https://mapshare.vic.gov.au/MapshareVic/</u>.
- Department of Environment, Land, Water and Planning (DELWP) (2021). Water Measurement Information System, <u>https://data.water.vic.gov.au/</u>

Visualising Victoria Groundwater (VVG) (2021) Groundwater salinity layer www.vvg.org.au

- Environmental Earth Sciences (2021) PAH source analyst https://pahsourceanalyst.com.au/
- Environment Protection Act 2017
- Geological Survey of Victoria (GSV) (1974), *1:63, 360 Melbourne Geological Map Sheet,* SJ 55-1, Part 7822.
- Hamon, R. E, McLaughlin, M. J, Gilkes, R. J, Rate, A. W, Zarcina, B, Robertson, A, Cozens, G, Radford, N, & Bettenay, L (2004), *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014.
- National Environment Protection Council (NEPC) (2013), National Environment Protection (Assessment of Site Contamination) Amendment Measure, Adelaide, SA.
- Standards Australia (1999) Australian Standard AS 4482.2 Guide To The Sampling and Investigation Of Potentially Contaminated Soil. Part 2: Volatile Substances.
- Standards Australia (2005), Australian Standard AS4482.1 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil. Part 1: Non-volatile and Semi-Volatile Compounds.
- Standards Australia (2009), Australian Standard AS2159 Piling-Design and Installation.
- Standards Australia (2011), Australian Standard AS3600 Concrete Structures.
- Van de Graaf and Wootton (1996) *Melbourne Soils*, Department of Environment and Primary Industries.



# ENVIRONMENTAL EARTH SCIENCES GENERAL LIMITATIONS

#### Scope of services

The work presented in this report is Environmental Earth Sciences response to the specific scope of works requested by, planned with and approved by the client. It cannot be relied on by any other third party for any purpose except with our prior written consent. Client may distribute this report to other parties and in doing so warrants that the report is suitable for the purpose it was intended for. However, any party wishing to rely on this report should contact us to determine the suitability of this report for their specific purpose.

#### Data should not be separated from the report

A report is provided inclusive of all documentation sections, limitations, tables, figures and appendices and should not be provided or copied in part without all supporting documentation for any reason, because misinterpretation may occur.

#### Subsurface conditions change

Understanding an environmental study will reduce exposure to the risk of the presence of contaminated soil and or groundwater. However, contaminants may be present in areas that were not investigated, or may migrate to other areas. Analysis cannot cover every type of contaminant that could possibly be present. When combined with field observations, field measurements and professional judgement, this approach increases the probability of identifying contaminated soil and or groundwater. Under no circumstances can it be considered that these findings represent the actual condition of the site at all points.

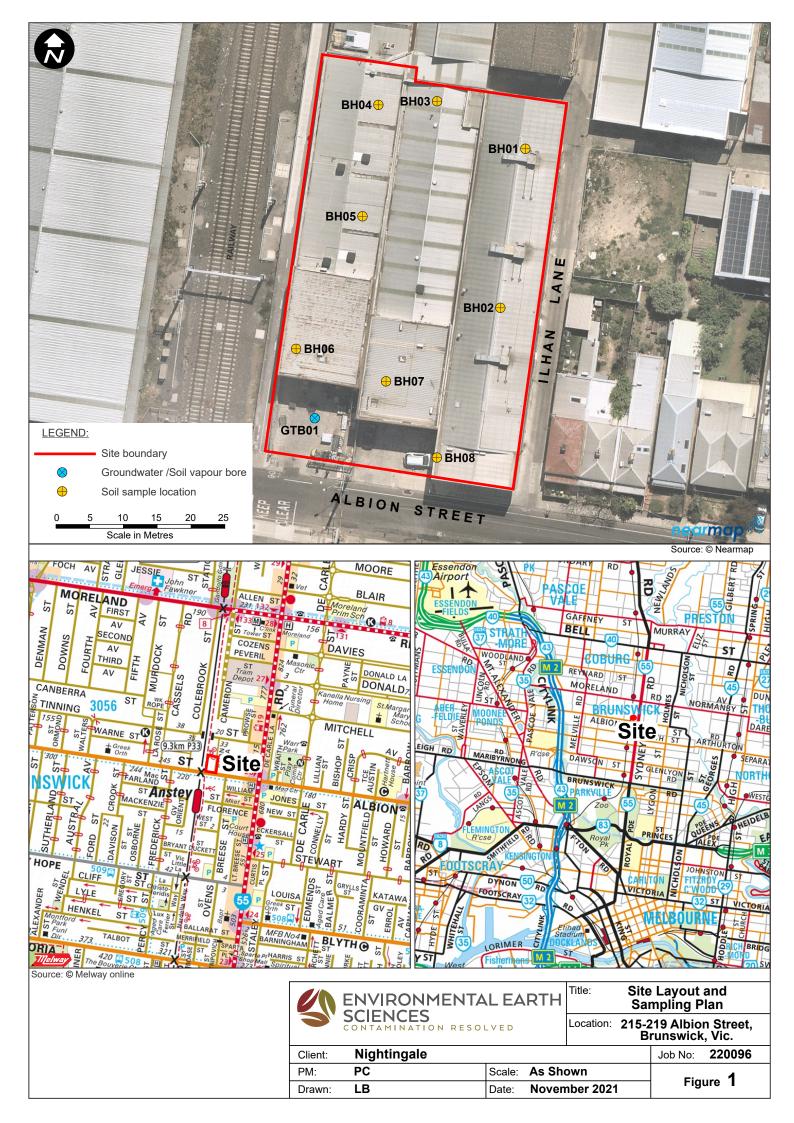
Environmental studies identify actual sub-surface conditions only at those points where samples are taken, when they are taken. Actual conditions between sampling locations differ from those inferred because no professional, no matter how qualified, and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden below the ground surface. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from that predicted. Nothing can be done to prevent the unanticipated. However, steps can be taken to help minimize the impact. For this reason, site owners should retain our services.

#### Problems with interpretation by others

Advice and interpretation is provided on the basis that subsequent work will be undertaken by Environmental Earth Sciences VIC. This will identify variances, maintain consistency in how data is interpreted, conduct additional tests that may be necessary and recommend solutions to problems encountered on site. Other parties may misinterpret our work and we cannot be responsible for how the information in this report is used. If further data is collected or comes to light we reserve the right to alter their conclusions.

#### Obtain regulatory approval

The investigation and remediation of contaminated sites is a field in which legislation and interpretation of legislation is changing rapidly. Our interpretation of the investigation findings should not be taken to be that of any other party. When approval from a statutory authority is required for a project, that approval should be directly sought by the client.


#### Limit of liability

This study has been carried out to a particular scope of works at a specified site and should not be used for any other purpose. This report is provided on the condition that Environmental Earth Sciences VIC disclaims all liability to any person or entity other than the client in respect of anything done or omitted to be done and of the consequence of anything done or omitted to be done by any such person in reliance, whether in whole or in part, on the contents of this report. Furthermore, Environmental Earth Sciences VIC disclaims all liability in respect of anything done or omitted to be done and of the consequence of anything done or omitted to be done by the client, or any such person in reliance, whether in whole or any part of the contents of this report of all matters not stated in the brief outlined in Environmental Earth Sciences VIC's proposal number and according to Environmental Earth Sciences general terms and conditions and special terms and conditions for contaminated sites.

To the maximum extent permitted by law, we exclude all liability of whatever nature, whether in contract, tort or otherwise, for the acts, omissions or default, whether negligent or otherwise for any loss or damage whatsoever that may arise in any way in connection with the supply of services. Under circumstances where liability cannot be excluded, such liability is limited to the value of the purchased service.



# FIGURES





# TABLES



| Descr         Descr <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Fill</th><th>Fill</th><th>Fill</th><th>Fill</th><th>Nat</th><th>Nat</th><th>Fill</th><th>Nat</th><th>Fill</th><th>Nat</th><th>Fill</th><th>Fill</th><th>Nat</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                    |                |      |                  |                             |                                    |                |                           | Fill       | Fill       | Fill       | Fill       | Nat        | Nat        | Fill       | Nat        | Fill       | Nat        | Fill       | Fill       | Nat        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|----------------|------|------------------|-----------------------------|------------------------------------|----------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Image         Image <t< th=""><th></th><th></th><th></th><th></th><th>Table 1A(1) HILs</th><th>Table 1A(3)<br/>Res A/B Soil</th><th>Table 1B(6) ESLs<br/>for Urban Res,</th><th>Table 1B (1-5)</th><th>Table 1B(7)<br/>Management</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>BH07_0.2</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                    |                |      | Table 1A(1) HILs | Table 1A(3)<br>Res A/B Soil | Table 1B(6) ESLs<br>for Urban Res, | Table 1B (1-5) | Table 1B(7)<br>Management |            |            |            |            |            |            |            |            |            |            |            |            | BH07_0.2   |
| Name         Name        Name        Name        N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chemical Group                 | Chemical Name                                      | Units          | LOR  | -                |                             | Fine Soli                          |                |                           | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 |
| Image: Section (1)         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · ·                        |                                                    |                |      |                  | 0 1.11                      |                                    |                |                           | -          | -          |            |            | 1          |            |            |            | -          | -          |            |            | -          |
| Diam         Diam <th< td=""><td></td><td>pH (CaCl2)</td><td>pH Unit</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>6.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | pH (CaCl2)                                         | pH Unit        | 0.1  |                  |                             |                                    |                |                           | -          | -          | -          | -          | 6.1        | -          | -          | -          | -          | -          | -          | -          | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                | 1    |                  |                             |                                    |                |                           |            |            |            |            | -          | 1          |            | 1          | i          | i          | 1          | i          | 26.1       |
| Partner         Partner <t< td=""><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>-</td><td></td><td>1</td><td>1</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | -                                                  |                | -    |                  |                             |                                    |                |                           |            |            |            |            | 1          | 1          |            | 1          | -          |            | 1          | 1          | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | halogenated All compounds      |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | cis-1,4-Dichloro-2-butene                          |                | 0.5  |                  |                             |                                    |                |                           |            | -          | -          | <0.5       | -          | -          | -          | -          | <0.5       | -          | -          | -          | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Dichlorodifluoromethane                            | mg/kg          | 5    |                  |                             |                                    |                |                           | <5         | -          | -          | <5         | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                    |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| Patternine         Patternine         Patternine         Pathernine         Pathernin        Pathernin        Pathernine<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            | -          |            |            |            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ,                                                  |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| 112 standard         102         112 standard         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102        102        102        102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Bromomethane                                       | mg/kg          | 5    |                  |                             |                                    |                |                           | <5         | -          | -          | <5         | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| bitaliantime         bitaliantim         bitaliantime         bitaliantim         bitaliantime         bitaliantime <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                    |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          |            |            | -          | -          | -          | -          |
| 1 Advisorse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Indemonder         Indemon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Image:         Image:        Image:        Image: <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| 11.14cc/000ml2         11.0         11.0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10        10        10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | ,                                                  |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| Objective         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 1,1,1,2-tetrachloroethane                          |                | 0.5  |                  |                             |                                    |                |                           | <0.5       | -          | -          | <0.5       | -          | -          | -          | -          | <0.5       | -          | -          | -          | -          |
| Inducation         indication         indicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Vinyl chloride                                     | mg/kg          | 5    |                  |                             |                                    |                |                           | <5         | -          | -          | <5         | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| Indicate         Non-         Norm         Norm        Norm        Norm        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                    |                | 5    |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| Regend Aronal (s)     Regend Aronal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                    |                | 0.5  |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Hologeneed         1.2.1 (c) inclusiones         mage         0.2         0.0         0.0         0.2         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                    |                | 5    |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            | -          |            |            |            | -          |
| Image: Normal state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Halogenated Aromatic Compounds |                                                    |                | -    |                  |                             |                                    |                |                           |            |            |            | 1          |            |            |            | 1          | -          |            |            | 1          | -          |
| Additionariante         main         5.5         main         5.5         main         5.5         main         5.5         main         main <thmain< th="">         main         <thmain< th="">         main         main<td>halogenated monate compounds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></thmain<></thmain<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | halogenated monate compounds   |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| 1.4-iridocolstance         malk         6.5         i.e.         i.e. <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | · · ·                                              |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| 12 dolivopartine         m/m         0.5         0.6         0.6         0.6         0.6         0.6         0.6         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7        0.7         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 1,3-dichlorobenzene                                |                | 0.5  |                  |                             |                                    |                |                           | <0.5       | -          | -          | <0.5       | -          | -          | -          | -          | <0.5       | -          | -          | -          | -          |
| Characterize         might         0.5         0.0         0.5         0.0         0.5         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0        0.0         0.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                    |                |      |                  |                             |                                    |                |                           |            | -          | -          |            | -          | -          | -          | -          |            | -          | -          | -          | -          |
| 4 chiorothure         mp/k         0.5         0.0         0.5         0.0         0.5         0.0         0.5         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0        0.0         0.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            | -          |            |            |            | -          |            |            | -          |
| 2-hinordourne         mp/le         5.2         i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Biombanne         mp/g         5         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            | -          |            |            | -          |
| Owgenered compounds         Implicatize         mplike         5         Implike         Implike         5         Implike         Implike         1ml ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            | -          |            |            | -          |
| Phenome (MBX)         Mg/kg         S         MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oxygenated compounds           |                                                    |                | 5    |                  |                             |                                    |                |                           |            | -          | -          | 1          | -          | -          | -          | -          |            | -          | -          | -          | -          |
| Image: Participant problem     mark     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     %     % <td></td> <td>2-hexanone (MBK)</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 2-hexanone (MBK)                                   |                | 5    |                  |                             |                                    |                |                           | <5         | -          | -          | <5         | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| Phenclic Compounds     Addino3-methylopenol     mg/kg     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5     0.5 </td <td></td> <td>Methyl Ethyl Ketone</td> <td>mg/kg</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>&lt;5</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | Methyl Ethyl Ketone                                | mg/kg          | 5    |                  |                             |                                    |                |                           | <5         | -          | -          | <5         | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| Pertablicorpheni         mg/g         0.5         Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                    |                |      |                  |                             |                                    |                |                           |            | -          | -          | -          | -          | -          | -          | -          | <5         | -          | -          | -          | -          |
| Additionable and balance         Index          Index         Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenolic Compounds             |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            | -          | -          |            |            | -          |
| Pertablicoghenol         mg/kg         2         130         6         100         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Phenol         mg/kg         0.5         45000         e         e         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                    |                | 2    | 130              |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Participand         mg/kg         0.5         0.6         0.6         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                    |                | 0.5  |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            | -          |            |            | -          |
| Perturbancy         2-emeturbancy         mg/g         0.5         Image         Ima         Image         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                    |                |      |                  |                             |                                    |                |                           | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                    | i              | 0.5  |                  |                             |                                    |                |                           | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| 2-chlorophenol         mg/kg         0.5         0.6         0.6         0.6         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                    |                |      |                  |                             |                                    |                |                           | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            | -          | -          |            |            |            |            |            |            | -          |
| 3/4 Methylphend (m/p-cresol) $m/k$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| Sulfonate Compounds         Carbon disulfide         mg/kg         0.5         0.6         0.6         0.5         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                    |                | 10.5 |                  |                             |                                    |                |                           |            |            |            |            |            |            |            |            |            |            |            |            | -          |
| TPH C6-9 Fraction         mg/kg         10         col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sulfonated Compounds           |                                                    |                | 0.5  |                  |                             |                                    |                |                           |            |            |            |            | 1          | 1          |            |            | <0.5       |            | 1          | 1          | -          |
| Image: problem in the system in the                        |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            | -          | 1          |            |            | -          | -          |            |            | <10        |
| TH C15-C28 Fraction         mg/kg         50         Icon         Icon         C400         C400 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>&lt;50</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            | -          |            |            |            | -          |            |            | <50        |
| TH C29-G3 Fraction         mg/kg         50         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G         G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | TPH C15-C28 Fraction                               |                | 50   |                  |                             |                                    |                |                           | <100       |            | <100       |            | -          | -          | 200        | -          | <100       | -          | <100       | -          | <100       |
| TRH (0.6 PM, 2013)         TRH C6-10 Fraction         mg/kg         10         Image: mg/kg         10         Image: mg/kg         10         10         800         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                    |                |      |                  |                             |                                    |                |                           |            |            |            |            |            | -          |            |            |            |            |            |            | <100       |
| TRH C6-C10 less BTEX (F1) mg/kg 10 50 180 50 180 <10 <10 <10 <10 <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - < |                                | · · · ·                                            |                |      |                  |                             |                                    |                |                           |            |            | -          |            |            |            |            |            | -          |            | 1          | 1          | <50        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IRH (NEPM, 2013)               |                                                    |                |      |                  | 50                          | 100                                |                | 800                       |            |            |            |            |            | -          |            |            |            |            |            |            | <10        |
| TRH >C10-C16 Fraction mg/kg 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | TRH C6-C10 less BTEX (F1)<br>TRH >C10-C16 Fraction | mg/kg<br>mg/kg | 50   |                  | 50                          | 180                                |                | 1000                      | <10        | <10        | <10        | <10        |            |            | <10        | -          | <10        |            | <10        | -          | <10<br><50 |



|                           |                                                      |                |           |                  |                |                  |           |                                   | Fill         | Fill       | Fill        | Fill         | Nat        | Nat        | Fill       | Nat        | Fill         | Nat        | Fill       | Fill       | Nat        |
|---------------------------|------------------------------------------------------|----------------|-----------|------------------|----------------|------------------|-----------|-----------------------------------|--------------|------------|-------------|--------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|
|                           |                                                      |                |           | NEPM 2013        | NEPM 2013      | NEPM 2013        | NEPM 2013 | NEPM 2013                         |              |            |             |              |            |            |            |            |              |            |            |            |            |
|                           |                                                      |                |           | Table 1A(1) HILs |                | Table 1B(6) ESLs |           | Table 1B(7)                       | BH01 0.2     | BH01 0.4   | BH02_0.2    | BH03_0.2     | BH03 0.7   | BH03 1.0   | BH04 0.2   | BH04 1.0   | BH05 0.2     | BH05 1.0   | BH06 0.2   | BH06_1.5   | BH07 0.2   |
|                           |                                                      |                |           | Res B Soil       | Res A/B Soil   | for Urban Res,   | EILs      | Management                        |              |            |             |              |            |            |            |            |              |            |            |            |            |
| Chemical Group            | Chemical Name                                        | Units          | LOR       | 1                | HSL for Vapour | Fine Soil        |           | Limits in Res /<br>Parkland, Fine | 10/11/2021   | 10/11/2021 | 10/11/2021  | 10/11/2021   | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021   | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 |
|                           | TRH >C10 - C16 Fraction minus Naphthalene (F2)       | mg/kg          | 50        |                  | 280            | 120              |           |                                   | <50          | <50        | <50         | <50          | -          | -          | <50        | -          | <50          | -          | <50        | -          | <50        |
|                           | TRH >C16-C34 Fraction                                | mg/kg          | 100       |                  |                | 1300             |           | 3500                              | <100         | <100       | <100        | <100         | -          | -          | 280        | -          | <100         | -          | <100       | -          | <100       |
|                           | TRH >C34-C40 Fraction                                | mg/kg          | 100       |                  |                | 5600             |           | 10000                             | <100         | <100       | <100        | <100         | -          | -          | <100       | -          | <100         | -          | <100       | -          | <100       |
|                           | TRH C10 - C40 (Sum of total)                         | mg/kg          | 50        |                  |                |                  |           |                                   | <50          | <50        | <50         | <50          | -          | -          | 280        | -          | <50          | -          | <50        | -          | <50        |
| Trihalomethanes<br>BTEX   | Chloroform<br>Benzene                                | mg/kg          | 0.5       |                  | 0.7            | 65               |           |                                   | <0.5<br><0.2 | - <0.2     | - <0.2      | <0.5<br><0.2 | -          | -          | - <0.2     | -          | <0.5         | -          | - <0.2     | -          | - <0.2     |
| BIEA                      | Ethylbenzene                                         | mg/kg<br>mg/kg | 0.1       |                  | NL             | 125              |           |                                   | <0.2         | <0.2       | <0.2        | <0.2         | -          | -          | <0.2       | -          | <0.2         | -          | <0.2       | -          | <0.2       |
|                           | Toluene                                              | mg/kg          | 0.1       |                  | 480            | 105              |           |                                   | <0.5         | <0.5       | <0.5        | <0.5         | -          | -          | <0.5       | -          | <0.5         | -          | <0.5       | -          | <0.5       |
|                           | Xylene (m & p)                                       | mg/kg          | 0.2       |                  |                |                  |           |                                   | <0.5         | <0.5       | <0.5        | <0.5         | -          | -          | <0.5       | -          | <0.5         | -          | <0.5       | -          | <0.5       |
|                           | Xylene (o)                                           | mg/kg          | 0.1       |                  |                |                  |           |                                   | <0.5         | <0.5       | <0.5        | <0.5         | -          | -          | <0.5       | -          | <0.5         | -          | <0.5       | -          | <0.5       |
|                           | Total BTEX                                           | mg/kg          | 0.2       |                  | 110            | 45               |           |                                   | <0.2         | <0.2       | <0.2        | <0.2         | -          | -          | <0.2       | -          | <0.2         | -          | <0.2       | -          | <0.2       |
| Chlorinated Hydrocarbons  | Xylene Total<br>1,2-dibromoethane                    | mg/kg          | 0.3       |                  | 110            | 45               |           |                                   | <0.5<br><0.5 | <0.5       | <0.5        | <0.5<br><0.5 | -          | -          | <0.5       | -          | <0.5         | -          | <0.5       | -          | <0.5       |
|                           | 1,2-dichloropropane                                  | mg/kg<br>mg/kg | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | 2,2-dichloropropane                                  | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | Bromodichloromethane                                 | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | Bromoform                                            | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | Chlorodibromomethane                                 | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | cis-1,3-dichloropropene<br>trans-1,3-dichloropropene | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5<br><0.5 | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
| Cyanides                  | Cvanide (WAD)                                        | mg/kg<br>mg/kg | 1         |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
| Herbicides                | Atrazine                                             | mg/kg          | 0.05      | 470              |                |                  |           |                                   | · ·          | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
| MAH                       | 1,2,4-trimethylbenzene                               | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | 1,3,5-trimethylbenzene                               | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | Isopropylbenzene                                     | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | n-butylbenzene                                       | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5<br><0.5 | -          | -           | <0.5<br><0.5 | -          | -          | -          | -          | <0.5<br><0.5 | -          | -          | -          | -          |
|                           | n-propylbenzene<br>p-isopropyltoluene                | mg/kg<br>mg/kg | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | sec-butylbenzene                                     | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | Styrene                                              | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
|                           | tert-butylbenzene                                    | mg/kg          | 0.5       |                  |                |                  |           |                                   | <0.5         | -          | -           | <0.5         | -          | -          | -          | -          | <0.5         | -          | -          | -          | -          |
| Metals                    | Arsenic                                              | mg/kg          | 2         | 500              |                |                  | 100       |                                   | <5           | <5         | <5          | 16           | -          | <5         | 7          | <5         | <5           | <5         | <5         | <5         | <5         |
|                           | Beryllium<br>Boron                                   | mg/kg          | 50        | 90<br>40000      |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Cadmium                                              | mg/kg<br>mg/kg | 0.4       | 150              |                |                  |           |                                   | <1           | <1         | <1          | <1           | -          | <1         | <1         | <1         | <1           | <1         | <1         | <1         | <1         |
|                           | Chromium (III+VI)                                    | mg/kg          | 2         | 100              |                |                  | 870       |                                   | 17           | 25         | 59          | 39           | -          | 80         | 34         | 54         | 57           | 82         | 80         | 57         | 74         |
|                           | Cobalt                                               | mg/kg          | 2         | 600              |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Chromium (hexavalent)                                | mg/kg          | 0.5       | 500              |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Copper                                               | mg/kg          | 5         | 30000            |                |                  | 85        |                                   | 27           | 34         | 23          | 58           | -          | 11         | 41         | 10         | 36           | 13         | 12         | 42         | 11         |
|                           | Lead<br>Mercury                                      | mg/kg<br>mg/kg | 0.1       | 1200<br>120      |                |                  | 1100      |                                   | 7<br><0.1    | 15<br><0.1 | 119<br><0.1 | 120<br><0.1  | -          | 14<br><0.1 | 0.1        | 9<br><0.1  | 54<br><0.1   | 9 <0.1     | 10<br><0.1 | <5<br><0.1 | 8<br><0.1  |
|                           | Nickel                                               | mg/kg          | 2         | 1200             |                |                  | 330       |                                   | 81           | 89         | 28          | 42           | -          | 35         | 43         | 35         | 49           | 37         | 37         | 86         | 41         |
|                           | Selenium                                             | mg/kg          | 5         | 1400             |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Zinc                                                 | mg/kg          | 5         | 60000            |                |                  | 510       |                                   | 48           | 60         | 114         | 172          | -          | 17         | 194        | 14         | 87           | 19         | 23         | 65         | 16         |
|                           | Manganese                                            | mg/kg          | 5         | 14000            |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Barium                                               | mg/kg          | 10        |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
| Organachlaring Bastisidas | Vanadium<br>4,4-DDE                                  | mg/kg          | 5<br>0.05 |                  | _              |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
| Organochlorine Pesticides | a-BHC                                                | mg/kg<br>mg/kg | 0.05      |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Aldrin                                               | mg/kg          | 0.05      |                  |                |                  |           |                                   | · ·          | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Aldrin + Dieldrin                                    | mg/kg          | 0.05      | 10               |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | b-BHC                                                | mg/kg          | 0.05      |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Chlordane (cis)                                      | mg/kg          | 0.05      |                  |                |                  |           |                                   | · ·          | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Chlordane (trans)                                    | mg/kg          | 0.05      |                  |                |                  |           |                                   |              | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | d-BHC<br>DDD                                         | mg/kg          | 0.05      |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | DDD                                                  | mg/kg<br>mg/kg | 0.03      |                  |                |                  | 180       |                                   |              | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | DDT+DDE+DDD                                          | mg/kg          | 0.05      | 600              |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Dieldrin                                             | mg/kg          | 0.05      |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Endosulfan                                           | mg/kg          | 0.05      | 400              |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Endosulfan I                                         | mg/kg          | 0.05      |                  |                |                  |           |                                   | · ·          | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Endosulfan II<br>Endosulfan sulphate                 | mg/kg          | 0.05      |                  |                |                  |           |                                   |              | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Endrin                                               | mg/kg<br>mg/kg | 0.05      | 20               |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
|                           | Endrin aldehyde                                      | mg/kg          | 0.05      | 20               |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |
| 1                         | Endrin ketone                                        | mg/kg          | 0.05      |                  |                |                  |           |                                   | -            | -          | -           | -            | -          | -          | -          | -          | -            | -          | -          | -          | -          |



|                              |                                |       |      |                  |                |                  |                |                 | Fill       | Fill       | Fill       | Fill       | Nat        | Nat        | Fill       | Nat        | Fill       | Nat        | Fill       | Fill       | Nat        |
|------------------------------|--------------------------------|-------|------|------------------|----------------|------------------|----------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                              |                                |       |      | NEPM 2013        | NEPM 2013      | NEPM 2013        | NEPM 2013      | NEPM 2013       |            |            |            |            |            |            |            |            |            |            |            |            |            |
|                              |                                |       |      | Table 1A(1) HILs | Table 1A(3)    | Table 1B(6) ESLs | Table 1B (1-5) | Table 1B(7)     | BH01_0.2   | BH01 0.4   | BH02_0.2   | BH03_0.2   | BH03 0.7   | BH03 1.0   | BH04 0.2   | BH04 1.0   | BH05 0.2   | BH05_1.0   | BH06 0.2   | BH06_1.5   | BH07 0.2   |
|                              |                                |       |      | Res B Soil       | Res A/B Soil   | for Urban Res,   | EILs           | Management      | 5.101_012  | 5.102_011  | 51102_012  | 0.100_012  | 51105_017  | 51105_210  | 51101_012  |            | 0.100_012  | 51105_210  | 51100_012  | 51100_215  |            |
|                              |                                |       |      | -                | HSL for Vapour | Fine Soil        |                | Limits in Res / |            |            |            |            |            |            |            |            |            |            |            | '          | <u> </u>   |
| Chemical Group               | Chemical Name                  | Units | LOR  |                  | 0-1m           |                  |                | Parkland, Fine  | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 |
|                              | g-BHC (Lindane)                | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Heptachlor                     | mg/kg | 0.05 | 10               |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Heptachlor epoxide             | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Methoxychlor                   | mg/kg | 0.2  | 500              |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Hexachlorobenzene              | mg/kg | 0.05 | 15               |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| Pesticides                   | Bifenthrin                     | mg/kg | 0.05 | 840              |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Mirex                          | mg/kg | 0.05 | 20               |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| Organophosphorous Pesticides | Azinophos methyl               | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Bromophos-ethyl                | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Carbophenothion                | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Chlorfenvinphos                | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Chlorpyrifos                   | mg/kg | 0.05 | 340              |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Chlorpyrifos-methyl            | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Demeton-S-methyl               | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Diazinon                       | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Dichlorvos                     | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Dimethoate                     | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Ethion                         | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Fenamiphos                     | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Fenthion                       | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Malathion                      | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Methyl parathion               | mg/kg | 0.2  |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Monocrotophos                  | mg/kg | 0.2  |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Parathion                      | mg/kg | 0.2  |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Pirimphos-ethyl                | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|                              | Prothiofos                     | mg/kg | 0.05 |                  |                |                  |                |                 | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| РАН                          | Acenaphthylene                 | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | 1.7        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Naphthalene                    | mg/kg | 0.5  |                  | 5              |                  | 170            |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | <0.5       | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Acenaphthene                   | mg/kg | 0.5  |                  |                |                  |                |                 | < 0.5      | <0.5       | <0.5       | <0.5       | -          | -          | <0.5       | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Fluorene                       | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | <0.5       | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Anthracene                     | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | 2.5        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Fluoranthene                   | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 2.6        | -          | -          | 17.9       | -          | 1.1        | -          | <0.5       | -          | <0.5       |
|                              | Phenanthrene                   | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 1.8        | -          | -          | 11.3       | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Benz(a)anthracene              | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 1.2        | -          | -          | 7.8        | -          | 0.6        | -          | <0.5       | -          | <0.5       |
|                              | Chrysene                       | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 0.8        | -          | -          | 5.9        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Benzo(b+j)fluoranthene         | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 1.2        | -          | -          | 9          | -          | 0.7        | -          | <0.5       | -          | <0.5       |
|                              | Benzo(k)fluoranthene           | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 0.6        | -          | -          | 3.4        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Benzo(a) pyrene                | mg/kg | 0.5  |                  |                | 33               |                |                 | <0.5       | <0.5       | <0.5       | 1.1        | -          | -          | 8          | -          | 0.7        | -          | <0.5       | -          | <0.5       |
|                              | Pyrene                         | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 2.4        | -          | -          | 16.1       | -          | 1.1        | -          | <0.5       | -          | <0.5       |
|                              | Indeno(1,2,3-c,d)pyrene        | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | 3.7        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Dibenz(a,h)anthracene          | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       | -          | -          | 0.6        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Benzo(g,h,i)perylene           | mg/kg | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 0.6        | -          | -          | 4.7        | -          | <0.5       | -          | <0.5       | -          | <0.5       |
|                              | Benzo(a)pyrene TEQ calc (Zero) | mg/kg | 0.5  | 3                |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 1.4        | -          | -          | 11.1       | -          | 0.8        | -          | <0.5       | -          | <0.5       |
|                              | Benzo(a)pyrene TEQ calc (Half) | mg/kg | 0.5  | 3                |                |                  |                |                 | 0.6        | 0.6        | 0.6        | 1.7        | -          | -          | 11.1       | -          | 1.1        | -          | 0.6        | -          | 0.6        |
|                              | Benzo(a)pyrene TEQ (LOR)       | mg/kg | 0.5  | 3                |                |                  |                |                 | 1.2        | 1.2        | 1.2        | 2          | -          | -          | 11.1       | -          | 1.4        | -          | 1.2        | -          | 1.2        |
|                              | PAHs (Sum of total)            | mg/kg | 0.5  | 400              |                |                  |                |                 | <0.5       | <0.5       | <0.5       | 12.3       | -          | -          | 92.6       | -          | 4.2        | -          | <0.5       | -          | <0.5       |
| Polychlorinated Biphenyls    | PCBs (Sum of total)            | mg/kg | 0.1  | 1                |                |                  |                |                 |            | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |



|                                |                                                            |                |            |                                             |                                                            |                                                              |                                     |                                                           | Fill       | Fill       | Fill       | Fill       |
|--------------------------------|------------------------------------------------------------|----------------|------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|------------|------------|------------|------------|
|                                |                                                            |                |            | NEPM 2013<br>Table 1A(1) HILs<br>Res B Soil | NEPM 2013<br>Table 1A(3)<br>Res A/B Soil<br>HSL for Vapour | NEPM 2013<br>Table 1B(6) ESLs<br>for Urban Res,<br>Fine Soil | NEPM 2013<br>Table 1B (1-5)<br>EILs | NEPM 2013<br>Table 1B(7)<br>Management<br>Limits in Res / | BH08_0.2   | вно8_0.5   | DUP_01     | SPLIT_01   |
| Chemical Group                 | Chemical Name                                              | Units          | LOR        | 1                                           | 0-1m                                                       | 1 11 10 0011                                                 |                                     | Parkland, Fine                                            | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 |
| Inorganics                     | CEC                                                        |                | 0.1        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | pH (CaCl2)                                                 | pH Unit        | 0.1        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Moisture Content                                           | %              | 1          |                                             |                                                            |                                                              |                                     |                                                           | 29.1       | 19.2       | 17.9       | 27         |
| Organic Matter                 | Organic Matter                                             | %              | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
| Halogenated Ali Compounds      | 1,1,2-trichloroethane                                      | mg/kg          | 0.5<br>0.5 |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Tetrachloroethene<br>1,3-dichloropropane                   |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | cis-1,4-Dichloro-2-butene                                  | mg/kg<br>mg/kg | 0.5        | -                                           |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Dichlorodifluoromethane                                    | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Pentachloroethane                                          | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,2-dichloroethane                                         | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Dibromomethane                                             | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Carbon tetrachloride                                       | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Hexachlorobutadiene                                        | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,1-dichloroethene                                         | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,1-dichloroethane                                         | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Bromomethane                                               | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 1,1,1-trichloroethane                                      | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 1,1,2,2-tetrachloroethane                                  | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | cis-1,2-dichloroethene                                     | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Iodomethane                                                | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 1,1-dichloropropene                                        | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 1,2-dibromo-3-chloropropane<br>trans-1,4-Dichloro-2-butene | mg/kg          | 0.5<br>0.5 |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | trans-1,2-dichloroethene                                   | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 1,1,1,2-tetrachloroethane                                  | mg/kg<br>mg/kg | 0.5        | -                                           |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Vinyl chloride                                             | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           |            |            |            | -          |
|                                | Chloromethane                                              | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Trichloroethene                                            | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Trichlorofluoromethane                                     | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           | · .        | -          | -          | -          |
|                                | Chloroethane                                               | mg/kg          | 5          |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
| Halogenated Aromatic Compounds | 1,2,3-trichlorobenzene                                     | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,2,3-trichloropropane                                     | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,4-dichlorobenzene                                        | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,3-dichlorobenzene                                        | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,2,4-trichlorobenzene                                     | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 1,2-dichlorobenzene                                        | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | Chlorobenzene                                              |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
|                                | 4-chlorotoluene                                            | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 2-chlorotoluene                                            | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Bromobenzene                                               |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
| Oxygenated compounds           | Vinyl acetate                                              | mg/kg          | 5<br>5     |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | 2-hexanone (MBK)                                           | mg/kg          |            |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
|                                | Methyl Ethyl Ketone<br>4-Methyl-2-pentanone                | mg/kg<br>mg/kg | 5          |                                             |                                                            |                                                              |                                     |                                                           |            | -          | -          | -          |
| Phenolic Compounds             | 4-chloro-3-methylphenol                                    | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2,4-dichlorophenol                                         | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2,6-dichlorophenol                                         |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | Pentachlorophenol                                          | mg/kg          | 2          | 130                                         |                                                            |                                                              |                                     |                                                           | <2         | -          | -          | -          |
|                                | Phenol                                                     | mg/kg          | 0.5        | 45000                                       |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2-nitrophenol                                              |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2-methylphenol                                             | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2,4-dimethylphenol                                         | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2,4,5-trichlorophenol                                      | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2-chlorophenol                                             |                | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 2,4,6-trichlorophenol                                      | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | <0.5       | -          | -          | -          |
|                                | 3/4-Methylphenol (m/p-cresol)                              | mg/kg          | 1          |                                             |                                                            |                                                              |                                     |                                                           | <1         | -          | -          | -          |
| Sulfonated Compounds           | Carbon disulfide                                           | mg/kg          | 0.5        |                                             |                                                            |                                                              |                                     |                                                           | -          | -          | -          | -          |
| TPH (NEPM, 1999)               | TPH C6-C9 Fraciton                                         | mg/kg          | 10         |                                             |                                                            |                                                              |                                     |                                                           | <10        | <10        | <10        | <20        |
|                                | TPH C10 - C14 Fraction                                     |                | 20         |                                             |                                                            |                                                              |                                     |                                                           | <50        | <50        | <50        | <20        |
|                                | TPH C15-C28 Fraction                                       | mg/kg          | 50         |                                             |                                                            |                                                              |                                     |                                                           | <100       | <100       | <100       | <50        |
|                                | TPH C29-C36 Fraction                                       |                | 50         |                                             |                                                            |                                                              |                                     |                                                           | <100       | <100       | <100       | <50        |
|                                | TPH C10 - C36 (Sum of total)                               |                | 50         |                                             |                                                            |                                                              |                                     | 000                                                       | <50        | <50        | <50        | <50        |
| TRH (NEPM, 2013)               | TRH C6-C10 Fraction                                        | mg/kg          | 10         |                                             | 50                                                         | 100                                                          |                                     | 800                                                       | <10        | <10        | <10        | <20        |
|                                | TRH C6-C10 less BTEX (F1)                                  |                | 10         |                                             | 50                                                         | 180                                                          |                                     | 1000                                                      | <10        | <10        | <10        | <20        |
| 1                              | TRH >C10-C16 Fraction                                      | mg/kg          | 50         |                                             |                                                            |                                                              |                                     | 1000                                                      | <50        | <50        | <50        | <50        |



|                           |                                                |                |           |                  |                |                  |                |                 | Fill        | Fill        | Fill        | Fill         |
|---------------------------|------------------------------------------------|----------------|-----------|------------------|----------------|------------------|----------------|-----------------|-------------|-------------|-------------|--------------|
|                           |                                                |                |           | NEPM 2013        | NEPM 2013      | NEPM 2013        | NEPM 2013      | NEPM 2013       |             |             |             |              |
|                           |                                                |                |           | Table 1A(1) HILs | Table 1A(3)    | Table 1B(6) ESLs | Table 1B (1-5) | Table 1B(7)     | BH08_0.2    | BH08_0.5    | DUP_01      | SPLIT_01     |
|                           |                                                |                |           | Res B Soil       | Res A/B Soil   | for Urban Res,   | EILs           | Management      | 0.2         | 01100_0.5   | 001_01      | 51 11_01     |
|                           |                                                |                |           | -                | HSL for Vapour | Fine Soil        |                | Limits in Res / |             |             |             | / /          |
| Chemical Group            | Chemical Name                                  | Units          | LOR       |                  | 0-1m           |                  |                | Parkland, Fine  |             | 10/11/2021  |             |              |
|                           | TRH >C10 - C16 Fraction minus Naphthalene (F2) | mg/kg          | 50        |                  | 280            | 120              |                |                 | <50         | <50         | <50         | <50          |
|                           | TRH >C16-C34 Fraction                          | mg/kg          | 100       |                  |                | 1300             |                | 3500            | <100        | <100        | <100        | <100         |
|                           | TRH >C34-C40 Fraction                          | mg/kg          | 100<br>50 |                  |                | 5600             |                | 10000           | <100<br><50 | <100<br><50 | <100<br><50 | <100<br><100 |
| Trihalomethanes           | TRH C10 - C40 (Sum of total)<br>Chloroform     | mg/kg<br>mg/kg | 0.5       |                  |                |                  |                |                 |             | -           | -           | - 100        |
| BTEX                      | Benzene                                        | mg/kg          | 0.1       |                  | 0.7            | 65               |                |                 | <0.2        | <0.2        | <0.2        | <0.1         |
|                           | Ethylbenzene                                   | mg/kg          | 0.1       |                  | NL             | 125              |                |                 | <0.5        | <0.5        | <0.5        | <0.1         |
|                           | Toluene                                        | mg/kg          | 0.1       |                  | 480            | 105              |                |                 | <0.5        | <0.5        | < 0.5       | <0.1         |
|                           | Xylene (m & p)                                 | mg/kg          | 0.2       |                  |                |                  |                |                 | <0.5        | <0.5        | <0.5        | <0.2         |
|                           | Xylene (o)                                     | mg/kg          | 0.1       |                  |                |                  |                |                 | <0.5        | <0.5        | <0.5        | <0.1         |
|                           | Total BTEX                                     | mg/kg          | 0.2       |                  |                |                  |                |                 | <0.2        | <0.2        | <0.2        | -            |
|                           | Xylene Total                                   | mg/kg          | 0.3       |                  | 110            | 45               |                |                 | <0.5        | <0.5        | <0.5        | <0.3         |
| Chlorinated Hydrocarbons  | 1,2-dibromoethane                              | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | 1,2-dichloropropane                            | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | 2,2-dichloropropane                            | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | Bromodichloromethane                           | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | Bromoform                                      | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | Chlorodibromomethane                           | mg/kg          | 0.5       |                  |                |                  |                |                 |             | -           | -           | -            |
|                           | cis-1,3-dichloropropene                        | mg/kg          | 0.5       |                  |                |                  |                |                 |             | -           | -           | -            |
| Cuantidae                 | trans-1,3-dichloropropene                      | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
| Cyanides<br>Herbicides    | Cyanide (WAD)<br>Atrazine                      | mg/kg          | 1 0.05    | 470              |                |                  |                |                 | <1<br><0.05 | -           | -           | -            |
| MAH                       | 1,2,4-trimethylbenzene                         | mg/kg          | 0.05      | 470              |                |                  |                |                 | -           | -           | -           | -            |
| MAN                       | 1,3,5-trimethylbenzene                         | mg/kg<br>mg/kg | 0.5       |                  |                |                  |                |                 |             | -           | -           | -            |
|                           | Isopropylbenzene                               | mg/kg          | 0.5       |                  |                |                  |                |                 |             |             | -           | -            |
|                           | n-butylbenzene                                 | mg/kg          | 0.5       |                  |                |                  |                |                 |             | -           | -           | -            |
|                           | n-propylbenzene                                | mg/kg          | 0.5       |                  |                |                  |                |                 |             | -           | -           | -            |
|                           | p-isopropyltoluene                             | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | sec-butylbenzene                               | mg/kg          | 0.5       |                  |                |                  |                |                 | · ·         | -           | -           | -            |
|                           | Styrene                                        | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
|                           | tert-butylbenzene                              | mg/kg          | 0.5       |                  |                |                  |                |                 | -           | -           | -           | -            |
| Metals                    | Arsenic                                        | mg/kg          | 2         | 500              |                |                  | 100            |                 | <5          | <5          | 17          | 11           |
|                           | Beryllium                                      | mg/kg          | 1         | 90               |                |                  |                |                 | <1          | -           | -           | -            |
|                           | Boron                                          | mg/kg          | 50        | 40000            |                |                  |                |                 | <50         | -           | -           | -            |
|                           | Cadmium                                        | mg/kg          | 0.4       | 150              |                |                  |                |                 | <1          | <1          | <1          | <0.4         |
|                           | Chromium (III+VI)                              | mg/kg          | 2         |                  |                |                  | 870            |                 | 66          | 40          | 41          | 89           |
|                           | Cobalt                                         | mg/kg          | 2         | 600              |                |                  |                |                 | 26          | -           | -           | -            |
|                           | Chromium (hexavalent)                          | mg/kg          | 0.5       | 500              |                |                  |                |                 | <0.5        | -           | -           | -            |
|                           | Copper                                         | mg/kg          | 5         | 30000            |                |                  | 85             |                 | 45          | 22          | 67          | 47           |
|                           | Lead                                           | mg/kg          | 5         | 1200             |                |                  | 1100           |                 | 81          | 20          | 116         | 87           |
|                           | Mercury                                        | mg/kg          | 0.1       | 120              |                |                  | 220            |                 | <0.1        | <0.1        | <0.1        | <0.1         |
|                           | Nickel                                         | mg/kg          | 2         | 1200<br>1400     |                |                  | 330            |                 | 54<br><5    | 44          | 45          | 66           |
|                           | Selenium<br>Zinc                               | mg/kg<br>mg/kg | 5<br>5    | 60000            |                |                  | 510            |                 | <5<br>97    | 42          | - 177       | - 170        |
|                           |                                                | 11             | -         | 14000            |                |                  | 510            |                 | 959         | 42          |             |              |
|                           | Barium                                         | mg/kg<br>mg/kg | 10        | 14000            |                |                  |                |                 | 210         | -           | -           | -            |
|                           | Vanadium                                       | mg/kg          | 5         |                  |                |                  |                |                 | 54          | -           | -           | -            |
| Organochlorine Pesticides | 4,4-DDE                                        | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | a-BHC                                          | mg/kg          | 0.05      |                  |                |                  |                |                 | < 0.05      | -           | -           | -            |
|                           | Aldrin                                         | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Aldrin + Dieldrin                              | mg/kg          | 0.05      | 10               |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | b-BHC                                          | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Chlordane (cis)                                | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Chlordane (trans)                              | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | d-BHC                                          | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | DDD                                            | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | DDT                                            | mg/kg          | 0.2       |                  |                |                  | 180            |                 | <0.2        | -           | -           | -            |
|                           | DDT+DDE+DDD                                    | mg/kg          | 0.05      | 600              |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Dieldrin                                       | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Endosulfan                                     | mg/kg          | 0.05      | 400              |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Endosulfan I                                   | mg/kg          | 0.05      |                  |                |                  |                |                 | < 0.05      | -           | -           | -            |
|                           | Endosulfan II                                  | mg/kg          | 0.05      |                  |                |                  |                |                 | < 0.05      | -           | -           | -            |
|                           | Endosulfan sulphate                            | mg/kg          | 0.05      |                  |                |                  |                |                 | < 0.05      | -           | -           | -            |
| 1                         | Endrin<br>Fordering all de borde               | mg/kg          | 0.05      | 20               |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Endrin aldehyde                                | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |
|                           | Endrin ketone                                  | mg/kg          | 0.05      |                  |                |                  |                |                 | <0.05       | -           | -           | -            |



|                              |                                |                |      |                  |                |                  |                |                 | Fill       | Fill       | Fill       | Fill       |
|------------------------------|--------------------------------|----------------|------|------------------|----------------|------------------|----------------|-----------------|------------|------------|------------|------------|
|                              |                                |                |      | NEPM 2013        | NEPM 2013      | NEPM 2013        | NEPM 2013      | NEPM 2013       |            |            |            |            |
|                              |                                |                |      | Table 1A(1) HILs | Table 1A(3)    | Table 1B(6) ESLs | Table 1B (1-5) | Table 1B(7)     | BH08_0.2   | BH08_0.5   | DUP_01     | SPLIT 01   |
|                              |                                |                |      | Res B Soil       | Res A/B Soil   | for Urban Res,   | EILs           | Management      | B1108_0.2  | B1108_0.5  | 007_01     | SFLIT_01   |
|                              |                                |                |      |                  | HSL for Vapour | Fine Soil        |                | Limits in Res / |            |            |            | 1          |
| Chemical Group               | Chemical Name                  | Units          | LOR  |                  | 0-1m           |                  |                | Parkland, Fine  | 10/11/2021 | 10/11/2021 | 10/11/2021 | 10/11/2021 |
|                              | g-BHC (Lindane)                | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Heptachlor                     | mg/kg          | 0.05 | 10               |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Heptachlor epoxide             | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Methoxychlor                   | mg/kg          | 0.2  | 500              |                |                  |                |                 | <0.2       | -          | -          | -          |
|                              | Hexachlorobenzene              | mg/kg          | 0.05 | 15               |                |                  |                |                 | < 0.05     | -          | -          | -          |
| Pesticides                   | Bifenthrin                     | mg/kg          | 0.05 | 840              |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Mirex                          | mg/kg          | 0.05 | 20               |                |                  |                |                 | < 0.05     | -          | -          | -          |
| Organophosphorous Pesticides | Azinophos methyl               | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Bromophos-ethyl                | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Carbophenothion                | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Chlorfenvinphos                | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Chlorpyrifos                   | mg/kg          | 0.05 | 340              |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Chlorpyrifos-methyl            | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Demeton-S-methyl               | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Diazinon                       | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Dichlorvos                     | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Dimethoate                     | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Ethion                         | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Fenamiphos                     | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Fenthion                       | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Malathion                      | mg/kg          | 0.05 |                  |                |                  |                |                 | < 0.05     | -          | -          | -          |
|                              | Methyl parathion               | mg/kg          | 0.2  |                  |                |                  |                |                 | <0.2       | -          | -          | -          |
|                              | Monocrotophos                  | mg/kg          | 0.2  |                  |                |                  |                |                 | <0.2       | -          | -          |            |
|                              | Parathion                      | mg/kg          | 0.2  |                  |                |                  |                |                 | <0.2       | -          | -          | -          |
|                              | Pirimphos-ethyl                | mg/kg          | 0.05 |                  |                |                  |                |                 | <0.05      | -          | -          | -          |
|                              | Prothiofos                     | mg/kg          | 0.05 |                  |                |                  |                |                 | <0.05      |            |            |            |
| РАН                          | Acenaphthylene                 | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.05      | <0.5       | <0.5       | <0.5       |
|                              | Naphthalene                    | mg/kg          | 0.5  |                  | 5              |                  | 170            |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Acenaphthene                   | mg/kg          | 0.5  |                  |                |                  | 1/0            |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Fluorene                       | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Anthracene                     | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Fluoranthene                   | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | 1.7        | 1.3        |
|                              | Phenanthrene                   | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | 1.7        | <0.5       |
|                              | Benz(a)anthracene              | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | 0.9        | 1.2        |
|                              | Chrysene                       | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | 0.5        | 1.2        |
|                              | Benzo(b+j)fluoranthene         | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | 0.0        | <0.5       |
|                              | Benzo(k)fluoranthene           | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Benzo(a) pyrene                |                | 0.5  |                  |                | 33               |                |                 | <0.5       | <0.5       | 0.8        | <0.5       |
|                              | Pyrene                         | mg/kg<br>mg/kg | 0.5  |                  |                | 35               |                |                 | 0.5        | <0.5       | 1.7        | 1.3        |
|                              | Indeno(1,2,3-c,d)pyrene        |                | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              |                                | mg/kg          | 0.5  |                  |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Dibenz(a,h)anthracene          | mg/kg          | _    |                  |                |                  |                |                 |            |            |            |            |
|                              | Benzo(g,h,i)perylene           | mg/kg          | 0.5  | 2                |                |                  |                |                 | <0.5       | <0.5       | <0.5       | <0.5       |
|                              | Benzo(a)pyrene TEQ calc (Zero) | mg/kg          | 0.5  | 3                |                |                  |                |                 | <0.5       | <0.5       | 1          | <0.5       |
|                              | Benzo(a)pyrene TEQ calc (Half) | mg/kg          | 0.5  | 3                |                |                  |                |                 | 0.6        | 0.6        | 1.3        | 0.7        |
|                              | Benzo(a)pyrene TEQ (LOR)       | mg/kg          | 0.5  | 3                |                |                  |                |                 | 1.2        | 1.2        | 1.6        | 1.3        |
| Debughtering to d Di d       | PAHs (Sum of total)            | mg/kg          | 0.5  | 400              |                |                  |                |                 | 0.5        | <0.5       | 7.6        | 4.9        |
| Polychlorinated Biphenyls    | PCBs (Sum of total)            | mg/kg          | 0.1  | 1                |                |                  |                |                 | <0.1       | -          | -          | -          |



#### Table 12: Vapour results

|                          |       |        | NEPM 2013 Table<br>1A(2) HILs Res A<br>Soil vapour | GTB01     | DUP01     |
|--------------------------|-------|--------|----------------------------------------------------|-----------|-----------|
| Analyte                  | Units | LOR    |                                                    | 9/11/2021 | 9/11/2021 |
| Vinyl chloride           | mg/m³ | 0.0051 | 0.03                                               | <0.0051   | <0.0051   |
| Chloroethane             | mg/m³ | 0.13   |                                                    | <0.130    | <0.130    |
| 1.1-Dichloroethene       | mg/m³ | 0.2    |                                                    | <0.200    | <0.200    |
| 1.1-Dichloroethane       | mg/m³ | 0.2    |                                                    | <0.200    | <0.200    |
| cis-1.2-Dichloroethene   | mg/m³ | 0.02   | 0.08                                               | <0.0200   | <0.0200   |
| 1.2-Dichloroethane       | mg/m³ | 0.2    |                                                    | <0.200    | <0.200    |
| 1.1.1-Trichloroethane    | mg/m³ | 0.27   | 60                                                 | <0.270    | <0.270    |
| Trichloroethene          | mg/m³ | 0.0054 | 0.02                                               | 0.0188    | 0.0188    |
| 1.1.2-Trichloroethane    | mg/m³ | 0.27   |                                                    | <0.270    | <0.270    |
| Tetrachloroethene        | mg/m³ | 0.34   | 2                                                  | <0.340    | <0.340    |
| trans-1.2-Dichloroethene | mg/m³ | 0.2    |                                                    | <0.200    | <0.200    |
| Isopropyl Alcohol        | mg/m³ | 0.12   |                                                    | <0.120    | <0.120    |



#### Table 13: Soil RPDs

|                  |                                                    |                | Laboratory                     | ALS        | ALS        |      | ALS        | Eurofins   |     |
|------------------|----------------------------------------------------|----------------|--------------------------------|------------|------------|------|------------|------------|-----|
|                  |                                                    |                | Field ID                       | BH03 0.2   | DUP 01     | RPD  | BH03 0.2   | SPLIT 01   | RPD |
|                  |                                                    |                | Sampled Date/Time              | 10/11/2021 | 10/11/2021 | Ni D | 10/11/2021 | 10/11/2021 |     |
|                  |                                                    |                | bampied Date/Time              | 10/11/2021 | 10/11/2021 |      | 10/11/2021 | 10/11/2021 |     |
| Chemical Group   | Chemical Name                                      | Units          | LOR                            |            |            |      |            |            |     |
| Moisture Content | Moisture Content                                   | %              | 1                              | 10.8       | 17.9       | 49   | 10.8       |            |     |
|                  |                                                    |                |                                |            |            |      |            |            |     |
| TPH (NEPM, 1999) | TPH C6-C9 Fraciton                                 | mg/kg          | 10 (Primary): 20 (Interlab)    | <10.0      | <10.0      | 0    | <10.0      | <20.0      | 0   |
|                  | TPH C10 - C14 Fraction                             | mg/kg          | 50 (Primary): 20 (Interlab)    | <50.0      | <50.0      | 0    | <50.0      | <20.0      | 0   |
|                  | TPH C15-C28 Fraction                               | mg/kg          | 100 (Primary): 50 (Interlab)   | <100.0     | <100.0     | 0    | <100.0     | <50.0      | 0   |
|                  | TPH C29-C36 Fraction                               | mg/kg          | 100 (Primary): 50 (Interlab)   | <100.0     | <100.0     | 0    | <100.0     | <50.0      | 0   |
|                  | TPH C10 - C36 (Sum of total)                       | mg/kg          | 50                             | <50.0      | <50.0      | 0    | <50.0      | <50.0      | 0   |
| TRH (NEPM, 2013) | TDU 00 040 Franklau                                |                | 40 (Deins and): 00 (Interdate) | <10.0      | <10.0      | 0    | <10.0      | <20.0      | 0   |
| TRH (NEPM, 2013) | TRH C6-C10 Fraction                                | mg/kg          | 10 (Primary): 20 (Interlab)    | <10.0      | <10.0      | 0    | <10.0      | <20.0      |     |
|                  | TRH C6-C10 less BTEX (F1)<br>TRH >C10-C16 Fraction | mg/kg          | 10 (Primary): 20 (Interlab)    | <10.0      | <10.0      | 0    | <10.0      | <20.0      | 0   |
|                  |                                                    | mg/kg          | 50                             | <50.0      | <50.0      | 0    | <50.0      | <50.0      | 0   |
|                  | TRH >C10 - C16 Fraction minus Naphthalene (F2)     | mg/kg          | 50<br>100                      | <100.0     | <100.0     | 0    | <50.0      | <100.0     | 0   |
|                  | TRH >C16-C34 Fraction<br>TRH >C34-C40 Fraction     | mg/kg<br>mg/kg | 100                            | <100.0     | <100.0     | 0    | <100.0     | <100.0     | 0   |
|                  | TRH C10 - C40 (Sum of total)                       | mg/kg          | 50 (Primary): 100 (Interlab)   | <50.0      | <50.0      | 0    | <50.0      | <100.0     | 0   |
|                  | TRH C 10 - C40 (Sull of total)                     | mg/kg          | 50 (Primary). 100 (intenab)    | <50.0      | 50.0       | - 0  | <50.0      | <100.0     | 0   |
| BTEX             | Benzene                                            | ma/ka          | 0.2 (Primary): 0.1 (Interlab)  | <0.2       | <0.2       | 0    | <0.2       | <0.1       | 0   |
|                  | Ethylbenzene                                       | ma/ka          | 0.5 (Primary): 0.1 (Interlab)  | <0.5       | <0.5       | 0    | <0.5       | <0.1       | 0   |
|                  | Toluene                                            | mg/kg          | 0.5 (Primary): 0.1 (Interlab)  | <0.5       | <0.5       | 0    | <0.5       | <0.1       | 0   |
|                  | Xylene (m & p)                                     | ma/ka          | 0.5 (Primary): 0.2 (Interlab)  | <0.5       | <0.5       | 0    | <0.5       | <0.2       | 0   |
|                  | Xylene (o)                                         | mg/kg          | 0.5 (Primary): 0.1 (Interlab)  | <0.5       | <0.5       | 0    | <0.5       | <0.1       | 0   |
|                  | Total BTEX                                         | mg/kg          | 0.2                            | <0.2       | <0.2       | 0    | <0.2       |            | -   |
|                  | Xylene Total                                       | mg/kg          | 0.5 (Primary): 0.3 (Interlab)  | <0.5       | <0.5       | 0    | <0.5       | <0.3       | 0   |
|                  |                                                    |                |                                |            |            |      |            |            |     |
| Metals           | Arsenic                                            | mg/kg          | 5 (Primary): 2 (Interlab)      | 16.0       | 17.0       | 6    | 16.0       | 11.0       | 37  |
|                  | Cadmium                                            | mg/kg          | 1 (Primary): 0.4 (Interlab)    | <1.0       | <1.0       | 0    | <1.0       | <0.4       | 0   |
|                  | Chromium (III+VI)                                  | mg/kg          | 2 (Primary): 5 (Interlab)      | 39.0       | 41.0       | 5    | 39.0       | 89.0       | 78  |
|                  | Copper                                             | mg/kg          | 5                              | 58.0       | 67.0       | 14   | 58.0       | 47.0       | 21  |
|                  | Lead                                               | mg/kg          | 5                              | 120.0      | 116.0      | 3    | 120.0      | 87.0       | 32  |
|                  | Mercury                                            | mg/kg          | 0.1                            | <0.1       | <0.1       | 0    | <0.1       | <0.1       | 0   |
| -                | Nickel                                             | mg/kg          | 2 (Primary): 5 (Interlab)      | 42.0       | 45.0       | 7    | 42.0       | 66.0       | 44  |
|                  | Zinc                                               | mg/kg          | 5                              | 172.0      | 177.0      | 3    | 172.0      | 170.0      | 1   |
| PAH              | Acenaphthylene                                     | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
| PAH              | Naphthalene                                        | mg/kg          | 1 (Primary): 0.5 (Interlab)    | <1.0       | <0.5       | 0    | <0.5       | <0.5       | 0   |
| -                | Naphthalene                                        | mg/kg<br>mg/kg | 0.5                            | <1.0       | <1.0       | 0    | <1.0       | <0.5       | 0   |
|                  | Acenaphthene                                       | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
|                  | Fluorene                                           | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
|                  | Anthracene                                         | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
| -                | Fluoranthene                                       | mg/kg          | 0.5                            | 2.6        | 1.7        | 42   | 2.6        | 1.3        | 67  |
| -                | Phenanthrene                                       | mg/kg          | 0.5                            | 1.8        | 1.0        | 57   | 1.8        | <0.5       | 113 |
|                  | Benz(a)anthracene                                  | ma/ka          | 0.5                            | 1.2        | 0.9        | 29   | 1.2        | 1.2        | 0   |
|                  | Chrysene                                           | mg/kg          | 0.5                            | 0.8        | 0.6        | 29   | 0.8        | 1.1        | 32  |
|                  | Benzo(b+j)fluoranthene                             | ma/ka          | 0.5                            | 1.2        | 0.9        | 29   | 1.2        | <0.5       | 82  |
|                  | Benzo(k)fluoranthene                               |                | 0.5                            | 0.6        | <0.5       | 18   | 0.6        | <0.5       | 18  |
|                  | Benzo(a) pyrene                                    | mg/kg          | 0.5                            | 1.1        | 0.8        | 32   | 1.1        | <0.5       | 75  |
|                  | Pyrene                                             | mg/kg          | 0.5                            | 2.4        | 1.7        | 34   | 2.4        | 1.3        | 59  |
|                  | Indeno(1,2,3-c,d)pyrene                            | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
|                  | Dibenz(a,h)anthracene                              | mg/kg          | 0.5                            | <0.5       | <0.5       | 0    | <0.5       | <0.5       | 0   |
|                  | Benzo(g,h,i)perylene                               | mg/kg          | 0.5                            | 0.6        | <0.5       | 18   | 0.6        | <0.5       | 18  |
|                  | Benzo(a)pyrene TEQ calc (Zero)                     | mg/kg          | 0.5                            | 1.4        | 1.0        | 33   | 1.4        | <0.5       | 95  |
|                  | Benzo(a)pyrene TEQ calc (Half)                     | mg/kg          | 0.5                            | 1.7        | 1.3        | 27   | 1.7        | 0.7        | 83  |
|                  | Benzo(a)pyrene TEQ (LOR)                           | mg/kg          | 0.5                            | 2.0        | 1.6        | 22   | 2.0        | 1.3        | 42  |
|                  | PAHs (Sum of total)                                |                | 0.5                            | 12.3       | 7.6        | 47   | 12.3       | 4.9        | 86  |



#### Table 14: Vapour RPDs

|                          |       |        | GTB01     | DUP01     | RPD |
|--------------------------|-------|--------|-----------|-----------|-----|
| Analyte                  | Units | LOR    | 9/11/2021 | 9/11/2021 |     |
| Vinyl chloride           | mg/m³ | 0.0051 | <0.0051   | <0.0051   | 0   |
| Chloroethane             | mg/m³ | 0.13   | <0.130    | <0.130    | 0   |
| 1.1-Dichloroethene       | mg/m³ | 0.2    | <0.200    | <0.200    | 0   |
| 1.1-Dichloroethane       | mg/m³ | 0.2    | <0.200    | <0.200    | 0   |
| cis-1.2-Dichloroethene   | mg/m³ | 0.02   | <0.0200   | <0.0200   | 0   |
| 1.2-Dichloroethane       | mg/m³ | 0.2    | <0.200    | <0.200    | 0   |
| 1.1.1-Trichloroethane    | mg/m³ | 0.27   | <0.270    | <0.270    | 0   |
| Trichloroethene          | mg/m³ | 0.0054 | 0.0188    | 0.0188    | 0   |
| 1.1.2-Trichloroethane    | mg/m³ | 0.27   | <0.270    | <0.270    | 0   |
| Tetrachloroethene        | mg/m³ | 0.34   | <0.340    | <0.340    | 0   |
| trans-1.2-Dichloroethene | mg/m³ | 0.2    | <0.200    | <0.200    | 0   |
| Isopropyl Alcohol        | mg/m³ | 0.12   | <0.120    | <0.120    | 0   |



#### Table 15: Field blank results

|                  |                                                |       | Laboratory<br>Field ID<br>Sampled_Date/Time<br>Sample Type | ALS<br>RIN1<br>10/11/2021<br>Rinsate |
|------------------|------------------------------------------------|-------|------------------------------------------------------------|--------------------------------------|
| Chemical Group   | Chemical Name                                  | Units | LOR                                                        |                                      |
| BTEX             | Benzene                                        | µg/L  | 1                                                          | <1                                   |
|                  | Ethylbenzene                                   | µg/L  | 2                                                          | <2                                   |
|                  | Toluene                                        | µg/L  | 2                                                          | <2                                   |
|                  | Xylene (m & p)                                 | µg/L  | 2                                                          | <2                                   |
|                  | Xylene (o)                                     | µg/L  | 2                                                          | <2                                   |
|                  | Total BTEX                                     | µg/L  | 1                                                          | <1                                   |
|                  | Xylene Total                                   | µg/L  | 2                                                          | <2                                   |
| PAH              | Naphthalene                                    | µg/L  | 5                                                          | <5                                   |
| TPH (NEPM, 1999) | TPH C6-C9 Fraciton                             | mg/l  | 0.02                                                       | <0.02                                |
|                  | TPH C10 - C14 Fraction                         | mg/l  | 0.05                                                       | <0.05                                |
|                  | TPH C15-C28 Fraction                           | mg/l  | 0.1                                                        | <0.1                                 |
|                  | TPH C29-C36 Fraction                           | mg/l  | 0.05                                                       | <0.05                                |
|                  | TPH C10 - C36 (Sum of total)                   | mg/l  | 0.05                                                       | <0.05                                |
| TRH (NEPM, 2013) | TRH C6-C10 Fraction                            | mg/l  | 0.02                                                       | <0.02                                |
|                  | TRH C6-C10 less BTEX (F1)                      | mg/l  | 0.02                                                       | <0.02                                |
|                  | TRH >C10-C16 Fraction                          | mg/l  | 0.1                                                        | <0.1                                 |
|                  | TRH >C10 - C16 Fraction minus Naphthalene (F2) | mg/l  | 0.1                                                        | <0.1                                 |
|                  | TRH >C16-C34 Fraction                          | mg/l  | 0.1                                                        | <0.1                                 |
|                  | TRH >C34-C40 Fraction                          | mg/l  | 0.1                                                        | <0.1                                 |
|                  | TRH C10 - C40 (Sum of total)                   | mg/l  | 0.1                                                        | <0.1                                 |