

Baseline Due Diligence Environmental Site Assessment

Part 32, 33 and Part 34 South Wharf, Port Melbourne

Prepared for: Port of Melbourne Operations Pty Ltd and Cement Australia Holdings Pty Ltd Level 19, 839 Collins Street Docklands, VIC 3008

18 December 2019

Distribution

Baseline Due Diligence Environmental Site Assessment, Part 32, 33 and Part 34 South Wharf, Port Melbourne

18 December 2019

Copies	Recipient	Copies	Recipient
1 PDF	Deanne Britt Project Manager Port of Melbourne Operations Pty Ltd and Cement Australia Holdings Pty Ltd Level 19, 839 Collins Street Docklands, VIC 3008	1 PDF	Senversa Project File

Disclaimer and Limitations

- 1 This document is confidential and has been prepared by Senversa for use only by its client and for the specific purpose
- 2 Reliance This document has been prepared solely for the use of Port of Melbourne Operations Pty Ltd and Cement Australia Holdings Pty Ltd. No responsibility or liability is accepted for any damages arising out of the use of this document by any third party.
- 3 Copyright and Intellectual Property No portion of this document may be removed, extracted, copied, electronically stored or disseminated in any form without the prior written permission of Senversa. Intellectual property in relation to the methodology undertaken during the creation of this document remains the property of Senversa.
- 4 Principles and Limitations of Investigation This document is issued subject to the technical principles, limitations and assumptions provided in Section 6.0
- 5 Confidentiality This report was prepared for Port of Melbourne Operations Pty Ltd and Cement Australia Holdings Pty Ltd and may contain confidential information. If you receive this report in error, please contact Serversa and we will arrange collection of this document.

Senversa Pty Ltd

ABN: 89 132 231 380 Level 6, 15 William Street, Melbourne, VIC 3000 tel: + 61 3 9606 0070; fax: + 61 3 9606 0074 www.senversa.com.au

Project Project 10 Manager Director Lucinda Trickey **Briony Muller** Senior Environmental Engineer Senior Associate **Technical**

Richard Griffin Principal

Peer Review

> m17571_004_rpt_rev1 S©NV©rSa i

Executive Summary

Senversa Pty Ltd (Senversa) was engaged by Port of Melbourne Operations Pty Ltd (PoM) to undertake a baseline due diligence environmental site assessment for Part 32, 33 and Part 34 South Wharf, Lorimer Street, Port Melbourne (the site). At the time of the assessment, Part of 32 and 33 South Wharf were being used for the bulk storage and transport of cement products. Part 34 appeared to be vacant and unused, except for a small portion in the east serving as wharf access and carparking. The site is largely sealed except for a small grassed area of Part 34.

The objective of the works is to document the baseline conditions of soil and groundwater at the site prior to commencement of a new lease.

Soil investigation works undertaken across the site identified fill soils up to 2.0 m thick, underlain by natural Port Melbourne Sand. The shallow fill soils were impacted by low-level metal, total recoverable hydrocarbon and polycyclic aromatic hydrocarbon concentrations; with widespread nickel, zinc and isolated copper and benzo(a)pyrene concentrations above the adopted maintenance of ecosystems criteria. All analysed samples contained chemical concentrations below the human health objectives for commercial land use.

Groundwater investigation works from existing monitoring wells showed that groundwater was present approximately 1.5 to 2.5 m below ground level, with an inferred flow direction towards the Yarra River. The groundwater contained elevated levels of ammonia, sulphate, metals and total recoverable hydrocarbon exceeding the adopted beneficial uses. These concentrations are consistent with regional groundwater quality in the port region.

Based on the results of the due diligence environmental site assessment, the site is considered suitable for ongoing use in a commercial/ industrial, port-related setting.

\bigcirc

Contents

List of	Acronyms	. v
1.0	Introduction	. 1
1.1	Background	. 1
1.2	Objectives	. 1
1.3	Scope of Works Undertaken	. 1
2.0	Background Information	. 2
2.1	Site Details	. 2
2.2	Current Site Use	. 3
	2.2.1 Part 34	. 3
	2.2.2 Part 33	. 3
	2.2.3 Part 32	. 4
2.3	Site History Summary	. 4
2.4	Sources of Contaminants of Potential Concern	. 5
3.0	Assessment Methodology	. 6
3.1	Relevant Guidelines and Standards	. 6
3.2	Assessment Rationale	. 6
3.3	Investigation Program	. 7
3.4	Laboratory Analysis	. 9
3.5	Quality Assurance / Quality Control	. 9
3.6	Adopted Investigation Levels	. 9
4.0	Assessment Results	10
4.1	Field Observations	10
	4.1.1 Soil	10
	4.1.2 Groundwater	10
	4.1.3 Groundwater Observations and Field Chemistry	11
4.1	Laboratory Results	11
4.2	Nature and Extent of Contamination	11
	4.2.1 Soil	11
	4.2.2 Groundwater	11
5.0	Conclusions	12
6.0	Principles and Limitations of Investigation	13
6.1	Project Specific Uncertainties	14
7.0	References	15

Figures

Figure 1: Site Location Plan Figure 2: Soil Investigation Locations and Exceedances Figure 3: Groundwater Elevation and Exceedances

Tables

Table 1: Groundwater Gauging Data Table 2: Stabilised Groundwater Parameters Table 3: Soil Analytical Results Table 4: Groundwater Analytical Results

Appendix A: Site Photographs

- Appendix B: Groundwater Purge Sheets
- **Appendix C: Calibration Certificates**

Appendix D: Bore Logs

Appendix E: Laboratory Reports

Appendix F: Waste Transport Certificate

Appendix G: Quality Assurance / Quality Control

Appendix H: Assessment Criteria

\bigcirc

List of Acronyms

Acronym	Description	Acronym	Description
АСМ	Asbestos containing material	NEPC	National Environment Protection Council
AHD	Australian Height Datum	NEPM	National Environment Protection Measure
ALS	Australian Laboratory Services	NHMRC	National Health and Medical Research Council
AS	Australian Standard	РАН	Polycyclic aromatic hydrocarbons
AST	Above ground storage tank	PCR	Primary contact recreation
ANZECC	Australian and New Zealand Environment and Conservation Council	PID	Photo-ionisation detector
bgl	Below ground level	РоМ	Port of Melbourne Operations
BTEX	Benzene, toluene, ethylbenzene, xylenes	PVC	Polyvinyl chloride
CIS	Coode Island Silt	PZ	Port Zone
сос	Chain of custody	QA	Quality assurance
CoPC	Contaminant of potential concern	QC	Quality control
DO	Dissolved oxygen	RPD	Relative percentage difference
EC	Electrical conductivity	SB	Soil bore
EIL	Ecologically based investigation level	SEPP	State Environment Protection Policy
EPA	Environment Protection Authority (Victoria)	SEPP PMCL	State Environment Protection Policy (Prevention and Management of Contaminated Land)
ESA	Environmental Site Assessment	SEPP WoV	State Environment Protection Policy (Waters of Victoria)
ESL	Ecological screening level	SWL	Standing water level
GQRUZ	Groundwater quality restricted use zone	TDS	Total dissolved solids
GME	Groundwater monitoring event	ТРН	Total petroleum hydrocarbons
HSL	Health screening level	TRH	Total recoverable petroleum hydrocarbons
HSEP	Health and Safety Plan	USEPA	United States Environment Protection Agency
LNAPL	Light non-aqueous phase liquid	USD	Underground Service Detection
LOR	Limit of reporting	VOC	Volatile Organic Compound
m AHD	Metres Australian Height Datum		
MoE	Maintenance of Ecosystems		
MW	Monitoring well		
NATA	National Association of Testing Authorities		

1.0 Introduction

1.1 Background

Senversa Pty Ltd (Senversa) was engaged by Port of Melbourne Operations Pty Ltd (PoM) to undertake a baseline due diligence environmental site assessment (ESA) for Part 32, 33 and Part 34 South Wharf, Lorimer Street, Port Melbourne (the site). The site boundary is presented on **Figure 1**.

At the time of the assessment, Part of 32 and 33 South Wharf were being used for the bulk storage and transport of cement products. Part 34 appeared to be vacant and unused, except for a small portion in the east serving as wharf access and carparking. It is understood that Cement Australia Holdings Pty Ltd are the incoming tenants for the site.

1.2 Objectives

The objective of the works is to document the baseline conditions of soil and groundwater at the site prior to commencement of a new lease.

1.3 Scope of Works Undertaken

Senversa completed the following scope of works:

- A site inspection to document the site condition at the time of the assessment.
- Summary of local and regional geology and hydrogeology, using a combination of published data sources and previous site investigation findings.
- Summary of site history based on information from historical environmental reports and other historical resources.
- Preparation of a Health, Safety and Environment Management Plan (HSEP).
- Clearance of underground services for each investigation location.
- Completion of PoM's ground penetration works notification and permit process.
- A soil investigation involving concrete coring, non-destructive drilling (NDD), logging and sampling of 10 soil bores up to 2.2 m below ground level (bgl).
- A groundwater investigation involving the gauging and sampling of seven existing groundwater monitoring wells both on and surrounding the site.
- Laboratory analysis of selected soil and groundwater samples for contaminants of potential concern (CoPC) by laboratories accredited by National Association of Testing Authorities Australia (NATA) for the analysis methods used.
- Collation and interpretation of the data, including conducting a quality assurance / quality control (QA/QC) data validation process.
- Interpretation of available historical data (ESG, 2016 and BlueSphere, 2016) for Part 32 South Wharf in the absence of current investigation results.
- Completion of this report including assessment of the contamination status of soil and groundwater at the site in the context of a commercial / industrial port-related setting.

2.0 Background Information

This section summarises the site environmental setting, site history and potential sources of contaminants of concern. Historical assessment reports used to compile the background information included the following:

- Peter J Ramsay & Associates (2000). Contamination Assessment of Land, 34 South Wharf, Port Melbourne, Victoria. Issued November 2000.
- Meinhardt (2005a). Baseline Environmental Site Assessment, Site U56, Steel Cement, South Wharf, Port Melbourne. Issued May 2005.
- Meinhardt (2005b). Baseline Environmental Site Assessment, Site U57 Pozzolanic Industries, Port Melbourne, South Wharf, Port Melbourne. Issued May 2005.
- Meinhardt (2005c). Baseline Environmental Site Assessment, Site U16, South Wharf, Port Melbourne. Issued May 2005.
- Golder Associates (2008). 33 South Wharf Updated Site Environmental Assessment. Issued September 2008. Issued September 2008.
- BlueSphere Environmental (2012). Current Site Status Review 32 34 South Wharf. Issued November 2012.
- BlueSphere Environmental (2016). Supplementary Environmental Site Assessment, 32 33 South Wharf. Issued November 2016.

2.1 Site Details

The following table summarises the relevant details that describe the site.

Table 2-1: Site Details

Item	Relevant Site Information
Site Location	33, 32 and 34 South Wharf, Lorimer Street, Port Melbourne
Site Area	Approximately 2.3 ha
Site Owner	Port of Melbourne Operations Pty Ltd
Site Occupiers	Pozzolanic Enterprizes Pty Ltd (33), Hy-Tec Concrete and Aggregates (Part 32), Vacant PoM land (Part 34)
Current Land Use Zoning	Port Zone (PZ) Aboriginal Cultural Heritage Sensitivity Overlay
Municipality	City of Melbourne
Topography	The site is generally flat, elevated approximately 2 to 4 m above Australian Height Datum (AHD).
Nearest Surface Water Bodies	Yarra River lies adjacent to the north of the site (see Figure 1).

Item Relevant Site Information		
Surrounding Land Use	North: Yarra River adjacent to northern site boundary, further north are port related facilities.	
	 South: Commercial and industrial precincts including Calendar Cheese Company, OPG Global Solutions, Press Print Solutions, as well as other logistics and storage related facilities. 	
	• East: Various storage warehouses for port related activities.	
	• West: Port of Melbourne Education Centre, restaurants and a wine distribution facility.	
EPA Priority Sites Register	A review of the EPA Priority Sites Register (PSR) on 18 November 2019 indicated that no Clean Up or Pollution Abatement Notices (relevant to land and/or groundwater contamination) had been issued to the owner or occupier of the site, nor for properties within 500 m of the site as of 30 September 2019.	
Groundwater Quality Restricted Use Zones	j	

2.2 Current Site Use

The sections below described the current use of Part 32, 33, and Part 34 areas at the time of the assessment. Site photographs are provided in **Appendix A.**

2.2.1 Part 34

At the time of the assessment, Part 34 comprised vacant unused land except for the far east portion of the site that serves as Wharf access and carparking. This area was unsealed with a grass surface, except for along the eastern boundary where an asphalt road allows access to the wharf via an electric remotely operated gate with an adjacent gatehouse building. On the north side of the gate was the asphalt covered wharf area (see Photographs 27 to 28).

2.2.2 33

33 was occupied by Pozzolanic Enterprizes Pty Ltd for storage mixing and batching of cement products. The site comprised a mixture of concrete, asphalt and paving hardstand. Notable site features included:

- A large disused fly ash bulk storage tank in the centre of the site (Photograph 1).
- Fly ash and dry cement silos with truck loading facilities (Photograph 1 and 6).
- Oil water storage area in the eastern portion of the site. The area was not bunded however no signs of leakage were observed (photograph 5).
- Former above ground storage tank (AST) believed to have contained water (Photograph 4).
- A workshop containing small amounts of lubricants and oils. The workshop floor consisted of concrete hardstand in moderate condition with a small patch of unsealed surface in the truck maintenance area (Photograph 2) Interviews with site personal indicated that the workshop is predominantly used for storage purposes and minor truck servicing (Photograph 2 and 3).
- Site office and amenities.

2.2.3 Part 32

Part 32 is occupied by Hy-tec for use as a concrete batching plant. An office building, truck parking, cement truck watering bays and above ground storage tanks (ASTs), which appeared to be associated with cement and/or concrete mixing and batching (Photographs 23 to 26) are present on site.

2.3 Site History Summary

Development of the South Wharf Precinct commenced in the late 1900s with relocation of the Melbourne Harbour Trust timber stores and wharves from their inner-city location to the western end of the precinct.

Review of historical aerial photography showed that the site was undeveloped prior to 1940. By the 1960s, 32 and 33 South Wharf had been developed into a shipping freight loading and storage facility for handling of live exports (sheep) and potential storage of coal. Part 34 South Wharf appeared to have remained vacant and while small buildings and machinery had been identified in historic aerials at various times there was no evidence of permanent industrial land use.

Steel Cement and Pozzolanic Enterprizes Pty Ltd occupied 32-33 South Wharf from the early 1990s and this portion of site was used for the unloading, stockpiling and processing of blast furnace slag, a by-product from the production of steel. The slag was ground on-site and mixed with gypsum to later be added to cement.

Various contaminated land assessment reports were also completed for the site between 2000 and 2016 (Peter J Ramsay & Associates, 2000, Meinhardt, 2005a, 2005b, 2005c, Golder, 2008, BlueSphere 2016). These assessments comprised various soil and groundwater investigation works that identified:

- Fill soil was present across the entire site in depths ranging from 0.8 m bgl to 1.6 m bgl. Fill soils comprised sandy gravel and sand with anthropogenic material including coke and ash.
- Concentrations of heavy metals exceeding the adopted ecological guidelines were found in fill soil across the site. TRH concentrations exceeding the adopted criteria¹ was also found in fill soil in the maintenance area on 33 South Wharf.
- Depth to groundwater at the site ranged from 1.7 m bgl to 2.6 m bgl with an inferred flow towards the north east in the direction of the Yarra River. Concentrations of ammonia and heavy metals in groundwater exceed the adopted assessment criteria. Volatile organic compounds below relevant guidelines were detected in groundwater in the western portion of 33 South Wharf.

¹ The adopted criteria were sourced from *Guidelines for Assessing Service Station Sites* (NSW EPA 1994) which were developed for sensitive land use and have since been superseded by less conservative criteria.

2.4 Sources of Contaminants of Potential Concern

Based on the results of previous investigations, the collated site history information and inspection of the site, the identified potential areas of contamination and CoPC are summarised in the table on the following page.

Table 2-2: Sources of Contaminants of Potential Concern

Potential Source of Contamination	Contaminants of Potential Concern
Legacy / precinct wide contamination issues, including historical fill deposition from unknown sources and previous land use activities.	 Heavy Metals/ Metalloids (Arsenic, Cadmium, Chromium, Copper, Mercury, Nickel, Lead and Zinc). Polycyclic Aromatic Hydrocarbons (PAHs). Petroleum Hydrocarbons (TRHs). Volatile organic compounds (VOCs). Sulphate and ammonia. Asbestos containing materials (ACM).
Cement and fly ash storage batching and processing activities	Heavy Metals/ Metalloids, sulphur compounds, pH
Workshops and oil storage	 Polycyclic Aromatic Hydrocarbons (PAHs). Petroleum Hydrocarbons (TRHs). BTEXN (benzene, toluene, ethylbenzene, xylene and naphthalene).
Vehicle parking, vehicle movement across the site.	 Petroleum hydrocarbons (TRHs). BTEXN (benzene, toluene, ethylbenzene, xylene and naphthalene).

The investigation methodology implemented based on these CoPC is discussed in **Section 3.0**, while the laboratory analysis is detailed in **Section 3.4**.

3.0 Assessment Methodology

The following sections describe the guidelines, standards and investigation methods adopted and used during the due diligence ESA.

3.1 Relevant Guidelines and Standards

The investigation has been performed in accordance with the following guidelines and standards:

- EPA Victoria, Hydrogeological Assessment (Groundwater Quality) Guidelines, Publication 668, September 2006.
- EPA Victoria, Groundwater Sampling Guidelines, Publication 669, April 2000.
- National Environment Protection Council (NEPC). National Environment Protection (Assessment of Site Contamination) Measure (NEPM), 2013.
- Standards Australia, Australian Standard (AS 4482.1) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Non-volatile and Semi-volatile compounds, 2005.
- Standards Australia, Australian Standard (AS 4482.2) Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Volatile Substances, 1999.
- State Environment Protection Policy (SEPP), Waters, (SEPP (Waters)) (State of Victoria, 2018).
- SEPP, Prevention and Management of Contamination of Land, (SEPP (PMCL)) (State of Victoria, 2002).

3.2 Assessment Rationale

As discussed in **Section 1.0**, the site investigation works completed as part of this end of lease ESA comprised:

- Soil sampling and analysis from ten soil bores (SB7375 SB7384).
- Groundwater gauging, sampling and analysis from seven existing groundwater monitoring wells (MW7015, MW7016, MW7018, MW7019, MW7020, MW7021 and MW7075).

The rationale behind the investigation locations was to provide general coverage of the site. Soil bores that historically targeted areas of potential concern including the drum storage and maintenance workshop (33 South Wharf) were not reassessed due to the presence of existing groundwater wells. Sampling and comparison of the groundwater in these areas was considered sufficient to assess the condition of the site.

In addition, data from five recent soil investigation locations at 32 South Wharf (ESG, 2016 and BlueSphere, 2016) were also incorporated with the assessment results, including BH01 – BH04 (ESG, 2016) and SB7326 (BlueSphere, 2016) (refer to **Figure 2**). These investigation works were recently completed in 2016 and were deemed to be representative of prelease baseline conditions.

3.3 Investigation Program

The table below summarises the methodology specific to the field program.

Table 3-1: Investigation Methodology

Activity	ltem	Description
Groundwater Gauging	Dates	9 October 2019
Gauging	Method	Prior to sampling, groundwater standing water levels (SWLs) were measured relative to the top of the polyvinyl chloride (PVC) casing from marks indicating the point surveyed. The oil / water interface meter was decontaminated prior to and after each measurement with a Decor 90 and clean water solution.
		In addition, the total depth of all wells and condition of the wells were recorded. Groundwater gauging results are summarised in Table 1.
	Accuracy	Recorded to nearest 0.001 m with an estimated accuracy of \pm 0.002 m.
Groundwater Sampling	Dates	9 and 10 October 2019
oamping	Method	A total of seven existing groundwater monitoring wells were sampled during the GME. The general methodology is summarised below:
		 Low-flow sampling method was utilised during this GME in general accordance with EPA Publication 668 and 669.
		 Low flow sampling was undertaken with a Geocontrol® unit and bladder pump, where the pump inlet was placed within the screen interval.
		• Field groundwater quality parameters were measured using a water quality meter and a flow-through cell. The parameters included pH, electrical conductivity (EC), dissolved oxygen (DO), oxidation-reduction potential (redox) and temperature.
		 Sampling of the wells occurred once water level drawdown and water quality parameters had stabilised within the adopted acceptable ranges, which are in accordance with EPA Publication 669. Water table drawdown was monitored during purging and at the completion of sampling, using an interface meter. A summary of the parameter stabilisation is included in Table 2.
		 Where water level drawdown was not able to be stabilised within the adopted acceptable range, wells were either purged dry or three bore volumes were removed. This included wells MW7015, MW701 and MW7075.
		 Groundwater samples that were analysed for dissolved metals were field filtered with 0.45 micron disposable filters.
		Refer to purging sheet in Appendix B for details of the purging and sampling.

Activity	Item	Description
Service Clearance	Date	9 October 2019 and 19 November 2019
	Contractor	Underground Services Detection (USD) and Qest Underground Services (Qest)
		Prior to intrusive site works, proposed investigation locations were cleared for the presence of underground services via the following methodology:
		 Review of available service and sewerage plans from the dial-before-you-dig online database.
		 Inspection of the site and immediate off-site areas for surface evidence and signage indicating utility locations and to confirm the presence and alignment of nearby and on- site sewerage infrastructure and underground services.
		 Tracing of known and redundant (where possible) underground utilities by an experienced underground utility locator using radio detection equipment. Serversa supervised this activity and discussed the findings with the locator personnel.
		Completion of Senversa's Borehole / Excavation Underground and Overhead Clearance Protocol prior to intrusive investigation.
Soil Sampling – Drilling Works	Dates	9 – 10 October 2019 and 19 November 2019
	Contractor	USD and Qest
	Methods	Ten soil bores (SB7375 – SB7384) were drilled to between 2.0 m bgl and 2.2 m bgl, using concrete coring and non-destructive digging techniques (NDD) which included either a high-pressured water lance or hand auger. Samples were collected by retrieving directly from the hand auger head. The hand auger was decontaminated between each sample collected and between each soil bore location.
		Soil samples were collected from immediately below the asphalt, and at approximately 0.5 m intervals thereafter.
		Photographs of the lithology encountered, and samples collected is provided within Appendix A . The stratigraphy encountered during drilling works are detailed on the lithological logs presented in Appendix D and is summarised in Section 4.1.1 .
	Equipment Calibration Records	A photoionisation detector (PID) was used to screen sub-samples and ambient air during the drilling for VOCs. PID measurements are presented on the lithological logs (Appendix D) The meter was calibrated by the supplier prior to use. Relevant calibration certificates have been provided in Appendix C .
Sample Handling and Preservation	Method	All environmental samples were placed into clean laboratory-supplied jars or appropriately preserved bottles. Samples were collected immediately and stored on ice prior to and during transport to the laboratory to minimise sample degradation and the loss of volatile contaminants. Chain of custody forms were completed for each sample batch and then transported for analysis to NATA accredited laboratories. Copies of the chain of custody forms are provided in Appendix E .
Waste Disposal	Method	Wastewater from purging and sampling of groundwater monitoring wells was temporarily stored in a 205 L drum on site, which was subsequently transported off-site to a licensed facility for disposal. Excess soil spoil and water from NDD was collected within subcontractors' dedicated vehicles and was subsequently transported under licence from EPA off-site for disposal. Waste Transport Certificates are provided within Appendix F .
Avoidance of Cross	Method	Sampling procedures used to prevent cross contamination involved:
Contamination		 Decontamination of the hand auger, micro purge pump and interface probe between sampling locations, using a Decon® 90 and water solution and a separate vessel of clean water for a final rinse.
		The use of new disposable gloves, zip-lock bags for VOC measurements, bladders, field filters and low-density polyethylene tubing at each location.

3.4 Laboratory Analysis

The primary laboratory used for conducting the soil analysis was Eurofins and Australian Laboratory Services (ALS) I were engaged as the secondary laboratory for the soil analysis.

ALS were engaged as the primary laboratory for the groundwater analysis and Eurofins were engaged as the secondary laboratory. The laboratory certificates of analysis are provided in **Appendix E**.

The analysis selected was based on the CoPCs (**Section 2.5**) and was not focused on legacy contamination issues that have previously been identified and considered not to impact on the suitability of the site use in a commercial/industrial setting.

Table 3-2: Laboratory Analysis

Matrix	Ana	alytes			
Soil	Analysis of twelve fill samples and eight natural samples for the following:				
	•	Metals/Metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), benzene, toluene, ethylbenzene, xylene, naphthalene (BTEXN), sulphate.			
	QC Samples:				
	•	Two field and two secondary duplicates for metals/metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH, PAH, BTEXN.			
	•	Two rinsate samples for metals/metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH, PAH, BTEXN, sulphate.			
Groundwate	er Ana	lysis of seven groundwater samples:			

 Metals/Metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH, PAH, BTEXN, sulphate, ammonia, total dissolved solids (TDS).

- QC Samples:
- One field and one secondary duplicate for metals/metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH, PAH, BTEXN, sulphate, ammonia and TDS.
- One trip blank sample for TRH C₆-C₉ and BTEXN.
- Two rinsate sample for metals/metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH, PAH, BTEXN, sulphate, ammonia and TDS.

3.5 Quality Assurance / Quality Control

The QA/QC procedures adopted by Senversa provide a consistent approach to evaluation of whether the data quality objectives required by the project have been achieved. The process focuses on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated.

Based on the results of the data validation, the data is considered suitable for use in forming conclusions relating to the contamination status of the site. Further discussion on the data validity is included in **Appendix G**.

Senversa did not undertake a detailed review of the QA/QC procedures adopted by ESG (2016) and BlueSphere (2016) for historic investigations undertaken at 32 South Wharf. An assumption has been made that the data obtained from these investigations is reliable and representative.

3.6 Adopted Investigation Levels

The rationale for adopting assessment guidelines for the current assessment and the framework under which contamination of land and groundwater is assessed and managed in Victoria, is provided in **Appendix H**.

4.0 Assessment Results

4.1 Field Observations

4.1.1 Soil

The generalised soil profile is presented below. A more detailed description of the soil profile is provided in the soil logs included in **Appendix D**.

Table	4-1:	Soil	Profile
Table		001	1 I OIIIC

Approximate Depths (m bgl)	Stratigraphy	Site-Specific Lithology Description / Comments
0.0 to 0.05	-	Sealed Hardstand: Asphalt (locations within 33 South Wharf only).
0.0 to .0	Fill	FILL: Sandy GRAVEL/ Gravelly SILT/ Silty SAND/ Gravelly CLAY, fine to coarse grained sand and fine to coarse gained gravels, grey to brown. Anthropogenic material observed in the west of site included brick and concrete.
		FILL: SAND, fine to medium grained sand, occasional trace clay, yellow to dark grey, very loose. Very dense sands observed at north western section of the site.
0.4 to 2.2	Natural (Port Melbourne Sands)	SAND: Fine to medium grained sand, grey to yellow grey, brown and orange, loose,
	(. e.te.zounio ounuo)	Silty SAND: fine grained sand, trace clay, grey to pale grey.

No odours or staining were sighted during the soil investigation works. Field measured VOC concentrations across all samples were less than 1 ppm.

4.1.2 Groundwater

A summary of the measured groundwater levels is provided in **Table 1** and presented on **Figure 3**. Groundwater contours have not been included on **Figure 3** due to the poor well condition and tidal influences during the period of gauging. Results from the gauging event are as follows:

- No light non-aqueous phase liquid (LNAPL) was detected in on-site wells. This is consistent with historical groundwater monitoring events.
- MW7017 could not be sampled as the well was blocked at 1.62m above the inferred water table.
 MW7015 and MW7019 experienced blockage, which reduced the amount of available water within the water column of the well.
- A naturally occurring organic odour (sulphur) was noted during the purging at monitoring well MW7019.
- Standing water levels ranged from 1.58 m below top of casing (BTOC) (MW7015) to 2.56 m BTOC (MW7021).
- The reduced water levels ranged from 0.093 m AHD (MW7019) to 0.612 m AHD (MW7075).
- Gauging occurred on the rising mid-tide. At the time of the gauging event, the reduced groundwater levels indicated a general groundwater flow direction to the north east towards the Yarra River consistent with previous monitoring results.

4.1.3 Groundwater Observations and Field Chemistry

Groundwater parameters measured in the field are provided in **Table 2**. Key findings are provided below:

- pH ranged from 5.34 (MW7018) to 6.64 (MW7065), indicating slightly acidic to neutral groundwater conditions across the site.
- Field TDS ranged from 867 mg/L (MW7016) to 16,137 mg/L (MW7018). The TDS range is within historical and regional ranges.
- Redox potential ranged from 108.7 mV (MW7020) to 215 mV (MW7018). The groundwater environment is considered slightly oxidising.
- The groundwater temperature ranged from 14.5 °C (MW7075) and 18.1 °C (MW7016 / MW7021).

4.1 Laboratory Results

Soil and groundwater analytical results compared to the adopted screening levels and guidelines are presented in **Table 3** and **Table 4** respectively. Laboratory certificates of analysis are provided in **Appendix E.**

4.2 Nature and Extent of Contamination

4.2.1 Soil

All concentrations of chemical analytes in analysed soil samples were below the adopted assessment criteria, with the exception of the following above the adopted ecological investigation levels:

- Nickel in shallow fill samples analysed from 32 and 33 South Wharf, ranging in concentrations from 71 mg/kg to 200 mg/kg.
- Copper in one fill sample collected from 32 South Wharf (170 mg/kg).
- Zinc in shallow fill samples analysed from 34 South Wharf, ranging in concentrations from 169 mg/kg to 630 mg/kg.
- Benzo(a)pyrene in one shallow fill samples analysed from 34 South Wharf (15 mg/kg).

In the absence of identified site sources, these contaminants are representative of sporadic impacts in the heterogeneous fill and not site derived.

4.2.2 Groundwater

Exceedances of adopted assessment criteria were reported broadly across the well network for TDS, ammonia (as N), sulphate (as SO4) and metals (arsenic, copper, nickel and zinc). In addition, one location (MW7019) reported exceedances of adopted assessment criteria for metals (cadmium, chromium and lead) and TRH (C10-C16 Fraction minus naphthalene and C16-C34 Fraction). All other concentrations of chemical analytes were below the adopted assessment criteria.

5.0 Conclusions

The baseline due diligence environmental site assessment works undertaken across the site showed that:

- The site is largely sealed except for a small grassed area of Part 34.
- Fill soil was present at the site (up to 2.0 m thick), underlain by natural Port Melbourne Sand.
- Shallow fill soils were impacted by low-level metal, TRH and PAH concentrations; with widespread nickel, zinc and isolated copper and benzo(a)pyrene concentrations above the adopted maintenance of ecosystems criteria. All analysed samples contained chemical concentrations below the human health objectives for commercial land use.
- Groundwater was present at levels ranging from 1.58 m to 2.56 m BTOC, with an inferred flow direction towards the Yarra River.
- Groundwater contained elevated levels of ammonia, sulphate, metals and TRH exceeding the adopted beneficial uses, consistent with regional groundwater quality in the port region.

Based on the results of the due diligence environmental site assessment, the site is considered suitable for ongoing use in a commercial/ industrial, port-related setting.

6.0 **Principles and Limitations of Investigation**

The following principles are an integral part of site contamination assessment practices and are intended to be referred to when resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

Area	Principle and Limitation	
Elimination of Uncertainty	Some uncertainty is inherent in all site investigations. Furthermore, any sample, either surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.	
Failure to Detect	Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environment Protection (Assessment of Site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.	
Limitations of Information	The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation, including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information.	
Chemical Analysis Error	Chemical testing methods have inherent uncertainties and limitations. Senversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may be occurred during the testing, so that such problems can be considered in evaluating the data.	
Level of Assessment	The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort required to obtain information is outweighed by the time required to obtain that information, and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment	
Comparison with Subsequent Inquiry	The justification and adequacy of the findings of this investigation in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.	
Data Useability	Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected, or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.	
Nature of Advice	The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business advice.	

6.1 **Project Specific Uncertainties**

Specific uncertainties and limitations noted for this investigation are as follows:

- The scope of work performed as part of this assessment may not be appropriate to satisfy the needs of any other person. Any other person's use of, or reliance on, the findings, conclusions, recommendations or any other material presented herein, is at that person's sole risk.
- Soil investigations performed at the site were completed by concrete coring and NDD advancement of soil bores. Whilst suitable for characterising soil for chemical contamination, soil boring is generally unsuitable for identification of solid inert waste or hazardous waste materials (e.g. asbestos containing material) within fill. Given that fill was encountered at the site, there is potential for solid inert wastes or hazardous materials to be present at the locations investigated that were not identified during the drilling. The confidence in detecting inert wastes or hazardous materials at the site could be improved by excavating test pits, although this was not completed as part of the works undertaken by Senversa.
- The 32-33 South Wharf portion of the site was predominantly covered by asphalt or concrete that
 restricted the ability to inspect the ground surface for evidence of contamination or hazardous
 material debris (including asbestos containing material). If asbestos containing material is
 identified during construction, an occupational hygienist should be engaged to manage the
 material in accordance with WorkSafe Guidance Note Asbestos-contaminated soil, (October
 2010).
- The assessment did not include comparison of the data against relevant waste disposal criteria (e.g. Industrial Waste Resource Guidelines Publication 621 or trade waste criteria with water authority) for the off-site disposal of soil and groundwater. The soil and groundwater may comprise other regional or legacy contaminants that could affect management of surplus soil and groundwater associated with infrastructure upgrade works.
- The conclusions drawn about the contamination status of soil and groundwater are based on the current legislation, regulations and guidelines.
- In forming a view on the contamination status of the site Senversa has relied upon the accuracy of information provided within the third-party reports referenced in this report.

7.0 References

ANZECC & ARMCANZ, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water *Quality,* National Water Quality Management Strategy Document 4: Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.

ANZECC & ARMCANZ, 2000. Australian Guidelines for Water Quality Monitoring and Reporting,

National Water Quality Management Strategy Document 7: Australian and New Zealand

Environmental and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.

ANZECC & NHMRC, 1992. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Canberra: Australian and New Zealand Environment and Conservation Council and National Health and Medical Research Council.

BlueSphere Environmental (2012) *Current Site Status Review, 32 – 34 South Wharf.* 21 November 2012.

BlueSphere Environmental (2016). *Supplementary Environmental Site Assessment, 32 – 33 South Wharf.*

EPA, 2000. *Groundwater Sampling Guidelines, Publication 669*: Environmental Protection Authority (Victoria). Issued April 2000.

EPA, 2009b. *Sampling and Analysis of Waters, Wastewaters, Soils and Wastes,* Publication IWRG701: Environment Protection Authority (Victoria).

EPA, 2009c. Soil Sampling, Publication IWRG702: Environment Protection Authority (Victoria).

ESG Environmental (2016). Baseline Environmental Assessment, 32 South Wharf, 469 Lorimer Street, Port Melbourne.

Golder Associates (2008). 33 South Whard, Port Melbourne, Updated Site Environmental Assessment. September 2008.

Meinhardt (2005a). Baseline Environmental Site Assessment, Site U56, Steel Cement, South Wharf, Port Melbourne.

Meinhardt (2005b). Baseline Environmental Site Assessment, Site U57 Pozzolanic Industries, Port Melbourne, South Wharf, Port Melbourne.

Meinhardt (2005c). Baseline Environmental Site Assessment, Site U16, South Wharf, Port Melbourne.

NEPM, 2013. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1).

Peter J Ramsay & Associates (2000). Contamination Assessment of Land, 34 South Wharf, Port Melbourne, Victoria.

Standards Australia, 2005. *Guide to Sampling and Investigation of Potentially Contaminated Soil. Part 1: Non-Volatile and Semi-Volatile Compounds*, Australian Standard: AS4482.1-2005.

Standards Australia, 1999. *Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 2: Volatile Substances,* Australian Standard: AS4882.2-1999.

State of Victoria, 2002. *State Environment Protection Policy (Prevention and Management of Contamination of Land)*. Victoria Government Gazette, No. S 95 (4 June 2002), pp. 1-24.

State of Victoria, 2018. *State Environment Protection Policy (Waters of Victoria)* (SEPP (WoV)). Victorian Government Gazette, No. S 499 (23 October 2018).

USEPA, 2002. *Guidance on Environmental Data Verification and Data Validation,* Washington D.C: United States Environmental Protection Agency.

USEPA, 2006. *Guidance on Systematic Planning Using the Data Quality Objectives Process*. EPA QA/G-4, United States Environmental Protection Agency. February 2006.

\bigcirc

Figures

Figure 1: Site Location Plan

Figure 2: Soil Investigation Locations and Exceedances

Figure 3: Groundwater Elevation and Exceedances

S	onvorsa
Address:	Level 6, 15 William Street Melbourne VIC 3000
Phone:	(03) 9606 0070
Website:	www.senversa.com.au

Notes: Cadastre and road data sourced from land.vic.gov.au (DELWP) Aerial imagery sourced from Nearmap Pty Ltd

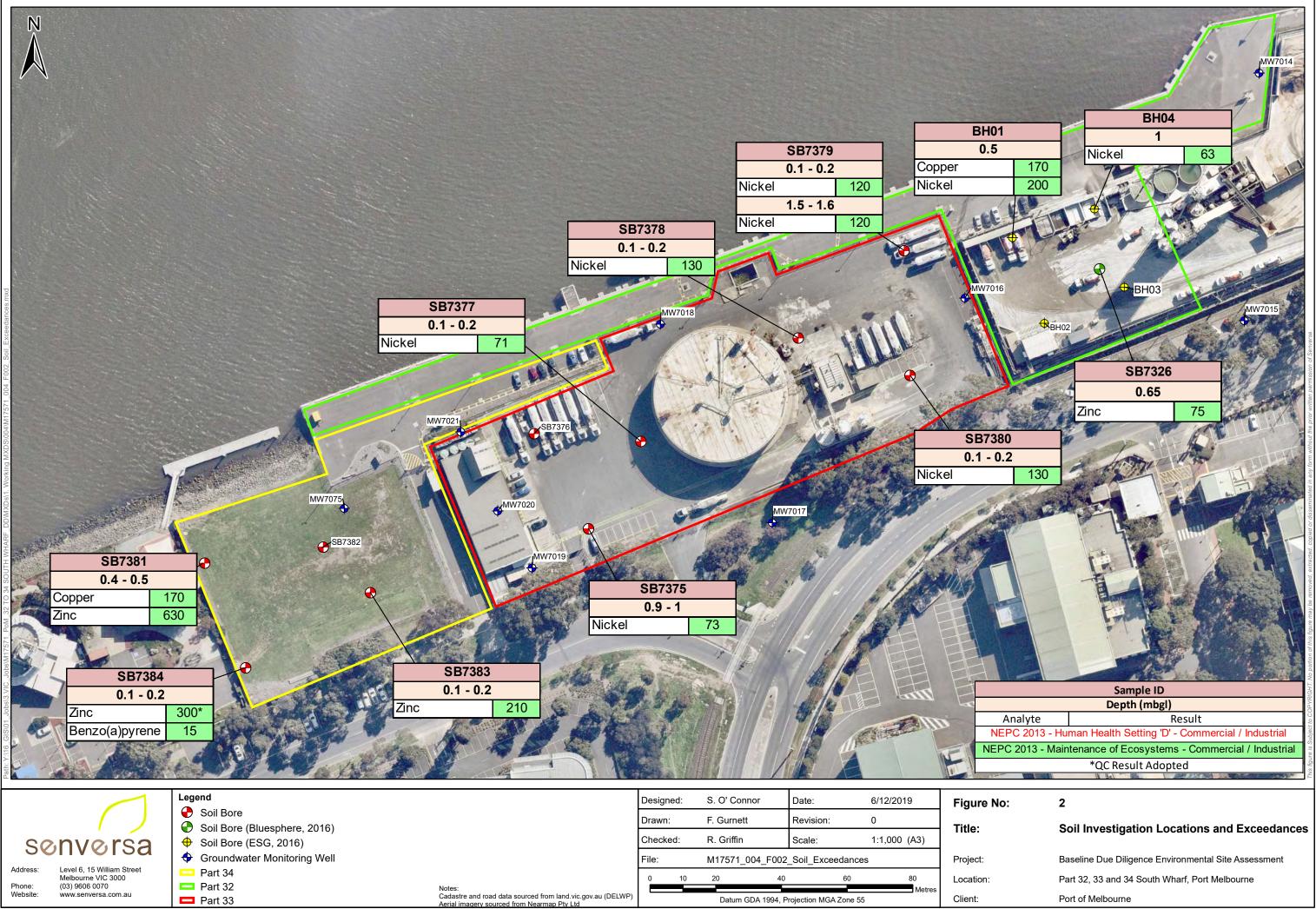
Datum GDA 1994, Projection MGA Zone 55

File:

M17571_004_F001_Site_Location

20

Project:


Location:

Client:

80

60

Baseline Due Diligence Environmental Site Assessment Part 32, 33 and 34 South Wharf, Port Melbourne Port of Melbourne

nversa	Part 32	Chec	ked:	R. Griff	in	Scale:
	Part 33	File:		M1757	1_004_F003	_GW_Exceedances
Level 6, 15 William Street Melbourne VIC 3000 (03) 9606 0070	Notes:	0	10	20	40	60
www.senversa.com.au	Cadastre and road data sourced from land.vic.gov.au (DELWP) Aerial imagery sourced from Nearmap Pty Ltd			Datu	m GDA 1994, F	rojection MGA Zone 55

sonvo

Address:

Website:

Phone:

Location: Client:

Project:

1:1,000 (A3)

80

Metre

Groundwater Elevation and Exceedances

Baseline Due Diligence Environmental Site Assessment Part 32, 33 and 34 South Wharf, Port Melbourne Port of Melbourne

\bigcirc

Tables

Table 1: Groundwater Gauging DataTable 2: Stabilised Groundwater ParametersTable 3: Soil Analytical ResultsTable 4: Groundwater Analytical Results

Table 1: Groundwater Gauging and Survey Data Baseline Due Diligence Environmental Site Assessment Project Name

Client Port of Melbourne Site Address 32-34 South Wharf, Port Melbourne Job Number M17571

		Monitoring Well Informatio	n				Survey Data									Gauging Data		
Well ID	Well Cover Type	Screened Material	Screen Interval	Highest point of screen	Screen Depth	Easting	Northing	Top of Casing	Date Gauged	Existing Surface	Total Well Depth	Depth to Water	Corrected Depth to Water	Casing Height (if well casing is a stick up type)	SWL	Reduced Water Level	Well Condition	Gauging Comments
			(mBGL)	(mBGL)	(mAHD)	(MGA)	(MGA)	(mAHD)		(mAHD)	(mBTOC)	(mBTOC)	(mBTOC)		(mBGL)	(mAHD)		
MW7015	Flush	Fill / Port Melbourne Sands	1.0-3.5	1.00	0.759	316295.7	5811878.8	1.759	9/10/2019	1.759	2.270	1.575	1.575	0.000	1.575	0.184	Poor. Well blocked at 2.27m bgl.	Good condition
MW7016	Flush	Unknown	1.5-4.5	1.50	0.711	316210.6	5811885.7	2.211	9/10/2019	2.211	4.100	2.017	2.017	0.000	2.017	0.194	Good	Good condition
MW7017	Flush	Fill / Port Melbourne Sands	1.0-4.0	1.00	1.344	316151.9	5811817.4	2.344	9/10/2019	2.344	-	-	-	-	-	-	Poor. Well blocked at 1.62 above the water table	Blocked at 1.62 m BTOC
MW7018	Flush	Fill / Port Melbourne Sands	1.0-4.0	1.00	1.168	316117.8	5811877.8	2.168	9/10/2019	2.168	3.500	2.073	2.073	0.000	2.073	0.095	Good	Good condition
MW7019	Flush	Port Melbourne Sand	1.5-4.5	1.50	0.643	316078.8	5811803.6	2.143	9/10/2019	2.143	2.150	2.050	2.050	0.000	2.050	0.093	Poor. Well blocked at 2.15m bgl.	Blocked with roots and sand at 1.67 m BTOC
MW7020	Flush	Port Melbourne Sand	1.5-4.5	1.50	1.121	316068.3	5811820.9	2.621	9/10/2019	2.621	4.150	2.490	2.490	0.000	2.490	0.131	Good	Good condition
MW7021	Flush	Port Melbourne Sand	1.5-4.5	1.50	1.187	316057.0	5811844.9	2.687	9/10/2019	2.687	6.524	2.555	2.555	0.000	2.555	0.132	Good	Good condition
MW7075	Flush	Moray Street Gravels	23.5-26.5	23.50	-21.246	316021.5	5811821.7	2.254	9/10/2019	2.254	26.950	1.642	1.642	0.000	1.642	0.612	Good	Good condition

* Use 0.84 unless density calculated and provided by lab

Table 2: Stabilised Field Chemical Parameters

ProjectBaseline Due Diligence Environmental Site AssessmentClientPort of Melbourne

Site Address 32-34 South Wharf, Port Melbourne Job Number M17571

	Monitoring W	lell Information							Wate	er Quality Stabili	sed Results		
Well ID	Date Installed	Date Sampled	Well Cover	DO (mg/L)	EC (µS/cm)	TDS	рН	Redox (mV)	Temp (°C)	Volume Purged	Field Observations	Sampling Method	Recharge Ability
			Туре	±10% (1)	±3% ⁽¹⁾	0.65 conversion	±0.05 ⁽¹⁾	±10mV ⁽¹⁾	±10%	(L)			
											Insufficinet water to get parameters during sampling.		
MW7015	1/10/2005	-	-	-	-	-	-	-	-	-	Turbid, lightly grey, no odour, no sheen.	Bailer	Poor
MW7016	1/09/2008	9/10/2019	Flush	3.75	1334	867.10	6.3	153.4	18.1	3	Non turbid, brown, no odour, no sheen.	Low flow	Good
MW7018	1/10/2005	9/10/2019	Flush	2.62	24826	16136.90	5.34	215	17.7	2.4	Non turbid, brown, no odour, no sheen.	Low flow	Good
											Insufficinet water to get parameters during sampling.		
MW7019	1/10/2005	10/10/2019	Flush	-	-	-	-	-	-	-	Turbid, lightly grey, organic odour, no sheen.	Bailer	Poor
MW7020	1/09/2008	9/10/2019	Flush	4.04	3827	2487.55	5.57	108.7	17.3	3	Non turbid, brown, no odour, no sheen.	Low flow	Good
MW7021	1/09/2008	9/10/2019	Flush	2.58	4715	3064.75	5.55	149.6	18.1	2.8	Non turbid, brown, no odour, no sheen.	Low flow	Good
MW7075	1/09/2008	10/10/2019	Flush	4.2	639	415.35	6.64	128.5	14.5	8	Non turbid, brown, no odour, no sheen.	Bailer	Poor

⁽¹⁾ Values presented are those after stabilisation. In accordance with EPA Publication 669, the parameters were considered stable when three consecutive readings (obtained several minutes apart) were within the specified parameters. Where wells were purged dry due to poor recharge stabilisation may not have occured. In these instances, final readings were recorded as they were considered most representative of formation water.

senversa

			Location Cod	e BH01	BH02	BH03	BH04	S	B7326		SB	7375		SB	37376	SB	37377	5	B7378	SB7
				D BH01_0.5	BH02_0.1	BH03_1.0	BH04_1.0	SB7326/0.65	1	SB7375_0.5		QC06	SB7375_0.9			-1. SB7377_0.1-0				
				e 20/10/2016	20/10/2016	20/10/2016	20/10/2016	3/11/2016	3/11/2016	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019
			Dept Sample Typ	_	0.1 Normal	1 Normal	1 Normal	0.65	1 Normal	0.5 - 0.6	0.5 - 0.6 Field D	0.5 - 0.6 Interlab D	0.9 - 1 Normol	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2	1 - 1.1	0.1 - 0.2 Normal
			Lab Report No		520784	Normal 520784	Normal 520784	Normal EM1613241	Normal EM1613241	Normal 682320	682320	EM1917208	Normal 682320	Normal 682320	Normal 682320	Normal 682320	Normal 682320	Normal 682320	Normal 682320	682320
		NEPC 2013 - Huma	an NEPC 2013 -	020701	020101	020101	020101	20000200	2	002020	002020	2	002020	002020	002020	002020	002020	002020	002020	
	Unit	EQL Health Setting 'D'																		
		Commercial /	Ecosystems - Commercial /																	
Physical Parameters																				
Moisture Content pH (CaCl2)	% pH Units	0.1		5.8	20	4.2	- 10	7.7	16.7	10.0	10	9.6	8.6	10	8.5	12	- 13	10	4.1	8.8
pH (aqueous extract)	pH Units			10.0	12	9.6	11	-	-	9.6	9.6	8.2	9.8	11	8.9	11	8.0	9.5	7.5	9.7
Inorganics								4.0												
Cyanide (as CN) Cyanide (Total)	mg/kg mg/kg	1 5 1,500 ^{#1}		-	-	-	- <5	<1.0	-	-		-	-	-	-	-	-	-	-	-
Fluoride	mg/kg	40 47,000 ^{#2}		-	-		220	230.0		-	-	-	-	-	-	-	-	-	-	-
Major lons									40.0											
Magnesium Sulfate (as SO4)	mg/kg mg/kg	10 30		-	-	-		-	<10.0	<30	<30	<50	- 80	- 200	<30	- 170	- 93	<30	- 290	- 60
Metals																				
Aluminium	mg/kg	50 1,100,000 ^{#2}	#12	-	-	-	-	-	1,910.0	-	-	-	-	-	-	-	-	-	-	-
Arsenic Cadmium	mg/kg mg/kg	2 3,000 ^{#1} 0.4 900 ^{#1}	160 ^{#12}	<2	<2	<2 <0.4	5.3	<5.0	<5.0 <1.0	<2	<2	<5 <1	2.6	5.0	3.1	9.3	2.2	<2 <0.4	<2 <0.4	<2<0.4
Chromium	mg/kg	2 3,600 ^{#3}	320 ^{#13}	25	17	<5	24	-	4.0	7.3	<5	2	19	20	<0.4	23	<0.4	31	<5	19
Chromium(VI)	mg/kg	0.5 3,600^{#1}		-	-	-	<1	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	mg/kg	2 4,000 ^{#1}	#1.4	-	-	-	-	-	4.0	-	-	-	-	-	-	-	-	-	-	-
Copper Iron	mg/kg mg/kg	5 240,000 ^{#1} 50 820,000 ^{#2}	95 ^{#14}	170	<5	8.6	23		6.0 6,000.0	7.5	5.5	<5	27	37	<5	46	<5 -	48	<5	50
Lead	mg/kg mg/kg	5 1,500 ^{#4}	1,830 ^{#15}	<5	<5	<5	<5	<5.0	<5.0	<5	<5	- <5	- 9.1	27	<5	- 15	<5	<5	<5	<5
Manganese	mg/kg	5 60,000 ^{#1}		-	-	-	-	-	93.0	-	-	-	-	-	-	-	-	-	-	-
Mercury	mg/kg	0.1 730 ^{#1}		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum Nickel	mg/kg mg/kg	2 5,800 ^{#2} 2 6,000 ^{#1}	60 ^{#14}	- 200	- <5	- 23	<5 63	<2.0 75.0	<2.0	- 23	- 14	- 10	- 73	- 58	-	- 71	- <5	- 130	-	- 120
Selenium	mg/kg mg/kg	2 6,000 ^{#1}	00	- 200	<5	- 23	<2	<5.0	<5.0	- 23	- 14	-	-	- DO	<>	-	C>	- 130	<0	-
Silver	mg/kg	0.2 5,800 ^{#2}		-	-	-	<0.2	<2.0	-	-	-	-	-	-	-	-	-	-	-	-
Tin	mg/kg	5 700,000 ^{#2}	#1.4	-	-	-	<10	<5.0	<5.0	-	-	-	-	-	-	-	-	-	-	
Zinc BTEX	mg/kg	5 400,000 ^{#1}	150 ^{#14}	140	<5	14	41	34.0	10.0	17	10	7	69	92	<5	94	<5	74	<5	73
Benzene	mg/kg	0.1 3 ^{#5}	75 ^{#16}	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1 99,000 ^{#5}	135 ^{#16}	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1 27,000 ^{#5}	165 ^{#16}	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.2		<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylene	mg/kg	0.3 230 ^{#5}	95 ^{#17}	<0.3	<0.3	<0.3	<0.3	<0.5	<0.5	<0.3	<0.3	<0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.2		-	-	-	-	-	<0.2	-	-	<0.2	-	-	-	-	-	-	-	-
Total Petroleum Hydrocarbons C6-C9 Fraction	mg/kg	10 260 ^{#6}	215 ^{#18}	<20	<20	<20	<20	<10.0	<10.0	<20	<20	<10	<20	<20	<20	<20	<20	<20	<20	<20
C10-C14 Fraction	mg/kg	20 20,000 ^{#7}	170 ^{#19}	<20	<20	<20	<20	<50.0	<50.0	<20	<20	<50	<20	<20	<20	<20	<20	<20	<20	<20
C15-C28 Fraction	mg/kg	50		<50	<50	<50	<50	<100.0	<100.0	<50	<50	<100	<50	57	<50	78	<50	<50	<50	<50
C29-C36 Fraction C10-C36 Fraction (Sum)	mg/kg mg/kg	50 50		<50 <50	<50 <50	<50 <50	<50 <50	<100.0	<100.0 <50.0	74	<50	<100 <50	<50 <50	120	<50 <50	170 248	<50 <50	<50 <50	<50	<50 <50
Total Recoverable Hydrocarbons	iiig/itg			~00	<00	~00	<00	<00.0	<00.0	14	~00	~00	<00		<00	240	<00	<00	~00	
C6-C10 Fraction	mg/kg	10		<20	<20	<20	<20	<10.0	<10.0	<20	<20	<10	<20	<20	<20	<20	<20	<20	<20	<20
C6-C10 Fraction minus BTEX (F1) >C10-C16 Fraction	mg/kg mg/kg	10 260 ^{#8}	215 170	<20 <50	<20 <50	<20 <50	<20 <50	<10.0 <50.0	<10.0 <50.0	<20 <50	<20 <50	<10 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20	<20 <50
>C10-C16 Fraction minus naphthalene (F2)	mg/kg	50 20,000 ^{#9}	110	<50	<50	<50	<50	<50.0	<50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16-C34 Fraction	mg/kg	100 27,000 ^{#10}	1,700 ^{#20}	<100	<100	<100	<100	<100.0	<100.0	<100	<100	<100	<100	120	<100	150	<100	<100	<100	<100
>C34-C40 Fraction >C10-C40 Fraction (Sum)	mg/kg	100 38,000 ^{#10} 50	3,300 ^{#20}	<100	<100	<100	<100	<100.0 <50.0	<100.0 <50.0	130 130	<100 <100	<100 <50	<100 <100	<u>110</u> 230	<100 <100	190 340	<100 <100	<100 <100	<100 <100	<100
PAHs	mg/kg	50		-	-	-	-	<50.0	<50.0	130	<100	<50	<100	230	<100		<100	<100	<100	<100
Acenaphthene	mg/kg	0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene Anthracene	mg/kg mg/kg	0.5		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5
Benz(a)anthracene	mg/kg	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	mg/kg	0.5	1.4 ^{#21}	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b+j)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	0.5 0.5		<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benzo(b+j+k)fluoranthene	mg/kg	0.5		-	-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	0.5 0.5		<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Dibenz(a,h)anthracene	mg/kg	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.5		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Naphthalene	mg/kg	0.5 11,000 ^{#5}	370 ^{#22}	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.5		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
Pyrene Benzo(a)pyrene TEQ (Zero)	mg/kg mg/kg	0.5 0.5 40 ^{#1}		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Sum of Polycyclic aromatic hydrocarbons (PAH)	mg/kg	0.5 4,000 ^{#1}		< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenols																				
2-Methylphenol 2-Nitrophenol	mg/kg mg/kg	0.2 41,000 ^{#2}		-	-	-	<0.2	<1.0 <1.0	-	-	-	-	-	-	-	-	-	-	-	
2-Nitrophenol 2,4-Dimethylphenol	mg/kg mg/kg	0.5 16,000 ^{#2}		-	-	-	<0.5	<1.0		-		-	-	-	-		-	-		-
2,4-Dinitrophenol	mg/kg	5 1,600^{#2}		-	-	-	<5	<5.0	-	-	-	-	-	-	-	-	-	-	-	-
3-&4-Methylphenol (m&p-cresol)	mg/kg	0.4		-	-	-	<0.4	<1.0	-	-	-	-	-	-	-	-	-	-	-	-
4-Chloro-3-methylphenol 4-Nitrophenol	mg/kg mg/kg	0.03 82,000 ^{#2} 5		-	-		<1 <5	<0.03 <5.0	-	-		-	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5 66 ^{#2}		-	-	-	<5	<5.0	-	-		-	-		-		-	-	-	
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5 1,600^{#2}		-	-	-	<20	<5.0	-	-	-	-	-	-	-	-	-	-	-	-
Phenol	mg/kg	0.5 240,000 ^{#1}			-	-	< 0.5	<1.0	-	-	-	1 -	I _	-	-	-		-	-	-

				Location Code	379	SP	7380	12	37381	<u>.</u>	37382	SF	37383			37384	
						.(SB7380_0.1-0	-		-	0 SB7382_0.1-0.2	1		SB7383_0.9-1.0	SB7384_0.1-0.		QS03	SB7384_0.4-0.5
					9/10/2019	9/10/2019	9/10/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019
				•	1.5 - 1.6	0.1 - 0.2	1 - 1.1	0.4 - 0.5	1.9 - 2	0.1 - 0.2	0.8 - 0.9	0.1 - 0.2	0.9 - 1	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.4 - 0.5
				Sample Type Lab Report No.		Normal 682320	Normal 682320	Normal 688915	Field_D 688915	Interlab_D EM1919770	Normal 688915						
			NEPC 2013 - Human	NEPC 2013 -	002320	002320	002320	000915	000915	000915	000915	000915	000915	000915	000915	EWII919770	000915
	Unit	EQL	Health Setting 'D' -	Maintenance of													
			Commercial /	Ecosystems - Commercial /													
hysical Parameters			muusinai	Commercial /													
Moisture Content	%	1			7.1	8.1	4.9	6.7	19	9.4	5.7	12	9.7	22	21	20.9	21
	pH Units pH Units				- 9.9	- 11	- 8.9	- 7.9	- 8.7	- 8.5	- 8.0	- 8.7	- 8.7	- 8.5	- 8.7		- 9.3
norganics		0.1			0.0		0.0	1.5	0.7	0.0	0.0	0.7	0.7	0.0	0.7		0.0
	mg/kg	1			-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg mg/kg	5 40	1,500 ^{#1} 47,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
lajor lons	mg/kg	40	47,000		-	-	-	-	-	-	-		-	-	-	-	-
Magnesium	mg/kg	10			-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfate (as SO4) etals	mg/kg	30			<30	140	32	750	600	<30	<30	<30	41	<30	<30	-	<30
	mg/kg	50	1,100,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	2	3,000 ^{#1}	160 ^{#12}	<2	<2	<2	16	6.1	4.8	<2	8.0	4.5	9.6	20	10	24
	mg/kg	0.4	900 ^{#1}	#4.0	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.7	0.5	<1	<0.4
	mg/kg	2	3,600 ^{#3}	320 ^{#13}	20	22	<5	31	8.0	14	<5	23	10.0	26	39	21	54
	mg/kg mg/kg	0.5	3,600 ^{#1} 4,000 ^{#1}		-	-	-		-	-	-		-	-		-	-
	mg/kg	5	240,000 ^{#1}	95 ^{#14}	40	45	<5	170	<5	34	<5	44	<5	86	70	94	21
	mg/kg	50	820,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	5	1,500 ^{#4}	1,8 30 ^{#15}	<5	<5	<5	80	<5	320	<5	40	<5	46	55	42	12
-	mg/kg	5	60,000 ^{#1}		-	-	-	- 1	-	-0.1	1	- 1	-	-	- 0.1	-	-
	mg/kg mg/kg	0.1	730 ^{#1} 5,800 ^{#2}		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	0.2	<0.1
·	mg/kg	2	6,000 ^{#1}	60 ^{#14}	120	130	<5	17	<5	22	<5	57	7.4	39	33	31	32
Selenium	mg/kg	2	10,000 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	0.2	5,800 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg mg/kg	5	700,000 ^{#2} 400,000 ^{#1}	150 ^{#14}	- 70	- 71	-	-	-	- 98	-	- 210	-	- 200	- 300	-	-
ZINC TEX	mg/kg	5	400,000	150	70	71	<5	630	5.1	98	<5	210	8.9	200	300	169	50
	mg/kg	0.1	3#5	75 ^{#16}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1
	mg/kg	0.1	99,000 ^{#5}	135 ^{#16}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	<0.1
	mg/kg mg/kg	0.1	27,000 ^{#5}	165 ^{#16}	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.5 <0.5	<0.1 <0.2
	mg/kg mg/kg	0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2
Total Xylene	mg/kg	0.3		95 ^{#17}	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.5	<0.3
	mg/kg	0.2			-	-	-	-	-	-	-	-	-	-	-	<0.2	-
otal Petroleum Hydrocarbons C6-C9 Fraction	mg/kg	10	260 ^{#6}	215 ^{#18}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	<20
C10-C14 Fraction	mg/kg	20	20,000 ^{#7}	170 ^{#19}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<50	<20
C15-C28 Fraction	mg/kg	50			<50	<50	<50	<50	<50	<50	<50	<50	<50	620	<50	400	<50
	mg/kg mg/kg	50 50			<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	<50 <50	640	<50 <50	280 680	<50 <50
otal Recoverable Hydrocarbons					~00		~00	~~~	~~~~	~00	~~~	~~~~	~~~	1,200	~~~~		~00
	mg/kg	10	#0		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<10	<20
	mg/kg mg/kg	10 50	260 ^{#8}	<u>215</u> 170	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<20 <50	<10 <50	<20 <50
	mg/kg	50	20,000 ^{#9}	170	<50	<50	<50 <50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50 <50
>C16-C34 Fraction	mg/kg	100	27,000 ^{#10}	1,700 ^{#20}	<100	<100	<100	<100	<100	<100	<100	<100	<100	1,100	<100	600	<100
	mg/kg	100	38,000 ^{#10}	3,300 ^{#20}	<100	<100	<100	<100	<100	<100	<100	<100	<100	310	<100	140	<100
>C10-C40 Fraction (Sum) AHs	mg/kg	50			<100	<100	<100	<100	<100	<100	<100	<100	<100	1,410	<100	740	<100
Acenaphthene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	mg/kg mg/kg	0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 5.9	<0.5 <0.5	<0.5	<0.5 <0.5
	mg/kg	0.5		1.4 ^{#21}	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	15	<0.5	2.6	<0.5
Benzo(b+j)fluoranthene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6.3	< 0.5	3.0	< 0.5
	mg/kg mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.2	<0.5	- 1.0	<0.5
Benzo(k)fluoranthene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.9	<0.5	1.1	<0.5
Chrysene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	11	< 0.5	1.7	< 0.5
	mg/kg mg/kg	0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.0 15	<0.5 <0.5	<0.5	<0.5 <0.5
Fluorene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg	0.5		370 ^{#22}	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	3.4	<0.5	0.9	<0.5
	mg/kg mg/kg	0.5		370	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 0.8	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Pyrene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18	<0.5	2.6	<0.5
	mg/kg	0.5	40 ^{#1}		< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	18	<0.5	3.3	< 0.5
Sum of Polycyclic aromatic hydrocarbons (PAH) enols	mg/kg	0.5	4,000 ^{#1}		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	87.5	<0.5	16.6	<0.5
	mg/kg	0.2	41,000 ^{#2}		-	-	-		-	-	-			-		-	-
, i	mg/kg	1			-	-	-	-		-	-		-	-		-	-
	mg/kg	0.5			-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	5	1,600 ^{#2}		-	-	-		-	-			-	-		-	-
2,4-Dimethylphenol 2,4-Dinitrophenol		$\cap A$				-	-		-								
2,4-Dimethylphenol 2,4-Dinitrophenol 3-&4-Methylphenol (m&p-cresol)	mg/kg	0.4			-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol 2,4-Dinitrophenol 3-&4-Methylphenol (m&p-cresol) 4-Chloro-3-methylphenol 4-Nitrophenol	mg/kg mg/kg mg/kg	0.03 5	82,000 ^{#2}		-	-	-		-		-		-	-	-		-
2,4-Dimethylphenol 2,4-Dinitrophenol 3-&4-Methylphenol (m&p-cresol) 4-Chloro-3-methylphenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol	mg/kg mg/kg	0.03				-							- - -				-

2 of 6

			ſ	Location Code	BH01	BH02	BH03	BH04		B7326		SB	37375		SB	37376		SB7377		SB7378	SB
			-		D BH01_0.5	BH02_0.1	BH03_1.0	BH04_1.0	SB7326/0.65		SB7375_0.5-		-	SB7375_0.9-		-				-0.2SB7378_1.0-1.	
				Date	e 20/10/2016	20/10/2016	20/10/2016	20/10/2016		3/11/2016	9/10/2019	9/10/2019		9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019
				Depth		0.1	1	1	0.65	1	0.5 - 0.6	0.5 - 0.6		0.9 - 1	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2		0.1 - 0.2
				Sample Type		Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
			NEPC 2013 - Human	Lab Report No. NEPC 2013 -	. 520784	520784	520784	520784	EM1613241	EM1613241	682320	682320	EM1917208	682320	682320	682320	682320	682320	682320	682320	682320
	Unit	EQL	Health Setting 'D' -	Maintenance of																	
	Offic		Commercial /	Ecosystems -																	
Phenols (Total Non Chlorinated)	mg/kg		Industrial	Commercial /	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-	-	-	-
Phenols (non-halogenated)	mg/kg	1			-	-	-	<20	<1.0	-	-	-	-	-	-	-	-	-	-	-	-
		0.05	1,800 ^{#2}					.0.05													
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	mg/kg mg/kg	0.05 0.05	1,500 ^{#2}		-	-	-	<0.05 <0.05			-	-	-	-	-	-	-	-	-		-
Isopropylbenzene	mg/kg	0.05	9,900 ^{#2}		-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/kg	0.05	35,000 ^{#2}		-	-	-	<0.05	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
Total Monocylic Aromatic Hydrocarbons Halogenated Benzenes	mg/kg	0.2			-	-	-	-	<0.2	0.00	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.02	9,300 ^{#2}		-	-	-	< 0.05	< 0.02	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.01	110 ^{#2}		-	-	-	<0.2	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.05	11 ^{#2}		-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene 4-Chlorotoluene	mg/kg mg/kg	0.02	23,000 ^{#2}		-		-	<0.05	<0.02	-			-	-	-	-	-	-	-	-	-
Bromobenzene	mg/kg	0.05	1,800 ^{#2}		-	-	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	mg/kg	0.02	1,300 ^{#2}		-	-	-	<0.05	<0.02	-	-	-	-	-	-	-	-	-	-	-	-
Halogenated Hydrocarbons 1,2-Dibromoethane	mg/kg	0.05	0.16 ^{#2}					<0.05			+								+		+
Bromomethane	mg/kg mg/kg	0.05	30 ^{#2}				-	< 0.05	-	-	-			-	-	-	-		-	-	-
Dichlorodifluoromethane	mg/kg	0.05	370 ^{#2}		-	-	-	<0.05	-		-			-	-	-	-	-	-	-	-
Iodomethane	mg/kg	0.05	oro coo#2		-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane Chlorinated Hydrocarbons	mg/kg	0.05	350,000 ^{#2}		-	-	-	<0.05	-	-		-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	mg/kg	0.05	16 ^{#2}		-		-	< 0.05	-	-	-	-	-	-	-				-		
1,1-Dichloroethene	mg/kg	0.01	1,000 ^{#2}		-	-	-	<0.05	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1,2-Tetrachloroethane	mg/kg	0.01	8.8 ^{#2} 36.000 ^{#2}		-	-	-	< 0.05	< 0.01	-	-	-	-	-	-	-		-	-		
1,1,1-Trichloroethane 1,1,2-Trichloroethane	mg/kg mg/kg	0.01 0.04	36,000 5 ^{#2}		-			<0.05 <0.05	<0.01				-	-	-	-					
1,1,2,2-Tetrachloroethane	mg/kg	0.02	2.7 ^{#2}		-	-	-	<0.05	<0.02	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane	mg/kg	0.05	0.11 ^{#2}		-	-	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	mg/kg	0.02	2 ^{#2}		-	-	-	< 0.05	<0.02		-	-	-	-	-	-			-		
1,3-Dichloropropane 1,2-Dichloropropane	mg/kg mg/kg	0.05	23,000 ^{#2} 11 ^{#2}		-		-	<0.05 <0.05	-		-		-	-	-	-			-	-	
Bromochloromethane	mg/kg	0.05	630 ^{#2}		-	-	-	<0.05			-	-	-	-	-		-	-			-
Bromodichloromethane	mg/kg	0.05	1.3 ^{#2}		-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform Carbon Tetrachloride	mg/kg	0.05	86 ^{#2} 2.9 ^{#2}		-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-		
Carbon Tetrachionde Chlorodibromomethane	mg/kg mg/kg	0.01	2.9 39 ^{#2}		-		-	<0.05	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/kg	0.05	57,000 ^{#2}		-	-	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/kg	0.02	1.4 ^{#2}		-	-	-	<0.05	< 0.02		-	-	-	-	-	-		-	-		-
Chloromethane cis-1.2-Dichloroethene	mg/kg mg/kg	0.05	460 ^{#2} 2,300 ^{#2}		-	-	-	<0.05 <0.05	< 0.01	-	-	-	-	-	-	-		-	-		
Dibromomethane	mg/kg	0.01	99 ^{#2}		-		-	< 0.05	<0.01				-	-	-	-		-	-		
cis-1,3-Dichloropropene	mg/kg	0.05	# 0		-	-	-	<0.05	-	-	-	-	-	-	-	-	-	-	-		-
Dichloromethane Hexachlorobutadiene	mg/kg	0.05	1,000 ^{#2} 5.3 ^{#2}		-	-	-	< 0.05	<0.4	-		-	-	-	-	-			-		-
Tetrachloroethene	mg/kg mg/kg	0.02	5.3 100 ^{#2}		-	-	-	<0.2	<0.02	-			-	-	-	-		-	-	-	-
trans-1,2-Dichloroethene	mg/kg	0.02	23,000 ^{#2}		-	-	-	<0.05	< 0.02	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-Dichloropropene	mg/kg	0.05	6 ^{#2}		-	-	-	< 0.05	-	-		-	-	-	-	-	-	-	-		-
Trichloroethene Vinyl Chloride	mg/kg mg/kg	0.02	6 ⁷² 1.7 ^{#2}		-	-	-	<0.05 <0.05	< 0.02		-	-	-	-	-	-	-		-	-	-
Total Chlorinated Hydrocarbons	mg/kg	0.01			-	-	-		<0.02	-	-	-	-	-	-	-	-	-	-	-	-
Total Other Chlorinated Hydrocarbons Halogenated Phenols	mg/kg	0.01			-	-	-	-	<0.01	-	-	-	-	-	-	-	-	-	-	-	
2,4,5-Trichlorophenol	mg/kg	0.05	82,000 ^{#2}		-	-	-	<1	< 0.05	-	+ -		-	-	-	-	+ -		-	-	-
2,4,6-Trichlorophenol	mg/kg	0.05	210 ^{#2}		-	-	-	<1	<0.05		<u> </u>	-	-	-	-	-	-		-		-
2,4-Dichlorophenol 2,6-Dichlorophenol	mg/kg mg/kg	0.03 0.03	2,500 ^{#2}		-	-	-	< 0.5	< 0.03			-	-	-	-	-					-
2,6-Dichlorophenol 2-Chlorophenol	mg/kg mg/kg	0.03	5,800 ^{#2}		-		-	<0.5 <0.5	<0.03		-			-	-	-			-		-
Pentachlorophenol	mg/kg	0.2	660 ^{#1}		-	-	-	<1	<0.2	-	-	-	-	-	-	-	-	-	-	-	-
2,3,5,6-Tetrachlorophenol 2,3,4,5 & 2,3,4,6-Tetrachlorophenol		0.03			-	-	-	-	<0.03 <0.05	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachlorophenols	mg/kg	0.05					-	<1	<0.05				-	-	-	-			-		
Phenols (Halogenated)		0.03			-	-	-	<1	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides a-BHC	mg/kg	0.03	0.36 ^{#2}		-			<0.05	< 0.03	-				-				-			-
b-BHC	mg/kg	0.03	1.3 ^{#2}		-	-	-	<0.05	<0.03	-	-	-	-	-	-	-	-	-	-	-	-
d-BHC	mg/kg mg/kg	0.03			-	-	-	< 0.05	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin g-BHC (Lindane)	mg/kg mg/kg	0.03 0.03	2.5 ^{#2}		-	-	-	<0.05 <0.05	<0.03 <0.03		-	-	-	-	-	-	-	-	-	-	-
Aldrin	mg/kg	0.03			-	-	-	<0.05	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin + Dieldrin	mg/kg	0.03	45 ^{#1}		-	-	-	-	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane DDT	mg/kg mg/kg	0.03	530 ^{#1}	640 ^{#22}	-	-	-	<0.1 <0.05	<0.03 <0.05	-	-		-	-	-	-	-	-	-		-
4,4-DDE	mg/kg	0.05			-	-	-	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	0.05	o oc -#1		-	-	-	<0.05	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-
DDT+DDE+DDD Endosulfan I	mg/kg mg/kg	0.05	3,600 ^{#1}		-		-	< 0.05	<0.05 <0.03		-		-	-	-	-			-		-
		0.03			-	-	-	<0.05	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II																					
Endosulfan II Endosulfan sulfate Endrin		0.03	100 ^{#1}		-	-	-	<0.05 <0.05	<0.03 <0.03	-	-	-	-	-	-	-	-		-	-	-

			Location Code	270		2200		7004		D7000		SB7383			7204	
					.(SB7380_0.1-0	37380 SB7380 1 0		57381 SB7381 1 9-2	2.0 SB7382_0.1-0.2	B7382 SB7382_0.8-0.9			SB7384 0 1-0 2		07384 QS03	SB7384_0.4-0.5
				9/10/2019	9/10/2019	9/10/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019
				1.5 - 1.6	0.1 - 0.2	1 - 1.1	0.4 - 0.5	1.9 - 2	0.1 - 0.2	0.8 - 0.9	0.1 - 0.2	0.9 - 1	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.4 - 0.5
			Sample Type		Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal
			Lab Report No.		682320	682320	688915	688915	688915	688915	688915	688915	688915	688915	EM1919770	688915
		NEPC 2013 - Human	NEPC 2013 -													
	Unit	EQL Health Setting 'D' -	Maintenance of													
	Onit	Commercial /	Ecosystems -													
Phenols (Total Non Chlorinated)	ma/ka	Industrial	Commercial /													
Phenols (non-halogenated)	mg/kg mg/kg	1		-	-	-		-	-	-	-		-	-	-	-
MAH																-
1,2,4-Trimethylbenzene	mg/kg	0.05 1,800 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	0.05 1,500^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	mg/kg	0.05 9,900 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	mg/kg	0.05 35,000^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Total Monocylic Aromatic Hydrocarbons	mg/kg	0.2		-	-	-	-	-	-	-	-	-	-	-	-	-
Halogenated Benzenes		0.000 ^{#2}				-										
1,2-Dichlorobenzene	mg/kg	0.02 9,300 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene 1,3-Dichlorobenzene	mg/kg mg/kg	0.01 110 ^{#2} 0.05		-	-	-		-	-	-	-		-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.02 11 ^{#2}			-	-				-			-	-		
4-Chlorotoluene	mg/kg	0.05 23,000 ^{#2}		-												
Bromobenzene	mg/kg	0.05 1,800 ^{#2}			-				-	-			-		-	-
Chlorobenzene	mg/kg	0.02 1,300 ^{#2}		-	-	-	-	-	-	-	-	-	-	_	-	-
Halogenated Hydrocarbons																
1,2-Dibromoethane	mg/kg	0.05 0.16 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane	mg/kg	0.05 30^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorodifluoromethane	mg/kg	0.05 370^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
lodomethane	mg/kg	0.05		-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/kg	0.05 350,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorinated Hydrocarbons 1,1-Dichloroethane	ma //	0.05 16 ^{#2}			+										+	+
1,1-Dichloroethane 1,1-Dichloroethene	mg/kg mg/kg	0.05 16 ^{#2} 0.01 1,000 ^{#2}		-	-	-		-		-	-		-	-	-	-
1,1-Dichloroethene 1,1,1,2-Tetrachloroethane	mg/kg mg/kg	0.01 1,000 0.01 8.8 ^{#2}		-	-	-		-		-	-		-	-	-	-
1,1,1-Trichloroethane	mg/kg	0.01 36,000 ^{#2}			-											
1,1,2-Trichloroethane	mg/kg	0.04 5 ^{#2}		-	-	-			-	-	-	-	-		-	-
1,1,2,2-Tetrachloroethane	mg/kg	0.02 2.7 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-Trichloropropane	mg/kg	0.05 0.11 ^{#2}		-	-	-	-	-	-	-	-	-	_	_	-	-
1,2-Dichloroethane	mg/kg	0.02 2 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropane	mg/kg	0.05 23,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	mg/kg	0.05 11 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Bromochloromethane	mg/kg	0.05 630 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/kg	0.05 1.3 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/kg	0.05 86 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	mg/kg	0.01 2.9 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorodibromomethane	mg/kg	0.05 39 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	mg/kg	0.05 57 ,000 ^{#2} 0.02 1 .4 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform Chloromethane	mg/kg mg/kg	0.02 1.4 ^{#2} 0.05 460 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	mg/kg	0.05 460		-	-	-		-		-	-		-	-	-	-
Dibromomethane	mg/kg	0.05 99 ^{#2}			-								-			
cis-1,3-Dichloropropene	mg/kg	0.05		-	-			-	-	-			-	-	-	-
Dichloromethane	mg/kg	0.05 1,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.02 5.3 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	mg/kg	0.02 100 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	mg/kg	0.02 23,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-Dichloropropene	mg/kg	0.05		-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene	mg/kg	0.02 6 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	mg/kg	0.02 1.7 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Total Chlorinated Hydrocarbons Total Other Chlorinated Hydrocarbons	mg/kg mg/kg	0.01 0.01		-	-	-			-	-	-		-	-	-	-
Halogenated Phenois				-		-		-			-			-	-	+
2,4,5-Trichlorophenol	mg/kg	0.05 82,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.05 210 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.03 2,500 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dichlorophenol	mg/kg	0.03		-	-	-	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol	mg/kg	0.03 5,800 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol 2,3,5,6-Tetrachlorophenol	mg/kg	0.2 660 ^{#1} 0.03		-	-	-	-	-	-	-	-	-	-	-	-	-
2,3,5,5-1 etrachiorophenol	mg/kg mg/kg	0.03		-	-	-		-		-	-		-	-	-	-
Tetrachlorophenols	mg/kg	1			-	-		-	-	-			-	-		
Phenols (Halogenated)	mg/kg	0.03		-	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides																
a-BHC	mg/kg	0.03 0.36 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
b-BHC	mg/kg	0.03 1.3 ^{#2}		-	-	-	-	-	-	-	-		-	-	-	-
d-BHC Dieldrin	mg/kg	0.03 0.03		-	-	-	-	-	-	-	-	-	-	-	-	-
g-BHC (Lindane)	mg/kg mg/kg	0.03 0.03 2.5^{#2}		-	-	-		-		-	-	-	-	-	-	-
Aldrin	mg/kg mg/kg	0.03 2.5		-	-	-		-		-	-		-	-	-	-
Aldrin + Dieldrin	mg/kg	0.03 45^{#1}		-	-	-	-	-		-	-	-	-	-	-	-
Chlordane	mg/kg	0.03 530 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
DDT	mg/kg	0.05	640 ^{#22}	-	-	-	-	-	-	-	-	-	-	-	-	-
4,4-DDE	mg/kg	0.05		-	-	-	-	-	-	-	-	-	-	-	-	-
DDD	mg/kg	0.05		-	-	-	-	-	-	-	-	-	-	-	-	-
DDT+DDE+DDD	mg/kg	0.05 3,600^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan I Endosulfan II	mg/kg	0.03 0.03		-	-	-		-		-	-		-	-	-	-
Endosulfan II Endosulfan sulfate		0.03		-	-	-		-		-	-	-	-	-	-	-
Endrin	mg/kg	0.03 100 ^{#1}		-	-	-	-	-	-			-	-		-	
	ing/kg			-		_ I							ļ ⁻	-	-	

4 of 6

			Γ	Location Code	BH01	BH02	BH03	BH04	SB	7326	Т	Ś	SB7375		S	SB7376	5	B7377	5	SB7378	SB7
			ľ	Field ID	BH01 0.5	BH02_0.1	BH03_1.0	BH04 1.0	SB7326/0.65	SB7326/1.0	SB7375 0.5-0	D.(QC05	QC06	SB7375 0.9-1	. SB7376 0.1	-0.2SB7376 1.5-	1. SB7377 0.1	-0. SB7377 1.5	1. SB7378 0.1	-0.1SB7378 1.0-	1. SB7379 0.1-0.2
			The second se	Date	20/10/2016	20/10/2016	20/10/2016	20/10/2016	3/11/2016	3/11/2016	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019	9/10/2019
				Depth		0.1	1	1	0.65	1	0.5 - 0.6	0.5 - 0.6	0.5 - 0.6	0.9 - 1	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2	1.5 - 1.6	0.1 - 0.2	1 - 1.1	0.1 - 0.2
			ł	Sample Type		Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
			l l l l l l l l l l l l l l l l l l l	Lab Report No.		520784	520784	520784	EM1613241	EM1613241	682320	682320	EM1917208	682320	682320	682320	682320	682320	682320	682320	682320
			NEPC 2013 - Human	NEPC 2013 -																	
	Unit	EQL	Health Setting 'D' -	Maintenance of																	
	Onit		Commercial /	Ecosystems -																	
			Industrial	Commercial /						1		-									
Chlordane (cis)	mg/kg	0.03			-	-	-	-	< 0.03	-	-	-	-	-	-	-	-		-	-	-
Chlordane (trans)	mg/kg	0.03			-	-	-	-	< 0.03	-	-	-		-	-	-	-		-	-	-
Endrin aldehyde Endrin ketone	mg/kg	0.03			-	-	-	<0.05 <0.05	<0.03	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg				-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor	mg/kg	0.03			-	-	-	< 0.05	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor epoxide	mg/kg	0.03			-	-	-	< 0.05	<0.03	-	-	-	-	-	-	-	-	-	-	-	-
Methoxychlor	mg/kg	0.03			-	-	-	<0.05	<0.03	-	-	-	-	-	-	-	-	-	-	-	-
Toxaphene	mg/kg	1	160 ^{#1}		-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides (EPAVic)	mg/kg	0.03			-	-	-	-	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Other Organochlorine Pesticides (EPAVic)	mg/kg	0.03			-	-	-	-	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Herbicides			#0																		
Dinoseb	mg/kg	5	820 ^{#2}		-	-	-	<20	<5.0	-	-	-	-	-	-	-	-	-	-	-	-
Fungicides			#1				_														
Hexachlorobenzene	mg/kg	0.03	80 ^{#1}		-	-	-	<0.05	< 0.03	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Aroclor 1016	mg/kg	0.1			-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221	mg/kg	0.1			-	-	-	< 0.1	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232	mg/kg	0.1			-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1242 Aroclor 1248	mg/kg	0.1			-	-	-	<0.1	-	-	-	-		-	-	-	-		-	-	-
Aroclor 1246 Aroclor 1254	mg/kg mg/kg	0.1			-		-	<0.1	-	-		-	-	-	-		-		-		
Aroclor 1254 Aroclor 1260	mg/kg	0.1			-	-	-	<0.1	-	-	-	-	-		-	-	-				-
PCBs (Sum of total)	mg/kg	0.1	7 ^{#11}		-		-	<0.1	<0.1						-						
Solvents	iiig/kg	0.1	'		-	-	-	<0.1	<0.1	-	-		-	-	-		-	-			
Methyl Ethyl Ketone (MEK)	mg/kg	0.05	190,000 ^{#2}		_		-	< 0.05	-	-		-			-						-
4-Methyl-2-pentanone	mg/kg	0.05						< 0.05									_				
		0.05			-	-	-	10100	-	-	-	-	-	-	-	-	-		-	-	-
Acetone	mg/kg				-	-	-	< 0.05	-	-	-	-	-	-	-	-	-		-	-	-
Allyl chloride	mg/kg	0.05			-	-	-	< 0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon disulfide	mg/kg	0.05	3,500 ^{#2}		-	-	-	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-

Comments

#1 NEPC (2013) - HIL 'D'.

#2 USEPA RSLs (November 2018 Update) - Industrial.

#3 NEPC (2013) - HIL 'D'. Value is for Chromium (VI). Refer Cr III and Cr VI results if speciated data are available.

#4 NEPC (2013) - HIL 'D'. Assumes 50% bioavailability. Consider site-specific bioavailability where appropriate.

#5 Friebel & Nadebaum (2011) - HSL-D.

#6 HSL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this fraction is not required.

#7 HSL for TRH F2 adopted for this historical fraction. Where F2 data are available, screening based on this fraction is not required.

#8 HSL based on vapour intrusion pathway (sand <1 m depth)

#9 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as vapour intrusion HSL is not limiting.

#10 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as fraction is not volatile.

#11 NEPC (2013) - HIL 'D'. Relates to non-dioxin like PCBs only. Where a PCB source is known or suspected, site-specific risk assessment should be undertaken.
#12 NEPC (2013) EIL - Commercial and Industrial. Value applies to aged arsenic (contamination present in soil for at least two years). For fresh contamination refer Schedule B7 of the NEPM.
#13 NEPC (2013) EIL - Commercial and Industrial. Value is for chromium III. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.
#14 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.
#15 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.
#15 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.
#16 NEPC (2013) ESL - Commercial and Industrial. Coarse soil value adopted for initial screening.

#17 NEPC (2013) ESL - Commercial and Industrial. Fine soil value (most conservative) adopted for initial screening.

#18 ESL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this fraction is not required.

#19 ESL for TRH >C10-C16 adopted for this historical fraction. Where >C10-C16 data are available, screening based on this fraction is not required.

#20 ESL for coarse soil adopted for initial screening.

#21 NEPC (2013) ESL - Commercial and Industrial. Value applies to both coarse and fine soil.

#22 NEPC (2013) EIL - Commercial and Industrial. Value applies to both fresh and aged contamination.

]	Location Code	379	SB	7380	SB	7381	SI	B7382	SE	37383		SB	37384	
				Field ID	SB7379_1.5-1.	. SB7380_0.1-0.	SB7380_1.0-1	. SB7381_0.4-0.5	SB7381_1.9-2.0	SB7382_0.1-0.2	SB7382_0.8-0.9	SB7383_0.1-0.2	SB7383_0.9-1.0	SB7384_0.1-0.2	QS02	QS03	SB7384_0.4-0.5
			ľ	Date	9/10/2019	9/10/2019	9/10/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019
			ľ	Depth	1.5 - 1.6	0.1 - 0.2	1 - 1.1	0.4 - 0.5	1.9 - 2	0.1 - 0.2	0.8 - 0.9	0.1 - 0.2	0.9 - 1	0.1 - 0.2	0.1 - 0.2	0.1 - 0.2	0.4 - 0.5
			ſ	Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal
				Lab Report No.	682320	682320	682320	688915	688915	688915	688915	688915	688915	688915	688915	EM1919770	688915
			NEPC 2013 - Human	NEPC 2013 -													
	Unit	EQL	Health Setting 'D' -	Maintenance of													
	Onic		Commercial /	Ecosystems -													
			Industrial	Commercial /		1	I	1				1					
Chlordane (cis)	mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane (trans)	mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin aldehyde Endrin ketone	mg/kg mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor		0.03	50 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg		0.33 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor epoxide	mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Methoxychlor	mg/kg	0.03	2,500 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
Toxaphene	mg/kg	1	160 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides (EPAVic)	mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Other Organochlorine Pesticides (EPAVic)	mg/kg	0.03			-	-	-	-	-	-	-	-	-	-	-	-	-
Herbicides			000 ^{#2}														
Dinoseb	mg/kg	5	820 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Fungicides		0.00	oo#1														
Hexachlorobenzene	mg/kg	0.03	80 ^{#1}		-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls Aroclor 1016	ma/ka	0.1															
Aroclor 1221	mg/kg mg/kg	0.1			-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221 Aroclor 1232	mg/kg	0.1			-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232 Aroclor 1242	mg/kg	0.1			-	-	-	-		-	-	-		-	-		-
Aroclor 1248	mg/kg	0.1			-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1254	mg/kg	0.1			-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260	mg/kg	0.1			-	-	-	-	-	-	-	-	-	-	-	-	-
PCBs (Sum of total)	mg/kg	0.1	7 ^{#11}		-	-	-	-	-	-	-	-	-	-	-	-	-
Solvents																	
Methyl Ethyl Ketone (MEK)	mg/kg	0.05	190,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-pentanone	mg/kg	0.05	140,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone	mg/kg	0.05	670,000 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Allyl chloride	mg/kg	0.05	3.2 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon disulfide	mg/kg	0.05	3,500 ^{#2}		-	-	-	-	-	-	-	-	-	-	-	-	-

Comments

#1 NEPC (2013) - HIL 'D'.

#2 USEPA RSLs (November 2018 Update) - Industrial.

#3 NEPC (2013) - HIL 'D'. Value is for Chromium (VI). Refer Cr III and Cr VI results if speciated data are availal #4 NEPC (2013) - HIL 'D'. Assumes 50% bioavailability. Consider site-specific bioavailability where appropriate

#5 Friebel & Nadebaum (2011) - HSL-D.

#6 HSL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this fra #7 HSL for TRH F2 adopted for this historical fraction. Where F2 data are available, screening based on this fra #8 HSL based on vapour intrusion pathway (sand <1 m depth)

#9 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as vapour intrusion HSL is not limitin #10 HSL based on direct contact pathways (Friebel and Nadebaum, 2011) as fraction is not volatile.

#11 NEPC (2013) - HIL 'D'. Relates to non-dioxin like PCBs only. Where a PCB source is known or suspected,
#12 NEPC (2013) EIL - Commercial and Industrial. Value applies to aged arsenic (contamination present in soi
#13 NEPC (2013) EIL - Commercial and Industrial. Value is for chromium III. Initial screening value applicable t
#14 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text).
#15 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text).
#16 NEPC (2013) ESL - Commercial and Industrial. Coarse soil value adopted for initial screening.

#17 NEPC (2013) ESL - Commercial and Industrial. Fine soil value (most conservative) adopted for initial scree #18 ESL for TRH F1 adopted for this historical fraction. Where F1 data are available, screening based on this f #19 ESL for TRH >C10-C16 adopted for this historical fraction. Where >C10-C16 data are available, screening #20 ESL for coarse soil adopted for initial screening.

#21 NEPC (2013) ESL - Commercial and Industrial. Value applies to both coarse and fine soil.

#22 NEPC (2013) EIL - Commercial and Industrial. Value applies to both fresh and aged contamination.

6 of 6

Table 4 - Groundwater Results vs Beneficial Use ObjectivesBaseline Due Diligence Environmental Site Assessment32-34 South Wharf, Port MelbournePoMM17571

					MW7016 9/10/2019 Normal	MW7018 MW7018 9/10/2019 Normal EM1917008	QS03 9/10/2019 Field_D EM1917008	QS04 9/10/2019 Interlab_D 682367	MW7019 MW7019 10/10/2019 Normal EM1917008	MW7020 MW7020 9/10/2019 Normal EM1917008	MW7021 MW7021 9/10/2019 Normal EM1917008
	Unit	EQL	Maintenance of Ecosystems - 95% Protection - Marine	Primary Contact Recreation					•		
hysical Parameters Total Dissolved Solids	mg/L	10		600 ^{#9}	970	18,100	19,000	17,000	-	2,400	4,270
pH (Lab) organics	pH Units	0.01	#4	5-9 ^{#10}	6.74	6.00	6.10	6.4	-	6.02	5.88
Ammonia (as N) lajor lons	mg/L	0.01	0.91 ^{#1}	0.4 ^{#11}	0.02	0.64	0.67	0.52	3.29	1.89	0.19
Sulfate (as SO4) (filtered) letals Arsenic (filtered)	mg/L mg/L	1 0.001	0.0023 ^{#2}	250 ^{#12}	121 0.022	1,440 0.002	1,550 0.002	1,600 0.002	0.044	0.002	835 0.002
Cadmium (filtered) Chromium (filtered)	mg/L mg/L	0.0001	0.0007 ^{#3}	0.002 ^{#13} 0.05 ^{#14}	<0.0001 0.001	<0.002 <0.0001 0.002	<0.002 <0.0001 0.002	<0.002 <0.0002 0.002	0.0008	0.002	<0.002
Copper (filtered) Lead (filtered)	mg/L mg/L	0.001	0.0013 ^{#4} 0.0044 ^{#4}	1 ^{#15} 0.01 ^{#13}	0.001 <0.001	0.002 0.040 <0.001	0.002 0.037 <0.001	0.031 <0.001	0.002	0.002 0.011 <0.001	0.002 0.007 <0.001
Mercury (filtered) Nickel (filtered)	mg/L mg/L	0.0001	0.0001 ^{#3} 0.007 ^{#3}	0.001 ^{#13} 0.02 ^{#13}	<0.0001 0.012	<0.0001 0.062	<0.0001 0.060	<0.0001 0.052	<0.0001 0.058	<0.0001	<0.0001 0.030
Zinc (filtered) TEX	mg/L	0.005	0.015 ^{#4}	3 ^{#16}	0.030	0.202	0.198	0.16	1.15	0.084	0.072
Benzene Toluene	μg/L μg/L	1 1	500 ^{#3} 180 ^{#1}	1 ^{#13} 25 ^{#17}	<1 <2	<1 <2	<1 <2	<1 <1	<1 <1	<1 <2	<1 <2
Ethylbenzene Xylene (m & p)	μg/L μg/L	1 1	5 ^{#1} 75 ^{#5}	3 ^{#18}	<2 <2	<2 <2	<2 <2	<1 <2	<1 <1	<2 <2	<2 <2
Xylene (o) Total Xylene	μg/L μg/L	1	350 ^{#1}	20 ^{#19}	<2 <2	<2 <2	<2 <2	<1 <3	<1 <1	<2	<2 <2
Total BTEX otal Petroleum Hydrocarbons C6-C9 Fraction	μg/L μg/L	1 20			<1 <20	<1	<1	- <20	<1 <20	<1	<1 <20
C10-C14 Fraction C15-C28 Fraction	μg/L μg/L	50 50			<50 <100	<50 <100	<50 <100	<50 <100	1,050 1,320	<50 <100	<50 <100
C29-C36 Fraction C10-C36 Fraction (Sum)	μg/L μg/L	50 50			<50 <50	<50 <50	<50 <50	<100 <100	480 2,850	<50 <50	<50 <50
otal Recoverable Hydrocarbons C6-C10 Fraction	µg/L	20	640 ^{#6}	900 ^{#20}	<20	<20	<20	<20	<20	<20	<20
C6-C10 Fraction minus BTEX (F1) >C10-C16 Fraction >C10-C16 Fraction minus naphthalene (F2)	μg/L μg/L μg/L	20 50 50	640 ^{#6}	900 ^{#20}	<20 <100 <100	<20 <100 <100	<20 <100 <100	<20 <50 <50	<20 1,310 1,310	<20 <100 <100	<20 <100 <100
>C10-C16 Fraction minus naphthalene (F2) >C16-C34 Fraction >C34-C40 Fraction	μg/L μg/L μg/L	50 100 100	640 ^{#7} 640 ^{#8}	900 ^{#20} 900 ^{#20} 900 ^{#20}	<100 <100 <100	<100 <100 <100	<100 <100 <100	<50 <100 <100	1,310 1,320 230	<100 <100 <100	<100 <100 <100
>C10-C40 Fraction (Sum) AHs	μg/L μg/L	100	040	300	<100	<100	<100	<100	2,860	<100	<100
Naphthalene olatile Organic Compounds	µg/L	5	50 ^{#3}	70 ^{#21}	<5	<5	<5	<10	<5	<5	<5
Trihalomethanes IAH	µg/L	1		250 ^{#13}	-	-	-	-	<1	-	-
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	mg/L mg/L	0.001		0.056 ^{#22} 0.06 ^{#22}	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.001 <0.001	<0.001 <0.001	<0.005 <0.005	<0.005 <0.005
Isopropylbenzene n-Butylbenzene	mg/L mg/L	0.001	0.03 ^{#1}	0.45 ^{#22} 1 ^{#22}	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.001	<0.001 <0.001	<0.005 <0.005	<0.005 <0.005
n-Propylbenzene p-Isopropyltoluene	mg/L mg/L	0.001		0.66 ^{#22}	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		<0.001 0.087	<0.005 <0.005	<0.005 <0.005
sec-Butylbenzene tert-Butylbenzene	mg/L mg/L	0.001		2 ^{#22} 0.69 ^{#22}	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	-	<0.001 <0.001	<0.005 <0.005	<0.005 <0.005
Styrene Total Monocylic Aromatic Hydrocarbons alogenated Benzenes	mg/L mg/L	0.001 0.003		0.004 ^{#23}	<0.005 -	<0.005	<0.005	<0.001 <0.003	<0.001 -	<0.005	<0.005 -
1,2,3-Trichlorobenzene 1,2-Dichlorobenzene	μg/L μg/L	1	3 ^{#1} 160 ^{#1}	5 ^{#24} 1 ^{#25}	<5 <5	<5 <5	<5 <5	- <1	<1 <1	<5 <5	<5 <5
1,2,4-Trichlorobenzene 1,3-Dichlorobenzene	μg/L μg/L μg/L	1	20 ^{#3} 260 ^{#1}	5 ^{#24}	<5 <5 <5	<5 <5 <5	<5 <5 <5	-	<1 <1 <1	<5 <5 <5	<5 <5 <5
2-Chlorotoluene 1,4-Dichlorobenzene	μg/L μg/L μg/L	1 0.1	60 ^{#1}	240 ^{#22} 0.3 ^{#26}	<5 <5 <5	<5 <5 <5	<5 <5 <5	- <1	<1 <1 0.1	<5 <5 <5	<5 <5 <5
4-Chlorotoluene Bromobenzene	μg/L μg/L	1		250 ^{#22} 62 ^{#22}	<5 <5	<5 <5	<5 <5	<1	<1	<5	<5 <5
Chlorobenzene Total Trichlorobenzene	μg/L μg/L	1	55 ^{#1}	10 ^{#18} 5 ^{#24}	<5	<5	<5	<1	4 <1	<5	<5
alogenated Hydrocarbons 1,2-Dibromoethane	μg/L	1		1 ^{#13}	<5	<5	<5	<1	<1	<5	<5
Bromomethane Dichlorodifluoromethane	μg/L μg/L	1 1		1 ^{#13} 200 ^{#22}	<50 <50	<50 <50	<50 <50	<1 <1	<10 <10	<50 <50	<50 <50
Iodomethane Trichlorofluoromethane	μg/L μg/L	1 1		5,200 ^{#22}	<5 <50	<5 <50	<5 <50	<1 <1	<1 <10	<5 <50	<5 <50
hlorinated Hydrocarbons 1,1-Dichloropropene	µg/L	1	#1	#99	<5	<5	<5	-	<1	<5	<5
1,1-Dichloroethane 1,1-Dichloroethene	μg/L μg/L	1	250 ^{#1} 700 ^{#1}	2.8 ^{#22} 30 ^{#13}	<5 <5	<5 <5	<5 <5	<1	1 <1	<5 <5	<5 <5
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	μg/L μg/L	1	270 ^{#1}	0.57 ^{#22} 8,000 ^{#22}	<5 <5	<5 <5	<5 <5	<1 <1	<1 <1	<5 <5	<5 <5
1,2-Dibromo-3-chloropropane 1,1,2-Trichloroethane	μg/L μg/L	1	1,900 ^{#4} 400 ^{#1}	0.28 ^{#22} 0.076 ^{#22}	<5 <5	<5 <5	<5 <5	- <1	<1 <1	<5 <5	<5 <5
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 1,2-Dichloroethane	μg/L μg/L	1	400 1,900 ^{#1}	0.076 0.00075 ^{#22} 3 ^{#13}	<5 <5	<5 <5	<5 <5	<1	<1 <1	<5 <5	<5 <5
1,3-Dichloropropane 1,2-Dichloropropane	μg/L μg/L μg/L	1	700 ^{#1} 600 ^{#1}	370 ^{#22} 40 ^{#28}	<5 <5 <5	<5 <5 <5	<5 <5 <5	<1 <1 <1	<1 <1 <1	<5 <5 <5	<5 <5 <5
2,2-Dichloropropane Bromochloromethane	μg/L μg/L μg/L	1	000	40 83 ^{#22}	<5	<5 <5	<5 <5	<1 - <1	<1 <1 <1	<5	<5
Bromodichloromethane Bromoform	μg/L μg/L	1 1		250 ^{#13} 250 ^{#13}	<5 <5	<5 <5	<5 <5	<1	<1 <1	<5 <5	<5 <5
Carbon Tetrachloride Chlorodibromomethane	μg/L μg/L	1 1	240 ^{#1}	3 ^{#13} 250 ^{#13}	<5 <5	<5 <5	<5 <5	<1	<1 <1	<5 <5	<5 <5
Chloroethane Chloroform	μg/L μg/L	1	370 ^{#1}	21,000 ^{#22} 250 ^{#13}	<50 <5	<50 <5	<50 <5	<1 <5	<10	<50 <50	<50 <5
Chloromethane cis-1,4-Dichloro-2-butene	μg/L μg/L	1 1		190 ^{#22} 0.0013 ^{#22}	<50 <5	<50 <5	<50 <5	<1	<10	<50 <5	<50 <5
cis-1,2-Dichloroethene Dibromomethane	μg/L μg/L	1 1		60 ^{#29} 8.3 ^{#22}	<5 <5	<5 <5	<5 <5	<1 <1	1 <1	<5	<5 <5
cis-1,3-Dichloropropene 1,3-Dichloropropene	μg/L μg/L	1	0.8 ^{#1}	100 ^{#13}	<5	<5	<5	<1	<2 <2 <2	<5	<5
Dichloromethane Hexachlorobutadiene	μg/L μg/L	1 0.5	3,000 ^{#1} 0.03 ^{#1}	4 ^{#13} 0.7 ^{#13}	- <5	- <5	- <5	<1	<2 <0.5	- <5	- <5
Pentachloroethane Tetrachloroethene	μg/L μg/L	1 1	80 ^{#1} 70 ^{#1}	0.65 ^{#22} 50 ^{#13}	<5 <5	<5 <5	<5 <5	- <1	<1 <1	<5 <5	<5 <5
trans-1,4-Dichloro-2-butene trans-1,2-Dichloroethene	μg/L μg/L	1 1		0.0013 ^{#22} 60 ^{#29}	<5 <5	<5 <5	<5 <5	- <1	<1 <1	<5 <5	<5 <5
trans-1,3-Dichloropropene Trichloroethene	μg/L μg/L	1	330 ^{#1}	20 ^{#30}	<5 <5	<5 <5	<5 <5	<1 <1	<2 <1	<5 <5	<5 <5
Vinyl Chloride Total Chlorinated Hydrocarbons	μg/L μg/L	0.2 5	100 ^{#1}	0.3 ^{#13}	<50	<50	<50	<1 <5	<0.2	<50	<50
Total Other Chlorinated Hydrocarbons olvents Mathed Ethyd Katena (MEK)	μg/L	5		E 000 ^{#22}	-	-	-	<5	-	-	-
Methyl Ethyl Ketone (MEK) 2-Hexanone (MBK)	μg/L μg/L	1 10		5,600 ^{#22} 38 ^{#22}	<50 <50	<50 <50	<50 <50	<1	<10 <10	<50 <50	<50 <50
4-Methyl-2-pentanone Acetone	μg/L μg/L	1		6,300 ^{#22} 14,000 ^{#22}	<50 -	<50	<50 -	<1 <1	<10	<50	<50
Allyl chloride	µg/L	1	3 ^{#1}	0.73 ^{#22}	·			<1			

1 of 2

/5/1				Location Code	MW7016	MW7018			MW7019	MW7020	MW7021	
					Field ID	MW7016	MW7018	QS03	QS04	MW7019	MW7020	MW7021
					Date	9/10/2019	9/10/2019	9/10/2019	9/10/2019	10/10/2019	9/10/2019	9/10/2019
					Sample Type	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal
					Lab Report No.	EM1917008	EM1917008	EM1917008	682367	EM1917008	EM1917008	EM1917008
		Unit	EQL	Maintenance of Ecosystems - 95% Protection - Marine	Primary Contact Recreation							

Comments

#1 ANZECC/ARMCANZ 2000 (Low Reliability Values): marine

#2 ANZECC/ARMCANZ 2000 (Low Reliability Values): marine. The more conservative value (As III) out of the available values for arsenic species (III and V) was adopted for initial screening purposes.

#3 ANZECC/ARMCANZ 2000 (Protection 99%): marine adopted for chemicals that bioaccumulate.

#4 ANZECC/ARMCANZ 2000 (Protection 95%): marine

#5 ANZECC/ARMCANZ 2000 (Low Reliability Values): marine for m-xylene conservatively adopted as the lowest of those available for m- and p-xylene.

#6 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.

#7 CRWB (2019). Value for diesel (C8-C21) mixture.

#8 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening.

#9 NHMRC (2011) - Aesthetic. Value based on taste, for 'good quality' drinking water. Higher levels (up to 1,200) may be acceptable. No health based value has been set

#10 ANZECC/ARMCANZ 2000

#11 NHMRC (2011) - Aesthetic. Based on corrosion of copper pipes/fittings. Converted from guideline for ammonia (as NH3). No health based value has been set

#12 NHMRC (2011) - Aesthetic. Taste threshold. Health based value is 500 mg/L

#13 NHMRC (2011) - Health

#14 NHMRC (2011) - Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded.

#15 NHMRC (2011) - Aesthetic. Health based value is 2 mg/L

#16 NHMRC (2011) - Aesthetic. Taste threshold. No health based value has been derived (zinc is an essential element for humans).

#17 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 0.8 mg/L

#18 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 0.3 mg/L

#19 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 0.6 mg/L

#20 WHO (2008). Lowest of derived values for aliphatic and aromatic fractions in this range, multiplied by 10 as per NHMRC (2008). May not protect aesthetic quality, to be used in conjunction with sensory assessment for taste and odour.

#21 NHMRC (2011) - Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation.

#22 USEPA RSLs (November 2018 Update) - Tap Water

#23 NHMRC (2011) - Aesthetic. Odour threshold. Health based value is 0.03 mg/L

#24 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 0.03 mg/L

#25 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 1.5 mg/L

#26 NHMRC (2011) - Aesthetic. Taste/odour threshold. Health based value is 0.04 mg/L

#27 WHO (2011)

#28 WHO (2011). Provisional guideline due to uncertainties in the health database

#29 NHMRC (2011) - Health. Value is for total 1,2-DCE but also applied to individual isomers.

#30 WHO (2011). Provisional guideline due to uncertainties in the database

2 of 2

Appendix A: Site Photographs

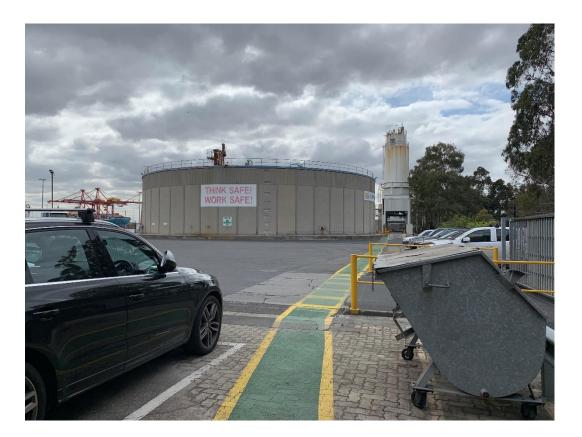


Photo 1. Fly Ash Bulk Storage and Silo.

Photo 2. Truck Maintenance Area.

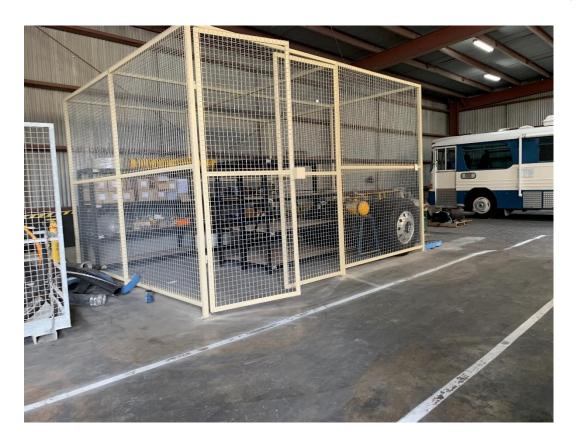


Photo 3. Workshop Area.

Photo 4. Disused AST.

\bigcap

Photo 5. Oil Water Storage.

Photo 6. Truck Loading Area

\bigcap

Photo 7. SB7375 Soil Bore Location

Photo 8. SB7375 Lithology

4



Photo 9. SB7375 Soil Bore Reinstation

Photo 10. SB7376 Soil Bore Location

Photo 11. SB7376 Lithology

Photo 12. SB7376 Reinstation

\bigcap

Photo 13. SB7377 Soil Bore Location

Photo 14. SB7377 Lithology. Depth profile from right to left.

\bigcirc

Photo 15.: SB7377 Soil Bore Reinstation.

Photo 16. SB7378 Soil Bore Location.

Photo 17. SB7378 Lithology. Depth profile from bottom left to top right.

Photo 18. SB7378 Soil Bore Reinstation.

9

Photo 19. SB7379 Soil Bore Location.

Photo 20. SB7379 Lithology. Depth profile from bottom left to bottom right.

\bigcirc

Photo 21. SB7380 Soil Bore Location.

Photo 22. SB7380 Lithology

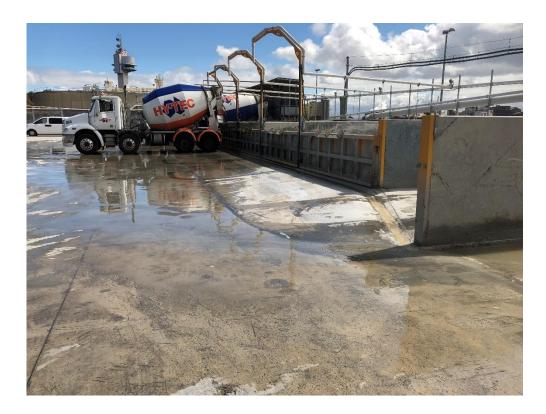


Photo 23. Water being added to a cement truck within a dedicated bay at 32 South Wharf.

Photo 24. Watering bay at 32 South Wharf

Photo 25. View east across 32 South Wharf showing product hoppers at the eastern site boundary.

Photo 26. Office building and sheds at 32 South Wharf.

Photo 27. View south across 34 South Wharf.

Photo 28. Location SB7381 near northwest corner of 34 South Wharf.

Appendix B: Groundwater Purge Sheets

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7075	Gatic Type (old,	new):	-
Project Name:		Due Diligence Le	ase Investigation				Well Constructi	on (flush, sticku	p):	Flush	Well Diameter (m		50
Client:		Port of Melbourne	0					Height (m bgl):	.,	~ - 0.2	Key Type (e.g. 8		n/a
Location:		32-34 South What	urf, Port Melbourn	e			Survey Mark Present?:			Yes	Well Condition:	<u> </u>	Poor
Well Gauging							Well Purging						
Date:	9/10/2019	Time:	10:30 AM	Probe Type & ID N	lo.	-	Date:	9/10/201	9 Start	10:30 AM	Finish	7:50 AM	
Depth to Produ	uct:	-	m bTOC	Product Thicknes	s (m):	-	Method (bailer, low flow, other):			Low flow/ bailer	Depth to Water w	vith Pump:	1.645
Depth to Wate	r:	1.642	m bTOC	Product Description	on:	-	Depth (pump in	take setting bT	OC):	2.5 - 3 Sediment Thickness in Well (m		ess in Well (m)	-
Total Depth of	Well:	3.64	m bTOC	Product Confirme	d by Bailer:	N/A	Total Volume P	urged (L):#			Screen Interval (Screen Interval (m bgl):	
Field Chemistr	У		1								Observ	vations	
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (µS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
10:30 AM	CPM3	13:7	0.4	1.64	6.23	951	6.2	105.6	15.4	Non-turbid	brown	no odour	no sheen
10:32 AM	CPM3	13:7	0.8	1.75	5.98	485.7	5.91	12.5	15.3	Non-turbid	brown	no odour	no sheen
10:35 AM	CPM2	27:3	1.2	1.85	4.41	949	5.72	130.7	15.1	Non-turbid	brown	no odour	no sheen
10:38 AM	CPM1	57:3	1.6	2	4.2	950	5.67	139.9	15	Non-turbid	brown	no odour	no sheen
10:41 AM	CPM1	57:3	2	2.2	5.25	483	5.65	158.8	14.7	Non-turbid	brown	no odour	no sheen
10:45 AM	CPM1	57:3	2.4	2.4	3.22	949	5.67	147.4	14.3	Non-turbid	brown	no odour	no sheen
10:51 AM	CPM1	57:3	2.8	2.9	3.15	952	5.65	156.7	14.5	Non-turbid	brown	no odour	no sheen
11:00 AM	-	-	8	3.6	-	-	-	-	-				
10/10/2019													
7:50 AM	Bailer	-	-	2.022	4.2	639	6.64	128.5	15.4	Non-turbid	brown	no odour	no sheen
Sampling							Purging / Samp	ling Comments					
Date	10/10/2019	Start	7:55 AM	Finish	8:10 AM		Recharge Abilit	-	Poor <0.1L/min	Other Comments	:		
	nod (bailer, low fl		Bailer	FIIIISII	0.10 AW		Air Bubbles in V		No	Micropurged inititia	ally but excessive d	awdown so bailed	dry and
SWL at end of				m bTOC			Reaction with P		No	sampled on the fo	llowing day.		
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID		N/A	No gatic present ju	ust a gatic lid placed	l over the casing.	
MW7075	Inorganics	1	Pres Inorganics (Filt.)	1	Y⊓ N ®	ALS	Any Odours Du	ring Sampling?					
	Metals (Filtered)	1	Metals	1	Y⊓N≋		no odour						
	VOC (H2SO4)		SVOCs	1	Y⊓ N ª		Purge Volume (if required):						
Total Containe Authorisation	rs	7	Waste Disposa	l:	Drums		-		nbTOC)] x [(D (mm))/2]/ ree consecutive reading				69)
Sampled By:					** If using galvanic DO probe (yellow cap), highest DO reading during discharge should be recorded.								
Checked By:		M Hunt	Signature:	Nattafft									
onconcu by.		WITIGHT	orginature.	14anagru		^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.							

Site and Job Number							Well Information						
		147574					Well ID:			MW7040	Cotio Turne (all		New
Job Number:		M17571								MW7018	Gatic Type (old,	•	New
Project Name:		Due Diligence Lea	0					ion (flush, sticku	p):	Flush	Well Diameter (m	,	50
Client:		Port of Melbourne						Height (m bgl):		~ -0.01	Key Type (e.g. 8	nm gatic):	8mm
Location:		32-34 South Wha	rf, Port Melbourn	e			Survey Mark Present?:		Yes	Well Condition:		Average	
Well Gauging	_						Well Purging						
Date:	9/10/2019	Time:	12:05 PM	Probe Type & ID N		•	Date:	9/10/2019	Start	12:07 PM	Finish	12:16 PM	-
Depth to Produ				Product Thickness			Method (bailer, low flow, other):			Low flow	Depth to Water w		2.07
Depth to Water		2.073		Product Description				take setting bTC	DC):	2.5	Sediment Thickr		
Total Depth of Well: Tield Chemistry		3.5	m bTOC	Product Confirmed	d by Bailer:	N/A	Total Volume P	urged (L):#		2.4	Screen Interval (
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (μS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	vations Odour	Sheen
12:07 PM	CPM1	57:3	0.4	2.07	7.41	27109	7.04	164.9	15.9	Non-turbid	brown	no odour	no sheen
12:09 PM	CPM1	57:3	0.8	2.07	6.27	25141	5.76	187.5	16.8	Non-turbid	brown	no odour	no sheen
12:11 PM	CPM1	57:3	1.2	2.07	3.78	23753	5.4	206.4	17.3	Non-turbid	brown	no odour	no sheen
12:13 PM	CPM2	25:5	1.9	2.08	3.05	23784	5.36	211.2	17.6	Non-turbid	brown	no odour	no sheen
12:15 PM	CPM2	25:5	2	2.08	2.7	24260	5.35	213	17.6	Non-turbid	brown	no odour	no sheen
12:16 PM	CPM2	25:5	2.4	2.08	2.62	24826	5.34	215	17.7	Non-turbid	brown	no odour	no sheen
Sampling							Purging / Samp	ling Comments					
Date	9/10/2019	Start	12:20 PM	Finish	12:35 PM		Recharge Abilit	iy:	Avg 0.1-0.4L/min	Other Comments	::		
Sampling Meth	nod (bailer, low fl	low, other):	Low flow				Air Bubbles in	Vials?	No	Well casing too hi	gh for gatic.		
SWL at end of	Sampling:			m bTOC			Reaction with F	Preservatives?	No				
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID	Readings:	N/A				
MW7018	Inorganics	1	Metals (Filtered)	1	Y⊓ N⊓	ALS	Any Odours Du	ring Sampling?					
QS03	VOC (H2SO4)	2	SVOCs	1	Y⊓N⊓	MGT Eurofins	No			1			
QS04	Pres Inorganics	1			Y N "		Purge Volume (if required):						
Total Containe Authorisation					# Purge Volume = [TD (mbTOC)-SWL (mbTOC)] x [(D (mm))/2] ² x 0.00314 (only relevant non-low flow methods) * Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:								during discharge should	•				
Checked By: M Hunt Signature:					^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								
				A Or sensor accuracy, whichever is greater. YSI Promus sensor accuracy is 0.2 mg/L.									

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7016	Gatic Type (old,	new):	New
Project Name:		Due Diligence Lea	se Investigation					ion (flush, sticku	n):	Flush	Well Diameter (m		50
Client:		Port of Melbourne	Č.					Height (m bgl):	p).	~ - 0.05	Key Type (e.g. 8		8mm
Location:		32-34 South Wha		2						~ - 0.05 Yes	Well Condition:	min gauc):	Good
Well Gauging		32-34 300til Wild		5			Survey Mark Present?: Well Purging		Tes	Well Condition.		9000	
Date:	9/10/2019	Time:	12:50 PM	Probe Type & ID N	0		Date:	9/10/201	0 Start	12:54 PM	Finish	1:03 PM	
Depth to Produ		rine.		Product Thickness			Method (bailer, low flow, other):			Low flow			2.08
Depth to Wate		1.988		Product Description						2.7	Depth to Water w Sediment Thickn		2.00
		4.1		Product Description		- N/A	Total Volume P	take setting bTC		3	Screen Interval (
Total Depth of Well: Field Chemistry		4.1	III DI OC	Froduct Committee	d by Ballel.	N/A	Total Volume P	urgeu (Ľ).#		3		vations	
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (µS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
12:54 PM	CPM2	25:5	0.6	2.08	4.79	1341	6.35	151.4	18.2	Non-turbid	brown	no odour	no sheen
12:55 PM	CPM2	25:5	1.2	2.09	4.23	1326	6.31	152	18.2	Non-turbid	brown	no odour	no sheen
12:57 PM	CPM2	25:5	1.8	2.09	3.85	1326	6.29	153	18.2	Non-turbid	brown	no odour	no sheen
1:00 PM	CPM2	25:5	2.4	2.1	4	1331	6.29	153.4	18.1	Non-turbid	brown	no odour	no sheen
1:03 PM	CPM2	25:5	3	2.1	3.75	1334	6.3	153.4	18.1	Non-turbid	brown	no odour	no sheen
Sampling							Purging / Samp	ling Comments					
Date	9/10/2019	Start	1:10 PM	Finish	1:30 PM		Recharge Abilit	iy:	Good >0.4L/min	Other Comments	:		
Sampling Meth	nod (bailer, low fl	ow, other):	Low flow				Air Bubbles in V	Vials?	No				
SWL at end of	Sampling:		-	m bTOC	1	r	Reaction with F	Preservatives?	No	1			
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID	Readings:	N/A	1			
MW7016	Inorganics	1	SVOCs	1	Y " N "	ALS	Any Odours Du	ring Sampling?					
	Metals (Filtered)	1	Pres Inorganics (Filt.)	1	Y n n n		No			4			
Total Cantains	VOC (H2SO4)	2	Weste Disease	Y n N n			Purge Volume (if required):						
Total Containe Authorisation	otal Containers 6 Waste Disposal: Drums				# Purge Volume = [TD (mbTOC)-SWL (mbTOC)] x [(D (mm))/2] ² x 0.00314 (only relevant non-low flow methods) * Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:					** If using galvanic DO probe (yellow cap), highest DO reading during discharge should be recorded.								
Checked By: M Hunt Signature:				^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.									
Mecked by: Mi Hunt Signature:					A Or sensor accuracy, whichever is greater. YSI Propius sensor accuracy is 0.2 mg/L.								

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7020	Gatic Type (old,	new):	New
Project Name:		Due Diligence Lea	ase Investigation				Well Constructi	on (flush, sticku	p):	Flush	Well Diameter (m	nm):	50
Client:		Port of Melbourne)				Surface Casing	Height (m bgl):		~ - 0.1	Key Type (e.g. 8	mm gatic):	8mm
Location:		32-34 South What	urf, Port Melbourn	e			Survey Mark Present?:			Yes	Well Condition:		Good
Well Gauging							Well Purging						
Date:	9/10/2019	Time:	1:35 PM	Probe Type & ID N	о.		Date:	9/10/201	9 Start	1:40 PM	Finish	2:08 PM	
Depth to Produ	uct:	-	m bTOC	Product Thickness	s (m):		Method (bailer,	low flow, other):		Low flow	Depth to Water w	vith Pump:	2.45
Depth to Wate	epth to Water:		m bTOC	Product Description	on:		Depth (pump in	take setting bTC	DC):	3.3	Sediment Thickn	ness in Well (m)	-
Total Depth of	Well:	4.15	m bTOC	Product Confirmed	d by Bailer:	N/A	Total Volume P	urged (L):#		3	Screen Interval (m bgl):	-
Field Chemistr	ry										Obser	vations	
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (μS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
1:41 PM	CPM2	25:5	0.6	2.47	2.53	5415	5.81	70.7	17.6	Non-turbid	brown	no odour	no sheen
1:46 AM	CPM2	25:5	1.2	2.47	3.47	5053	5.77	75.5	17.5	Non-turbid	brown	no odour	no sheen
1:50 AM	CPM3	15:5	1.8	2.47	4.3	3582	5.52	113.6	17.3	Non-turbid	brown	no odour	no sheen
2:02 PM	CPM3	15:5	2.4	2.47	4.07	3751	5.55	111.2	17.3	Non-turbid	brown	no odour	no sheen
2:08 PM	CPM3	15:5	3	2.47	4.04	3827	5.57	108.7	17.3	Non-turbid	brown	no odour	no sheen
Sampling							Purging / Samp	ling Comments					
Date	9/10/2019	Start	2:10 PM	Finish	2:30 PM		Recharge Abilit	y:	Good >0.4L/min	Other Comments	::		
Sampling Meth	hod (bailer, low fl	ow, other):	Low flow				Air Bubbles in	Vials?	No				
SWL at end of	Sampling:		-	m bTOC			Reaction with F	Preservatives?	No				
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID	Readings:	N/A	-			
MW7020	Inorganics	1	SVOCs	1	Y " N "	ALS	Any Odours Du	ring Sampling?					
	Metals (Filtered)	1	Pres Inorganics (Filt.)	1	Y N N		Burgo Volume /	No (if required):	_	4			
Total Containe	VOC (H2S04) 2 Y " N " Containers 6 Waste Disposal: Drums				Purge Volume (if required): # Purge Volume = [TD (mbTOC)-SWL (mbTOC)] x [(D (mm))/2] ² x 0.00314 (only relevant non-low flow methods)								
Authorisation					* Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:	ampled By: S.O'Connor Signature:				** If using galvanic	DO probe (yellow cap), highest DO reading o	luring discharge should	be recorded.				
Checked By:	necked By: M Hunt Signature:				^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								
					^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7021	Gatic Type (old, I	now):	New
Project Name:		Due Diligence Lea						on (flush, sticku	n).	Flush	Well Diameter (m		50
Client:		Port of Melbourne	Č.					Height (m bgl):	ç).	~ - 0.01	Key Type (e.g. 8r	,	8mm
Location:		32-34 South Wha		0			Survey Mark Pr	• • • • •		~ - 0.01 Yes	Well Condition:	nin gauc):	Average
Well Gauging		32-34 300til Wild		6			Well Purging		Tes	Well Condition.		Avelage	
Date:	9/10/2019	Time:	2:48 PM	Probe Type & ID N	0		Date:	9/10/201	Start	2:50 PM	Finish	2:58 PM	
Depth to Prod		rine.		Product Thickness			Method (bailer, low flow, other):			Low flow	Depth to Water w		2.56
Depth to Wate		2.555		Product Description				take setting bTC)C):	3.5	Sediment Thickn		-
Total Depth of		4.18		Product Confirmed		N/A	Total Volume P			2.8	Screen Interval (I		
Field Chemistry					a ay Danon			a.goa (<u>-</u>)		2.0		ations	
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (μS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
2:50 PM	CPM3	13:7	0.4	2.56	1.62	3035	5.71	135.4	18.8	Non-turbid	brown	no odour	no sheen
2:51 PM	CPM3	13:7	0.8	2.56	1.43	2995	5.57	151.1	18.8	Non-turbid	brown	no odour	no sheen
2:53 PM	CPM3	13:7	1.2	2.56	1.09	3202	5.55	157.3	19.2	Non-turbid	brown	no odour	no sheen
2:54 PM	CPM3	13:7	1.6	2.56	1.36	3492	5.53	158.7	18.3	Non-turbid	brown	no odour	no sheen
2:55 PM	CPM3	13:7	2	2.56	2.12	4388	5.56	153.2	18.2	Non-turbid	brown	no odour	no sheen
2:57 PM	CPM3	13:7	2.4	2.56	1.73	4468	5.54	151.6	18	Non-turbid	brown	no odour	no sheen
2:58 PM	CPM3	13:7	2.8	2.56	2.58	4715	5.55	149.6	18.1	Non-turbid	brown	no odour	no sheen
Sampling							Purging / Samp	ling Comments					
Date	9/10/2019	Start	3:00 PM	Finish	3:10 PM		Recharge Abilit	v:	Good >0.4L/min	Other Comments	:		
	hod (bailer, low fl		Low flow				Air Bubbles in	•	No	Well casing too hig	gh for gatic.		
SWL at end of				m bTOC			Reaction with F	Preservatives?	No]			
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID	Readings:	N/A				
MW7021	Inorganics	1	SVOCs	1	Y " N "	ALS	Any Odours Du	ring Sampling?					
	Metals (Filtered)	1	Pres Inorganics (Filt.)	1	Y " N "		No]			
	VOC (H2SO4)	2			Y n N n		Purge Volume (if required):						
Total Containe Authorisation	otal Containers 6 Waste Disposal: Drums				# Purge Volume = [TD (mbTOC)-SWL (mbTOC)] x [(D (mm))/2]^2 x 0.00314 (only relevant non-low flow methods) * Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:), highest DO reading o		•				
Checked By:		M Hunt	Signature:	Ustleft-			^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.						
					A Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7019	Gatic Type (old, r	new):	New
Project Name:		Due Diligence Lea	ase Investigation					on (flush, sticku	n).	Flush	Well Diameter (m		50
Client:		Port of Melbourne					Surface Casing			~ - 0.1	Key Type (e.g. 8n		8mm
Location:		32-34 South Wha		2			Survey Mark Pre			Yes	Well Condition:	ini gano).	Poor
Well Gauging		02 04 00001 Wild					Well Purging		100	Hen Condition.			
Date:	10/10/2019	Time:	3:15 PM	Probe Type & ID N	0		Date:	9/10/2019	Start	3:10 PM	Finish	3:20 PM	
Depth to Produ		-		Product Thickness			Method (bailer, low flow, other):			Bailer	Depth to Water w		
Depth to Water		2.13		Product Description				take setting bTC		Dallei	Sediment Thickn		
Total Depth of		2.13		Product Confirmed		N/A	Total Volume Pr			3	Screen Interval (r		
Field Chemistr		2.15	110100	r roudet comme	a by baller.	N/A	Total Volume P	urgeu (Ľ).#		5	Observ	•	-
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (μS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
9/10/2019 15:20	0 -	-	3	-	-	-	-	-	-	Highly turbid	dark grey	Organic	no sheen
	-								-				
Sampling							Purging / Samp	ling Comments					
Date	10/10/2019	Start	3:30 PM	Finish	3:35 PM		Recharge Ability		Poor <0.1L/min	Other Comments			
	od (bailer, low fl		Bailer				Air Bubbles in V		No		ocked by roots and		67 mBTOC and
SWL at end of		,,-		m bTOC			Reaction with P		No	was unblocked to	2.15 and purged dry	/.	
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID		N/A				
MW7019	Metals	1	Pres Inorganics (Filt.)	1	Y " N "	ALS	Any Odours During Sampling?						
	VOC (H2SO4)	2			Y N "		Organic odour						
	SVOCs	1			Y N "		Purge Volume (if required):]			
Total Containe	rs	5	Waste Disposal	:	Drums						vant non-low flow metho		
Authorisation					* Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:					** If using galvanic DO probe (yellow cap), highest DO reading during discharge should be recorded.								
Checked By:	ed By: M Hunt Signature:				^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								
						Or sensor accuracy, whichever is greater. For For has sensor accuracy is 0.2 mg/L.							

Site and Job Number							Well Information						
Job Number:		M17571					Well ID:			MW7015	Gatic Type (old,	new):	New
Project Name:		Due Diligence Lea	ase Investigation					on (flush, sticku	o):	Flush	Well Diameter (m		50
Client:		Port of Melbourne	•					Height (m bgl):		~ - 0.05	Key Type (e.g. 8		8mm
Location:		32-34 South What		e			Survey Mark Pr			Yes	Well Condition:	ga	Good
Well Gauging		02 01 000001 1110	in, i ortinoiseani				Well Purging		100			0000	
Date:	9/10/2019	Time:	3:35 PM	Probe Type & ID N	lo.	-	Date:	9/10/2019	Start	3:40 PM	Finish	3:45 PM	
Depth to Produ				Product Thickness			Method (bailer, low flow, other):			Bailer	Depth to Water w		
Depth to Water		1.575		Product Description	~ /			take setting bTC)C):	-	Sediment Thickn	•	-
Total Depth of		2.27		Product Confirmed		N/A	Total Volume P				Screen Interval (
Field Chemistr		2.2.										vations	
Time	Pump Rate	Refill / Discharge	Volume (L)	WL (m bTOC)	DO (mg/L)** ±10% * ^	EC (μS/cm) ±3% *	рН ±0.05 *	Redox (mV) ±10mV *	Temp (°C) ±10% *	Tubidity	Colour	Odour	Sheen
3:55 PM	-	-	35	-	-	-	-	-	-	Highly turbid	dark grey	Organic	no sheen
		1											1
10/10/2019	-	-	-	-	-	-	-	-	-	Non-turbid	light grey	no odour	no sheen
													-
													-
													+
													-
Sampling							Purging / Samp	ling Comments					
Date	10/10/2019	Start	3:45 PM	Finish	3:55 PM		Recharge Abilit	у:	Poor <0.1L/min	Other Comments			
Sampling Meth	od (bailer, low fl	low, other):	Bailer				Air Bubbles in V	/ials?	No	Well blocked at 1.	2 mBTOC. Cleared	to 2.27 and 35 L b	ailed on 9/10/19.
SWL at end of	Sampling:		-	m bTOC			Reaction with P	reservatives?	No				
Sample No:	Container	No. Samples	Container	No. Samples	QA QC	Laboratory	Headspace PID	Readings:	N/A	1			
MW7015	Inorganics	1	SVOCs	1	Y " N "	ALS	Any Odours Du	ring Sampling?					
	Metals (Filtered)	1	Pres Inorganics (Filt.)	1	Y⊓ N⊓		No			1			
	VOC (H2SO4)	2			Y " N "		Purge Volume (if required):						
Total Containe Authorisation					# Purge Volume = [TD (mbTOC)-SWL (mbTOC)] x [(D (mm))/2] ^A 2 x 0.00314 (only relevant non-low flow methods) * Parameters considered stable when three consecutive readings three to five minutes apart are all within stated criteria (EPA Pub 669)								
Sampled By:								luring discharge should	•		,		
Checked By:	hecked By: M Hunt Signature:				^ Or sensor accuracy, whichever is greater. YSI ProPlus sensor accuracy is 0.2 mg/L.								
				" Of sensor accuracy, whichever is greater. To ProPlus sensor accuracy is 0.2 mg/L.									

Appendix C: Calibration Certificates

Instrument Quality Report Interface Meter

Enqip #:	10180
Company:	Senversa
Consultant:	Matthew Hunt
PO #:	M17571
Certificate #:	14410

INSTRUMENT IDENTIFICATION

Instrument Type:	Solinst Interface Meter
Model Number:	122
Serial Number:	311998

INSPECTION RECORD									
Battery:	PASS	Water Tone:	PASS						
Tape Condition:	PASS	Hydrocarbon Tone:	PASS						

Tested By:

Darrin Arthur

Test Date: 8/10/2019

Equipment Calibration Form RKI GX-6000 PID

Enqip #:	10180			
Company:	Senversa			
Consultant:	Matthew Hunt			
PO #:	M17571			
Certificate #:	14411			
		INSTRUMENT	IDENTIFICATION	
Model Number:	GX-6000			
Serial Number:	5210153201-5RN			
		INSPECT	ION RECORD	
Flow Rate:	PASS	Inlet Filter:	PASS	
Buzzer:	PASS	Date & Time:	PASS	
		CALIBRAT	TION DETAILS	
Parame	ters	Sta	ndard	Result
Air		0.0	ppm	0.0 ppm
Isobutyle	ene	100.0	ppm	100.0 ppm

Calibration Successful: YES

Calibrated By: Doyle Schapendonk

Test Date: 8/10/2019

116 Thistlethwaite St, South Melbourne 3205 **P** 1300 218 987

E info@enqip.com.au | W www.enqip.com.au

Equipment Calibration Form YSI ProPlus

Enqip #:	10180		
Company:	Senversa		
Consultant:	Matthew Hunt		
PO #:	M17571		
Certificate #:	14409		
		NSTRUMENT IDENTIFICATION	
Model Number:	6050000		
Serial Number:	18L105008		
Instrument Type:	YSI ProPlus		
		INSPECTION RECORD	
Batteries Checked:	PASS	Date & Time:	PASS
Electrodes Cleaned/C	hecked: PASS	Temperature:	PASS
		CALIBRATION DETAILS	
Sensor	Cal Solution	Value	Reading
	Buffer 4.00	4.00 pH	4.01 pH
рН —	Buffer 7.00	7.00 pH	7.00 pH
Redox	Standard ORP	241 mV @ 15 ℃	241 mV
	Zero Dissolved Oxygen	0.0 %	0.0 %
02	Air	100.0 %	100.0 %
Conductivity	Standard Conductivity	2.76 mS/cm	2.76 mS/cm

Calibration Successful: YES

Calibrated By: Do

Doyle Schapendonk

Test Date: 8/10/2019

PID Calibration Certificate

Instrument PhoCheck Tiger Serial No. T-113955

Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass			Comments	3	
Battery	Charge Condition	1					
	Fuses	1					
	Capacity	\checkmark			1		
	Recharge OK?	1					
Switch/keypad	Operation	1			1		
Display	Intensity	1			1 51		
	Operation (segments)	1					
Grill Filter	Condition	√					
	Seal	1					
Pump	Operation	1					
	Filter	1					
	Flow	1					
	Valves, Diaphragm	1					
PCB	Condition	\checkmark					
Connectors	Condition	1					
Sensor	PID	✓	10.6 ev				
Alarms	Beeper	✓	Low	High	TWA	STEL	
	Settings	1	50ppm	100ppm			
Software	Version	1					
Data logger	Operation	1					
Download	Operation	1					
Other tests:							

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

16/05/2020

Diffusion mode Aspirated mode

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle	Instrument Reading
PID Lamp		96ppm Isobutylene	NIST	ME468	96ppm Isobutylene

Calibrated by:

___ David Trengove

Calibration date: 18/11/2019

Next calibration due:

Appendix D: Bore Logs

			1	7				BOR	EHOLE N	UMI	BER SB7375 PAGE 1 OF 1
	sor	าง	er	sa							
					11757		PROJECT NAME Due Dil				
								LOGGED BY	CHECK	ED BY	SI
	NTR4							LOCATION (Easting, Northing, 2			
								DIMENSIONS mm CASING LEVEL			
									30N A		LL
	2		DRILLIN	IG		Ę		FIELD MATERIAL DESCRIPTION			SAMPLING
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	М	Material Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)
CC				-		ASPHALT FILL	ASPHALT, Good condition, 50mm FILL, Sandy GRAVEL, fine to cors coarse grained, well graded, sub-r stabilised crushed rock).	n. e grained, well graded, sub-angular gravel, fine to ounded sand, grey, very dense, dry. (Cement			
CB / NDC HA	-			-		FILL		ed, poorly graded, sub-rounded sand, yellow, very			
				0 <u>.5</u>			loose, dry.			0.1	SB7375_0.50 - 0.60 QC05/06
HA / NDC	-			_		FILL	FILL, Gravelly SAND, fine to medii fine to coarse grained, well gradec	um grained, poorly graded, sub-rounded sand, d, sub-angular gravel, grey, dense, dry.			
				1 <u>.0</u>					No odour or staining.	0.3	SB7375_0.90 - 1.00
						FILL	FILL SAND find to medium grain	nd poolly graded cub rounded cand willow years			
				1 <u>.5</u>		FILL	dense, dry.	ed, poorly graded, sub-rounded sand, yellow, very			
				_						0.2	SB7375_1.50 - 1.60
				_	****	SP	SAND, fine to medium grained, po dense, dry.	oorly graded, sub-rounded sand, yellow grey,			
				2.0			SB7375 terminated at 2.00 m bgl			0.1	SB7375_1.90 - 2.00
1. SENVERSA STANDARD M175/1.GPJ SENVERSA_GINT.GDT 18/11/19							Target depth reached.				

	sor	אר	(r)				BOR	EHOLE N	UM	BER SB7376 PAGE 1 OF 1		
					4757								
	OJEC TE SI						PROJECT LOCATION		CHECK	ED BY			
	NTRA							LOCATION (Easting, Northing, 2					
								DIMENSIONS 120 mm CASING LEVEL					
	NERA				-								
	<u> </u>	C	RILLIN	G		c	1	FIELD MATERIAL DESCRIPTION	1		SAMPLING		
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol		Material Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)		
CC HA / NDD						ASPHALT	ASPHALT, Good condition, 50mm FILL, Gravelly SAND, fine to coars coarse grained, well graded, sub-a	se grained, well graded, sub-rounded sand, fine to	-	0.6	SB7376_0.10 - 0.20		
				_									
HA				0 <u>.5</u> –		FILL	FILL, SAND, fine to medium grain plasticity clay, trace rootlets, dark	ed, poorly graded, sub-rounded sand, trace low grey, loose, dry.	-	0.5	SB7376_0.50 - 0.60		
NDD				_									
HA				_	***	SP	SAND, medium grained, poorly gr	aded, rounded sand, grey, very loose, dry.	-				
				1.0									
				1.0					No odour or staining.	0.3	SB7376_1.00 - 1.10		
				_									
				_		SP	SAND, fine to medium grained, po loose, dry.	porly graded, sub-rounded sand, grey brown,	-				
				1.5		SP	SAND, coarse grained, poorly gra loose, dry.	ded, sub-rounded sand, brown and grey, very					
6				_	× × × × ×	SM	Silty SAND, fine grained, poorly gr moist.	aded, rounded sand, trace clay, grey, loose,		0.6	SB7376_1.50 - 1.60		
GDI 18/11/				_	× × × × ×								
RSA_GINT.				_	× × × ×		Fine grained, poorly graded, round	ded sand, trace roots.					
I SENVE				2.0	× × × ×		SB7376 torminated at 2.00 m but			0.3	SB7376_1.90 - 2.00		
117571.GP.				_			SB7376 terminated at 2.00 m bgl Target depth reached.						
NDARD M				_									
1. SENVERSA STANDARD M17571.GPJ SENVERSA_GINT.GDT 18/11/19				-									
1. SEN				2.5									

PRO	DJEC	Τ ΝΙ	JMBE	RM	117571		PROJECT NAME _ Due Dili	gence Site Assessmet arf 33					
	TE ST	ART	ED	9/10/	19	C	OMPLETED 9/10/19	LOGGED BY _MH	CHECK	ED B'	Y :	SI	
			DR _[
								DIMENSIONS 120 mm					
					s			CASING LEVEL	SURFAG	CE LE	EVEI	L	
έEΓ	NERA			-				FIELD MATERIAL DESCRIPTION					
	(%)					ation				Ê		Sample ID	
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol		laterial Description	Additional Observations	PID (ppm)		& Interval (QA/QC)	
C A / DD						ASPHALT FILL	ASPHALT, Good condition, 50mm. FILL, Gravelly SAND, fine to coarse coarse grained, well graded, sub-a	e grained, well graded, sub-rounded sand, fine to	_				
				_						0.3		SB7377_0.10 - 0.20	
IA				0.5		FILL	FILL, Clayey SAND, fine to mediun trace fine to medium grained, poorl dry.	n grained, poorly graded, sub-rounded sand, y graded, sub-angular gravel, dark grey, loose,	-				
				0 <u>.5</u>						0.2		SB7377_0.50 - 0.60	
				_									
				-		SP	SAND, fine to medium grained, poo dry.	orly graded, sub-rounded sand, pale grey, loose,					
				1 <u>.0</u> –			Trace orange mottling		- No odour or staining.	0.2		SB7377_1.00 - 1.10	
				_									
							Orange brown.						
				1 <u>.5</u>	× × × ×	SM	Silty SAND, fine grained, poorly gra	ided, rounded sand, pale yellow, loose, moist.					
					× × × ×	SM	Trace low plasticity clay, mottled or	ange and grey.	-	0.3		SB7377_1.50 - 1.60	
					×	SP	SAND, coarse grained poorly grad	ed, rounded sand, orange and grey, loose, moist.	-				
				_									
				2.0			SB7377 terminated at 2.00 m km			0.2		SB7377_1.90 - 2.00	
				-			SB7377 terminated at 2.00 m bgl Target depth reached.						

							PROJECT LOCATION <u>Wharf 33</u> DMPLETED 9/10/19 LOGGED B	✔ МН			SI		
			DR_U										
								IS <u>120 mm</u>					
					S <u>1</u> .	.8m	CASING LE	VEL	SURFAG	CE LE\	/EL		
E	NERA						FIELD MATERIAL	DESCRIPTION			SAMPLING		
	(%)/				Log	ation				Ê	Sample ID		
	Core Recovery (%)	Water	Well Details	Depth	Graphic Log	Classification Symbol	Material Description		Additional Observations	PID (ppm)	& Interval (QA/QC)		
2 C	ОĽ	5	50	(m)	ڻ XXXX	ഠ ഗ ASPHALT	ASPHALT, Good condition, 50mm.						
A/ DD						FILL	FILL, SAND, fine to medium grained, poorly graded, sub- medium grained, poorly graded, sub-angular gravel, grey	rounded sand, minor fine to , loose, dry.					
										0.3	SB7378_0.10 - 0.20		
Ą				-			Trace fine to medium grained, poorly graded, sub-angula clay, dark grey.	r gravel, trace low plasticity					
							day, dan grey.						
				0.5									
						FILL	FILL, SAND, fine grained, poorly graded, rounded sand, t dark grey, very loose, dry.	race low plasticity clay,		0.3	SB7378_0.50 - 0.60		
				-									
				-									
							Fine to medium grained, poorly graded, sub-rounded san dry.	d, pale grey, very loose,					
				1 <u>.0</u>					No odour or staining.		007070 4 00 4 4		
				_						0.2	SB7378_1.00 - 1.10		
							Becoming orange brown.						
				-									
				1 <u>.5</u>	***	SP	SAND, fine to medium grained, poorly graded, sub-round	ed sand, orange brown					
						01	very loose, dry.	ou build, orange brown,		0.3	SB7378_1.50 - 1.60		
		T				SP	SAND, fine to medium grained, poorly graded, sub-round	ed sand, trace silt, grey,					
							loose, dry.						
				2.0						0.4	SB7378_1.90 - 2.0		
1					· · · ·		SB7378 terminated at 2.00 m bgl Target depth reached.						
- 1													

PRO).IFC		IMBE	RM	1757 [.]		PROJECT NAMEDue Dil PROJECT LOCATIONWh	-			
								LOGGED BY _ MH	CHECK	ED BY	SI
	NTRA		-					LOCATION (Easting, Northing, 1			
Q	JIPM	ENT	CC					DIMENSIONS 120 mm			
								CASING LEVEL	SURFAC	CE LE\	/EL
SEN	NERA										
	(%		RILLIN		ő	ion		FIELD MATERIAL DESCRIPTION		Ê	SAMPLING
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol		flaterial Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)
C A/ DD				_		ASPHALT FILL	ASPHALT, Good condition, 50mm FILL, Gravelly SAND, fine to coars coarse grained, well graded, sub-a	e grained, well graded, sub-rounded sand, fine to	-		
				_						0.1	SB7379_0.10 - 0.20
						FILL	FILL, Sandy GRAVEL, fine to coar to coarse grained, well graded, sul	se grained, well graded, sub-angular gravel, fine b-rounded sand, grey, loose, dry.	-		
				0 <u>.5</u>						0.1	SB7379_0.50 - 0.60
				- - 1 <u>.0</u>							
									No odour or staining.	0.1	SB7379_1.00 - 1.10
				1 <u>.5</u>		FILL	FILL, Gravelly SAND, fine to coars coarse grained, well graded, sub-a	e grained, well graded, sub-rounded sand, fine to angular gravel, grey, dense, dry.	-	0.1	SB7379_1.50 - 1.60
						SP	SAND, fine to medium grained, po grey to grey, very loose, dry.	orly graded, sub-rounded sand, trace silt, light	1	0.3	SB7379_2.00 - 2.10
+							SB7379 terminated at 2.20 m bgl Target depth reached.				

			(7			BOF	REHOLE N	UM	BER SB7380 PAGE 1 OF 1
1	sør	าง	er	sa						
PR	OJEC	TN	JMBE	R _N	/1757		PROJECT NAME _ Due Diligence Site Assessmet PROJECT LOCATION _ Wharf 33			
			-		/19		DMPLETED _9/10/19 LOGGED BY _MH			
	NTRA UIPMI				NDD		LOCATION (Easting, Northing, DIMENSIONS 120 mm			
GR		OWA	TER	NOTE	S _1	.4m	CASING LEVEL _			
GE	NERA						FIELD MATERIAL DESCRIPTION			SAMPLING
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)
CC HA / NDD	-					ASPHALT FILL	ASPHALT, Good condition, 50mm. FILL, Sandy GRAVEL, medium to coarse grained, poorly graded, sub-angular gravel, fine to medium grained, poorly graded, sub-rounded sand, grey, dense, dry.			
				_					0	SB7380_0.10 - 0.20
НА				- 0 <u>.5</u>		FILL	FILL, SAND, fine to medium grained, poorly graded, sub-rounded sand, trace medium grained, poorly graded, sub-angular gravel, dark grey, loose, dry. Anthropogenic material including trace gasworks waste.	_	0.6	SB7380_0.50 - 0.60 QC01/02
				-						
				- - 1 <u>.0</u>			No gravel, becoming light grey.	- No odour or staining.		
				-		SP	SAND, fine to medium grained, poorly graded, sub-rounded sand, light grey, very loose, dry.		0.3	SB7380_1.00 - 1.10
		-		15		CH	Silty CLAY, high plasticity, orange brown mottling, soft, moist, wet of plastic limit.			
<u>n</u>				-					0.3	SB7380_1.50 - 1.60
				-						
				-	× × ×	SM	Sity SAND, fine grained, poorly graded, rounded sand, minor high plasticity clay, grey, loose, wet.	_		
SENVER				2.0	× `× × ×				0.4	SB7380_1.90 - 2.00
1. SENVERSA STANDARD M1/5/1.GPJ SENVERSA_GINT.GDT 18/11/19				2.5			SB7380 terminated at 2.00 m bgl Target depth reached.			

BOREHOLE NUMBER SB7381 PAGE 1 OF 1 senversa PROJECT NAME _ Due Diligence Site Assessmet PROJECT LOCATION <u>32-34 South Wharf, Lorimer Street, Port Melbourne</u> PROJECT NUMBER _______M17571 COMPLETED _______ LOGGED BY ______ SO DATE STARTED 19/11/19 CHECKED BY SI CONTRACTOR __Qest LOCATION (Easting, Northing, Zone) EQUIPMENT HA, NDD DIMENSIONS 120 mm INCLINATION Vertical CASING LEVEL _-GROUNDWATER NOTES _-SURFACE LEVEL -**GENERAL NOTES** DRILLING FIELD MATERIAL DESCRIPTION SAMPLING Classification Symbol ₆ (%) (mdd) Sample ID Graphic L Core Recovery Additional Method Material Description & Interval Water Well Details Observations Depth 믭 (QA/QC) (m) HA / NDD FILI FILL: Gravelly Silt, non-plastic, fine to medium grained, poorly graded, sub-rounded to sub-angular gravel, minor clay, minor sand and minor organics, loose, brown, moist, dry of plastic limit. Anthropogenic material included concrete pieces. SB7381_0.10 - 0.20 0.0 FILL: Gravelly Silt, non-plastic, fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, minor fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, trace clay and organics, firm, brown, moist, dry of plastic limit. Anthropogenic material included concrete, asphalt and coke FILL pieces. FILL FILL: Silty Sand, fine to medium grained, poorly graded, sub-rounded to sub-angular sand, minor fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, trace clay, loose, dark grey, moist. SB7381_0.40 - 0.50 0.1 0.5 SB7381_0.90 - 1.00 0.0 1.0 Coarse gravels decreasing from 1.1 m bgl. 1.5 SP SAND: fine to coarse grained, poorly graded, sub-angular to rounded, grey, loose, wet, becoming pale brown, mostly fine grained from 1.9 m bgl. SP Fine grained sand, pale brown 0.0 SB7381_1.90 - 2.00 2.0 SB7381 terminated at 2.00 m bgl Target depth reached.

SENVERSA STANDARD M17571_SO.GPJ SENVERSA_GINT.GDT 5/12/19

senversa

BOREHOLE NUMBER SB7382

PAGE 1 OF 1

PR		TN		R M	117571		PROJECT NAME Due Diligence Site Assessmet PROJECT LOCATION 32-34 South Wharf, Lorimer Street, Port	Melbourne		
							DMPLETED _ 19/11/19 LOGGED BY _SO			′ SI
			OR				LOCATION (Easting, Northing, J			
EQ	UIPM	ENT	HA	, NDE			DIMENSIONS 120 mm			
							CASING LEVEL			
GE	NER/	AL N	OTES	S						
		[ORILLIN	IG			FIELD MATERIAL DESCRIPTION			SAMPLING
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)
HA / NDD				_		FILL	FILL: Gravelly Silt, non-plastic, fine to medium grained, poorly graded, sub-rounded to sub-angular gravel, minor clay, minor sand and minor organics, loose, brown, moist, dry of plastic limit. Anthropogenic material included concrete pieces.			
				_		FILL	FILL: Silty Gravel, fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, minor sand, fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, trace clay and organics, medium dense, grey, moist. Anthropogenic material included concrete and brick paver pieces.		0.1	SB7382_0.10 - 0.20
				_		FILL	TiLL: Sand, fine to medium grained, poorly graded, sub-rounded to sub-angular sand, minor silt, minor fine to medium grained, poorly graded, sub-rounded to sub-angular gravel, trace clay, loose, grey, moist.			
				0 <u>.5</u>	<u>, x x x</u>	SP	SAND: fine to coarse grained, poorly graded, sub-angular to rounded, trace silt, grey, loose, moist.	-	0.1	SB7382_0.40 - 0.50
				-						
				-					0.0	SB7382_0.80 - 0.9
				1 <u>.0</u> 						
				-						
				1 <u>.5</u> _		SP	Pale orange brown, wet, fine grained sand increasing with depth.			
				2.0					0.0	SB7382_1.90 - 2.0
							SB7382 terminated at 2.00 m bgl Target depth reached.			
				_						
				-						
				-						
				2.5						

BOREHOLE NUMBER SB7383 PAGE 1 OF 1 senversa PROJECT NAME _ Due Diligence Site Assessmet PROJECT LOCATION <u>32-34 South Wharf, Lorimer Street, Port Melbourne</u> PROJECT NUMBER _______M17571 COMPLETED _______ LOGGED BY ______ SO DATE STARTED 19/11/19 CHECKED BY SI CONTRACTOR __Qest LOCATION (Easting, Northing, Zone) EQUIPMENT HA, NDD DIMENSIONS 120 mm INCLINATION Vertical CASING LEVEL _-GROUNDWATER NOTES _-SURFACE LEVEL -**GENERAL NOTES** DRILLING FIELD MATERIAL DESCRIPTION SAMPLING Classification Symbol ₆ (%) (mdd) Sample ID Graphic L Core Recovery Additional Method Material Description & Interval Water Well Detail Observations Depth 믭 (QA/QC) (m) HA / NDD FILL: Silty Sand, fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, minor clay and fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, loose, grey-brown, moist. Anthropogenic material included concrete pieces. FILL SB7383_0.10 - 0.20 0.1 FILL FILL: Sandy Gravel, fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, minor silt, minor clay increasing with depth. Anthropogenic material included concrete pieces. FILL FILL: Gravelly CLAY, high plasticity, fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, minor fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, mottled grey-brown and light brown, stiff, moist, near plastic limit. SB7383_0.40 - 0.50 0.1 0.5 FILL: Sand, fine to coarse grained, poorly graded, sub-angular to rounded, trace fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, trace clay and silt, grey, loose, moist. FILL SB7383_0.90 - 1.00 0.0 1.0 SP SAND: fine to coarse grained, poorly graded, sub-angular to rounded, grey, loose, moist, becoming pale brown. 1.5 SP Fine grained, pale brown, wet. 0.0 SB7383_1.90 - 2.00 2.0 SB7383 terminated at 2.00 m bgl Target depth reached.

SENVERSA STANDARD M17571_SO.GPJ SENVERSA_GINT.GDT

5/12/19

senversa

BOREHOLE NUMBER SB7384

PAGE 1 OF 1

							DMPLETED 19/11/19 LOGGED BY SO			
							LOCATION (Easting, Northing, Z DIMENSIONS 120 mm			
							CASING LEVEL -			
GE	NER/	AL N	OTES						-	
	0	C	RILLIN	3		c	FIELD MATERIAL DESCRIPTION			SAMPLING
Method	Core Recovery (%)	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description	Additional Observations	PID (ppm)	Sample ID & Interval (QA/QC)
HA / NDD						FILL	FILL: Gravelly Silt, non-plastic, fine to medium grained, poorly graded, sub-rounded to sub-angular gravel, minor clay, sand and organics, loose, brown, moist, dry of plastic limit. Anthropogenic material included concrete pieces.			
				_		FILL	FILL: Clayey Gravel, fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, minor fine to coarse grained, poorly graded, sub-rounded to sub-angular sand, grey-brown, moist. Clay increasing with depth.		0.0	SB7384_0.10 - 0.20 QS02/03
				0 <u>.5</u>		FILL	FILL: Gravelly CLAY, high plasticity, fine to coarse grained, poorly graded,		0.0	SB7384_0.40 - 0.5
				-			sub-rounded to sub-angular gravel, minor fine to coarse grained, poorty graded, sub-rounded to sub-angular sand.mottled, stiff, mottled grey-brown and light brown, moist, dry of plastic limit. Fine to coarse grained, poorty graded, sub-rounded to sub-angular gravel, minor fine to coarse grained, poorty graded, sub-rounded to sub-angular sand.			
				1 <u>.0</u>		FILL	FILL: Sand, fine to coarse grained, poorly graded, sub-angular to rounded, trace fine to coarse grained, poorly graded, sub-rounded to sub-angular gravel, trace clay and silt, grey, loose, moist.		0.0	SB7384_0.90 - 1.0
				_ _ 1 <u>.5</u> _		SP	SAND: fine to coarse grained, poorly graded, sub-angular to rounded, grey, loose, moist, becoming pale brown.			
				-		SP	Fine grained, wet			SB7384_1.90 - 2.0
				2.0			SB7384 terminated at 2.00 m bgl		0.0	0.57304_1.80 - 2.0
				-			Target depth reached.			

Appendix E: Laboratory Reports

Chain of Custody Documentation

enversa Pty www.senversa NBN 89 132 2	.com.au			Laboratory: Address: Contact:	ALS VIC 2-4 Westall Road, Springvale Larissa Burns / Sample Log		e				Analysis	Required		Comments: e.g. Highly contaminated sample; hazardous materials present; tra
				Phone:	03 8549 9600		Cu, Ni, Pb, sulphate							LORs etc.
ob Number:		M	7571	Purchase Order:			ర∞ పర							
roject Name	:	Po	MDD	Quote No:			Cd, Cr, BTEXN					1 1		
ampled By:			ew Hunt	Turn Around Time	Standa	ard	ids (As, PAHs, B					1 1		
roject Mana	aor:		a Trickey	Page:		of	PA					1 1		
		lucinda.trickey@	senversa.com.au;				Metals/Metalloi Zn. Hg), TRH, F and pH			1 1		1 1		
mail Report	To:)senversa.com.au	Phone/Mobile:	+61 424 17		W/s H					1 1		
Lab ID	Sample ID	Sample Informati Matrix *	on Date	Time	Container Inf Type / Code	Total Bottles	Ind p. Hala					1 1		
	SB09_0.1-0.2	Soil	9/10/2019	Time	1 soil	1	X			+ +	_	+ +	-	
	SB09_0.5-0.6	Soil	9/10/2019		1 soil	1								
	SB09_1.0-1.1	Soil	9/10/2019	-	1 soil	1				+	-	+		-
	SB09_1.5-1.6	Soil	9/10/2019	-	1 soil	1	X			+ +		+		
	SB09_1.5-1.6 SB09_2.0-2.1	Soil	9/10/2019		1 soil	1				+ +		+		
	1998.	Soil	1			1	X			++		+		*
	SB08_0.1-0.2	Soil	9/10/2019	-	1 soil							+		
	SB08_0.5-0.6		9/10/2019		1 soil	1	x		· · · · ·	+	-	+		
-+	SB08_1.0-1.1	Soil	9/10/2019	-	1 soil	1				++		+		1
-+	SB08_1.5-1.6	Soil	9/10/2019		1 soil	1	+ +			++-		+		1
	SB08_1.9-2.0	Soil	9/10/2019	-	1 soil	1	V			-		+ +		
	SB10_0.1-0.2	Soil	9/10/2019		1 soil	1	X	-		+ $+$	_	+		
	SB10_0.5-0.6	Soil	9/10/2019	-	1 soil	1				+ +	_	+		
	SB10_1.0-1.1	Soil	9/10/2019	-	1 soil	1	X			+		+		
	SB10_1.5-1.6	Soil	9/10/2019	· · ·	1 soil	1		_		_		+		
	SB10_1.9-2.0	Soil	9/10/2019	•	1 soil	1		_						
	SB07_0.1-0.2	water	9/10/2019	· ·	1 soil	1	X	_						
	\$B07_0.5-0.6	Soil	9/10/2019		1 soil	1								
	\$B07_1.0-1.1	Soil	9/10/2019	-	1 soil	1								
	SB07_1.5-1.6	Soil	9/10/2019		1 soil	1	X	_			_			
	SB07_1.9-2.0	Soil	9/10/2019	-	1 soil	1								
otal				1. Sec. 14		20	8					120UO	1-0-10-14	
	est that proper field samp were used during the co			enversa standard pro	cedures and/or project	Sampler Name:	Ma	tthew Hunt	Sign	ature:			Date:	14/10/2
linquished	By:				Method of Shipment (if a	applicable):		Receive	ed by:		0.			
me/Signatu	re:			Date:	Carrier / Reference #:				ignature:	Adh	~ 20	/		Date: Co co 19
				Time:	Date/Time:			Of:		inc	21			Time: 529PM
me/Signatu	e:			Date: Time:	Carrier / Reference #: Date/Time:			Name/S Of:	ignature:					Date: Time:
: ame/Signatu	·e·			Date:	Carrier / Reference #:				ignature:					Date:
aniciolynalu :	0.			Time:	Date/Time:			Of:	3.0000.0.					Time:

682320

Chain of Custody Documentation

Senversa Pty	Ltd			Laboratory:	mgt/Eurofins VIC						A	nalysis R	lequired				
www.senversa ABN 89 132 2	a.com.au			Address: Contact: Phone:	6 Monterey Road, Dandenong Harry Bacalis/ Sample Log In 03 9564 7055	J South, VIC 3175	Cu, Ni, Pb, sulphate									ents: e.g. Highly coni ; hazardous materia etc.	
Job Number:		M1	7571	Purchase Order:	_		no no Krzi										
Project Name	e:	Po	M DD	Quote No:			s, Cd, Cr, BTEXN,										
							S, B,						- 1				
Sampled By:			ew Hunt	Turn Around Time:	Standa		/etalloids (As, TRH, PAHs, B										
Project Mana	ger:		a Trickey senversa.com.au;	Page:		of	E alloi										
Email Report	To:	matthew.hunt@	senversa.com.au	Phone/Mobile:	+61 424 17	2 065	, Het										
		Sample Information			Container Info	rmation	Metals/M Zn. Hg), and pH										
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles			_	<u> </u>							
	SB06_0.1-0.2	soil	9/10/2019	-	1 soil	1	X										
	SB06_0.5-0.6	soil	9/10/2019		1 soil	11					_						
	SB06_1.0-1.1	soil	9/10/2019	-	1 soil	1									1		
	SB06_1.5-1.6	soil	9/10/2019		1 soil	1	X								<i>h</i>		
	SB06_1.9-2.0	soil	9/10/2019		1 soil	1											
	SB05_0.5-0.6	soil	9/10/2019	-	1 soil	1	X										
	SB05 0.9-1.0	soil	9/10/2019		1 soil	1	X						1				
	SB05 1.5-1.6	soil	9/10/2019	-	1 soil	1			1		_						
	SB05_1.9-2.0	soil	9/10/2019		1 soil	1	++-		-		_		-	-			
	SB11 0.5-0.6	soil	9/10/2019		1 soil	1			+					-+			
	SB11_0.9-1.0	soil	9/10/2019		1 soil	1	X		-					-+			
	QC01	soil	9/10/2019	-		1			+		_			-+			
				-	1 soil						-	1 1	-	-+			
	QC02	soil	9/10/2019	-	1 soil	1			+	+	-		-	\rightarrow	FWD to	SALS	
	QC05	soil	9/10/2019	· · · ·	1 soil	1	X		-	+ +	-				_		
	QC06	soil	9/10/2019	-	1 soil	1	X		-						FWD to) ALS	
	QC09	water	9/10/2019	-	2 VS, 1 UA, 1 N, 1 P	5	X				-			-			
								_									
Total	and the second second			ALL DESCRIPTION OF THE OWNER		20	8	1 1 1 1 1 1		1.231	10.20			10.00			1.1.1.1.1.1.
Sampler: I att	est that proper field sam s were used during the c			nversa standard pro-	cedures and/or project	Sampler Name:		atthew Hunt		Signature:				Da	ite:		14/10/2019
Relinquished	By:				Method of Shipment (if ap	plicable):		Recei	ved by:		<u>x</u>						
Name/Signatu				Date:	Carrier / Reference #:	photosoft			/Signatur	e: Arc	the		ar		Date:	10/101	19
Of:				Time:	Date/Time:			Of:			nop	4	OR		Time:		ig im
Name/Signatu	re:			Date:	Carrier / Reference #:				/Signatur	e:					Date:		
Of:				Time: Date:	Date/Time:			Of:							Time:		
Name/Signatu	re:		Carrier / Reference #:				/Signatur	re:					Date:				
Of:	ater Container Codes D -	Innreenved Disetion M	= Nitric Acid (HNO) D	Time:	Date/Time: Nitric Preserved ORC; SH = Sodiu	m Hudmyide (MaOU)	Cadmium (Cd	Of:	S = Sodie	m Hydroxida D	received Direct	tic: STH - 4	Sodium #	insulfato a	Time:	<u></u>	_
V:	= VOA Vial Hydochloric Acid (HCI) Preserved; VS = V	OA Vial Sulphuric Pres	erved; VSA = Sulphuric I	Preserved Amber Glass; H = HCI ST = Sterile Bottle; UA = Unpresen	Preserved Plastic; HS	s = HCI Preser	ved Speciation	n Bottle;	SP = Sulphuric	Preserved Pla	astic;					

Completed by: _____ Checked by: _____

682320

COC_M17571_09.10.19

senversa

Chain of Custody Documentation

Senversa	Pty Ltd				Laboratory:	ALS VIC								Analysis	Require	ed		
WWW.Senve ABN 89 13					Address: Contact: Phone:	2-4 Westall Road, Springvale Larissa Burns / Sample Log Ir 03 8549 9600		etals										<u>Comments</u> : e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.
Job Numb	er:		M	17571	Purchase Order:			S-26: TRH / BTEXN / PAH/ 8 Metals										
Project Na	me:		32 to 34 Se	outh Wharf DD	Quote No:	ME-804-19		PAH										
Sampled B	By:		Matth	iew Hunt	Turn Around Time	: standa	rd	NX										
Project Ma	nager:		Lucino	a Trickey	Page:		of											
Email Rep		lucir	nda.trickey@	2)senversa.com.au	Phone/Mobile:	+61 424 17	2 065	H H										
			e Informati			Container Info	rmation	193 193	Sulfate									
Lab ID	Sample ID		atrix *	Date	Time	Type / Code	Total Bottles	5	Sul	표								
	SB08-0.1-0.2	50	21	9/10	AM	1 soil	1											
	0.50.6		1	1	1	-								_				
L	-1.0-1-1													_				
L	_1.5-1.6			L CAL														
	19-2.1																	
	SER 0.1-0.2	-																
	-0.5-0.6																	
	1-1-0.6-		-															
	-15-16																	
	20-21																	
	5810-0,1-0.2																	
	-0.5-0.6																	
	_09-1.0																	
	-1.5-1.6												_	1				
	-1.9-2.0.				V										1			
	5607.0.1-0.2				PM			-						1				
	_0.5-0.6										-			1				
	-1-0-1-1													1		_		
	-1.5-1.6													1				
	-1-9-2-0		1	J										-				
Total		-	A Date of			Participation (1994)	20.	200	0	co-		- o 📈			12			
	attest that proper field samp ons were used during the co				nversa standard pre	ocedures and/or project	Sampler Name:	Mat	4.	Huit	e.	Signature:	t.	4	7		Date:	10/10-
Relinquish	ed By:	_	_			Method of Shipment (if ap	oplicable):			Received	i by:							
Name/Signa	iture:				Date:	Carrier / Reference #:	CIVIC			Name/Si		3	Tim	1	537)		Date:
Of:					Time:		1000 · c			Of:								Time:
Name/Signa Of:	ture:				Date:	Carrier / Reference #:				Name/Sig								Date:
Or: Name/Signa	turo				Time: Date:	Date/Time: Carrier / Reference #:		1		Of:	-							Time:
Of:					Time:	Date/Time:				Name/Sig Of:	nature							Date:
	V = VOA Vial Hydochloric Acid (H	CI) Presen	ved; VS = V	OA Vial Sulphuric Pres	eserved Plastic; ORC = erved; VSA = Sulphuric	Nitric Preserved ORC; SH = Sodiu Preserved Amber Glass; H = HCI ST = Sterile Bottle; UA = Unpreserved	Preserved Plastic; HS	= HCI Pre	(Cd) Pres	served; S Speciation	Bottle; S	SP = Sulphuri	c Preserved	Plastic;			ite preser	

______I ____I

Chain of Custo Chain of Custody Documentation

senv.	orsa					1	-		-			A	nalysis F	Required		T
enversa Pt ww.senvers BN 89 132	y Ltd a.com.au			Laboratory: Address: Contact: Phone:	ALS VIC 2-4 Westall Road, Springvale Larissa Burns / Sample Log In 03 8549 9600		S-26: TRH / BTEXN / PAH/ 8 Metals									Comments: e.g. Highly contaminated sample; hazardous materials presen LORs etc.
ob Numbe		м	17571	Purchase Order:			AH/ 8									
		32 to 34 S	outh Wharf DD	Quote No:	ME-804-19		1 Z									
roject Nan	16:		hew Hunt	Turn Around Time:	standard		Ξ.							1		
ampled By				Page:		of	18									
oject Man	ager:		da Trickey		+61 424 172	065	문									
mail Repo	rt To:		@senversa.com.au	Phone/Mobile:	Container Infor		1.20	Sulfate	_					- 1		
		Sample Informat	Date	Time	Type / Code	Total Bottles	Ś	Ŝ	H	-						
Lab ID	Sample ID	Matrix *	01	PM	1 500)											
	5:B06_0.1-0.2	Sav	9/10		1	1										
	-0.50.6															
	-1.0-1.1	1														
	-105-106							-								
	-1-9-201								-							
	5605-0-5-00		()						-				1			
							-	-	-				+			
	-1-5-1-6															
	1.9-20						1									
	Diol															
	002															
	-1050						-			1						
	The chan			1			-		-							
	9000		V						+				-			
	year												-			
							-	-	-							
							_	-								
				_			-									
		V			U V	- Y	0	0	0		1000					
Total		- 30 C.			Sampler Nam	-	-		0	Signatur	e: //	11	9		Date: to/ip	
Sampler:	I attest that proper field sam tions were used during the c	pling procedures ollection of these	Senversa standard pr	ocedures and/or project	Complet Nam	P	laft	1.5	nt		a	fle	y			
					Method of Shipment (if a	applicable):				ived by:		1	in	2	25-	Date:
Relinquis				Date:	Carrier / Reference #:	CIVII			_	e/Signatu	re:		tur)).	Time:
Name/Sig Of:	nature:	Time:	Date/Time:	5 DOD M			Of:	e/Signatu	re.		1		_	Date:		
Name/Sig	inature:	Date:	Carrier / Reference #:	<u> </u>			Of:	eroiynau	10.		11-	~~~		Time:		
Of:		Time:	Date/Time:					e/Signatu	ire:					Date:		
Name/Sig	nature:			Date:	Carrier / Reference #:				_							Time:
Of:				Time:	Date/Time:	dium Hydrovido (Nal)/Cade	nium (Cd)	Desservice	d; S = So	dium Hydroxi	de Preserved	Plastic; S	TH = Sodiu	m thiosulfat	te preserved plastic;
	Water Container Codes: P = V = VOA Vial Hydochloric Acid F = Formaldehyde Preserved G	Unpreserved Plasti (HCI) Preserved; VS Blass; Z = Zinc Aceta	c; N = Nitric Acid (HNO S = VOA Vial Sulphuric ate Preserved Bottle; E	3) Preserved Plastic; ORC Preserved; VSA = Sulphur = EDTA Preserved Bottles	Date/Time: = Nitric Preserved ORC; SH = Sor ic Preserved Amber Glass; H = HC ;; ST = Sterile Bottle; UA = Unpres	CI Preserved Plastic; erved Amber Glass;	HS = H(L=Lugol's	CI Preserv s iodine pi	red Specia reserved v	ation Bottle white plass	e; SP = Sulp ic bottle; SW	huric Preserv /= sulfuric acit	ed Plastic; preserved	l wide mou	th glass jar	

Enviro Sample Vic

From:	Harry Bacalis
Sent:	Monday, 14 October 2019 4:34 PM
То:	Enviro Sample Vic
Subject:	FW: COC - M17571
Attachments:	COC_M17571_09.10.19.pdf

Canh – Apparently these came in on Thursday, I can't see anything on ELVIS

Kind regards,

Harry Bacalis Phone: +61 3 8564 5064 Mobile: +61 438 858 924 Email : <u>HarryBacalis@eurofins.com</u>

From: Matthew Hunt [mailto:Matthew.Hunt@senversa.com.au] Sent: Monday, 14 October 2019 2:19 PM To: Harry Bacalis Cc: Lucinda Trickey Subject: COC - M17571

EXTERNAL EMAIL*

Hi Harry,

Please see attached our COC with analysis requested. Please note that these samples were delivered on Thursday (10/10) so if there are any samples that may fall outside of holding time it would be great if we could get them analysed asap.

Thank you, Matt

Matthew Hunt Project Hydrogeologist

senversa

Senversa Pty Ltd Level 6, 15 William Street, Melbourne VIC 3000

m: +61 0448 797 725 | e: <u>Matthew.Hunt@senversa.com.au</u> t: +61 3 9606 0070 | f: +61 3 9606 0074 | <u>www.senversa.com.au</u>

Note: This email and any attachments are for the intended recipient(s) only and may be confidential and/or privileged. Any opinions are those of the sender and not necessarily Senversa. If this email has been received in error, please delete all copies and contact the sender. Senversa accepts no liability for any consequences arising from the recipient's use of this email and/or the information contained in and/or attached.

Senversa management systems are certified to ISO 9001 (Quality) and OHSAS 18001 & ASNZS 4801 (Health and Safety) standards. Please consider the environment before printing this email. Senversa is a carbon neutral company and certified B Corp.

Click here to report this email as spam.

Converse Dty Ltd V/IC

Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Serversa Pty Ltd VIC
Contact name:	Lucinda Trickey
Project name:	POM DD
Project ID:	M17571
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 10, 2019 5:29 PM
Eurofins reference:	682320

Sample information

Compony nome

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 4.3 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Harry Bacalis on Phone : or by e.mail: HarryBacalis@eurofins.com

Results will be delivered electronically via e.mail to Lucinda Trickey - Lucinda.Trickey@senversa.com.au.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad	mpany Name: dress:	Senversa Pty Level 6, 15 V Melbourne VIC 3000					Re	der N port a one: x:			82320 606 0							D	eceiv ue: riority ontac		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey	
	oject Name: oject ID:	POM DD M17571																Euro	ofins	Analy	ytical Services Manager : Harry Baca	alis
		Sa	mple Detail			Arsenic	Cadmium	Chromium	Copper	НОГД	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons		
	ourne Laborato			271		Х	Х	Х	Х	Х	Х	Х	X	X	Х	X	Х	Х	Х	Х	-	
	ney Laboratory · bane Laboratory																				-	
	h Laboratory - N]	
Exte	rnal Laboratory																					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	SB09_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19394	Х	х	Х	Х		Х	Х	Х	Х	Х	х	Х	Х	Х	Х]	
2	SB09_1.5-1.6	Oct 09, 2019		Soil	M19-Oc19395	Х	х	Х	х		х	х	х	х	х	х	х	Х	Х	х	_	
3	SB08_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19396	Х	Х	х	х		х	Х	X	х	Х	x	Х	Х	Х	х	-	
4		Oct 09, 2019		Soil	M19-Oc19397	Х	Х	х	Х		Х	Х	X	Х	Х	X	Х	Х	Х	Х	-	
5	1	Oct 09, 2019		Soil	M19-Oc19398	Х	X	X	Х		Х	Х	X	Х	Х	X	Х	Х	Х	Х	-	
6		Oct 09, 2019		Soil	M19-Oc19399	Х	Х	Х	Х		Х	Х	X	Х	Х	X	Х	Х	Х	Х	4	
7		Oct 09, 2019		Soil	M19-Oc19400	X	X	X	X		X	Х	X	X	X	X	X	Х	Х	X	4	
8		Oct 09, 2019		Soil	M19-Oc19401	X	X	X	X		X	X	X	X	X	X	X	Х	Х	X	4	
9	SB06_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19402	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х]	

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

A	ompany Name: ddress: roject Name:	Senversa Pty Level 6, 15 W Melbourne VIC 3000 POM DD				Re	der N port # one: x:		-	32320 606 0(D P	eceiv lue: riorit conta		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
	roject ID:	M17571															Eur	ofins	Analy	vtical Services Manager : Harry Bacalis
		San	nple Detail		Arsenic	Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
	Ibourne Laborato				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	_
	Iney Laboratory -																			-
	sbane Laboratory																			-
10	th Laboratory - N SB06_1.5-1.6		Soil	M19-Oc19403	Х	X	х	х		х	Х	x	X	x	x	x	x	x	x	-
11		Oct 09, 2019 Oct 09, 2019	Soil	M19-Oc19404	X	X	X	X		X	X	X	X	X	X	X	X	X	X	1
12		Oct 09, 2019	Soil	M19-Oc19405	х	х	х	х		х	х	х	х	х	х	х	х	x	х	1
13		Oct 09, 2019	Soil	M19-Oc19406	Х	Х	Х	Х		Х	Х	х	Х	Х	х	х	Х	х	Х]
14	QC05	Oct 09, 2019	Soil	M19-Oc19407	Х	Х	Х	Х		Х	Х	х	Х	Х	х	х	х	х	х	
15	QC09	Oct 09, 2019	Water	M19-Oc19408	Х	Х	х	Х		Х	Х	х		х	х	х	Х		Х	
16		Oct 09, 2019	Soil	M19-Oc19409					Х											
17		Oct 09, 2019	Soil	M19-Oc19410					Х											-
18		Oct 09, 2019	Soil	M19-Oc19411					Х											-
19		Oct 09, 2019	Soil	M19-Oc19412					Х											-
20		Oct 09, 2019	Soil	M19-Oc19413					Х											4
21	SP08_1.9-2.0	Oct 09, 2019	Soil	M19-Oc19414					Х]

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

A	ompany Name: Idress: oject Name:	Senversa Pty Ltd Level 6, 15 Willia Melbourne VIC 3000 POM DD				Re	der N port i one: x:			32320 606 0							D P	eceiv lue: riorit conta		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
	oject ID:	M17571															Eur	ofins	Analy	ytical Services Manager : Harry Bacalis
		Sample	e Detail		Arsenic	Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
Mel	bourne Laborato	ry - NATA Site # 12	254 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
		NATA Site # 18217						└──┤												-
		- NATA Site # 207	94					$\mid - \mid$												-
22	SP10_0.5-0.6	ATA Site # 23736	Soil	M19-Oc19415				┝──┦	х											-
22		Oct 09, 2019	Soil	M19-Oc19416				┢──┤	X											-
24		Oct 09, 2019	Soil	M19-Oc19417					X											1
25		Oct 09, 2019	Soil	M19-Oc19418					х											1
26		Oct 09, 2019	Soil	M19-Oc19419					х											1
27		Oct 09, 2019	Soil	M19-Oc19420					х											1
28		Oct 09, 2019	Soil	M19-Oc19421					Х											1
29		Oct 09, 2019	Soil	M19-Oc19422					Х											1
30		Oct 09, 2019	Soil	M19-Oc19423					Х											1
31	SP05_1.5-1.6		Soil	M19-Oc19424					х]
32		Oct 09, 2019	Soil	M19-Oc19425					Х											
33	SP11_0.5-0.6	Oct 09, 2019	Soil	M19-Oc19426					Х											

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address: Project Name: Project ID:	Senversa Pty Level 6, 15 V Melbourne VIC 3000 POM DD M17571				Re	der Neport ione: ix:	#:		82320 606 0							D P C		y: ct Nar		Oct 17, 5 Day Lucinda		calis
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					Chromium	Copper	НОГД	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons			-	
Melbourne Laborator	ry - NATA Site	# 1254 & 1427 [.]	1	х	х	х	Х	х	х	х	х	Х	х	х	х	Х	X	х	1			
Sydney Laboratory -																			1			
Brisbane Laboratory	ney Laboratory - NATA Site # 18217 Dane Laboratory - NATA Site # 20794																		1			
Perth Laboratory - N	ATA Site # 237																		1			
34 QC01	Oct 09, 2019	S	Soil M19-Oc19427					Х											1			
Test Counts				15	15	15	15	19	15	15	15	14	15	15	15	15	14	15				

Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000

Attention:

Lucinda Trickey

Report	
Project name	
Project ID	
Received Date	

682320-S-V2 POM DD M17571 Oct 10, 2019

Client Sample ID			SB7379_0.1- 0.2	SB7379_1.5- 1.6	SB7378_0.1- 0.2	SB7378_1.0- 1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-Oc19394	M19-Oc19395	M19-Oc19396	M19-Oc19397
Date Sampled			Oct 09, 2019	Oct 09, 2019	Oct 09, 2019	Oct 09, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	68	77	100	74
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons		-				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			SB7379_0.1- 0.2	SB7379_1.5- 1.6	SB7378_0.1- 0.2	SB7378_1.0- 1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-Oc19394	M19-Oc19395	M19-Oc19396	M19-Oc19397
Date Sampled			Oct 09, 2019	Oct 09, 2019	Oct 09, 2019	Oct 09, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	77	59	62	65
p-Terphenyl-d14 (surr.)	1	%	62	58	60	64
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.7	9.9	9.5	7.5
Sulphate (as SO4)	30	mg/kg	60	< 30	< 30	290
% Moisture	1	%	8.8	7.1	10	4.1
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	19	20	31	< 5
Copper	5	mg/kg	50	40	48	< 5
Lead	5	mg/kg	< 5	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	120	120	130	< 5
Zinc	5	mg/kg	73	70	74	< 5

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SB7380_0.1- 0.2 Soil M19-Oc19398 Oct 09, 2019	SB7380_1.0- 1.1 Soil M19-Oc19399 Oct 09, 2019	SB7377_0.1- 0.2 Soil M19-Oc19400 Oct 09, 2019	SB7377_1.5- 1.6 Soil M19-Oc19401 Oct 09, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	-				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	78	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	170	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	248	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	123	115	96	109

Client Sample ID			SB7380_0.1-	SB7380_1.0-	SB7377_0.1-	SB7377_1.5- 1.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-Oc19398	M19-Oc19399	M19-Oc19400	M19-Oc19401
•						
Date Sampled			Oct 09, 2019	Oct 09, 2019	Oct 09, 2019	Oct 09, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	150	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	190	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	340	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	71	71	71	61
p-Terphenyl-d14 (surr.)	1	%	62	65	59	57
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	11	8.9	11	8.0
Sulphate (as SO4)	30	mg/kg	140	32	170	93
% Moisture	1	%	8.1	4.9	12	13
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	9.3	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	< 5	23	< 5
Copper	5	mg/kg	45	< 5	46	< 5
Lead	5	mg/kg	< 5	< 5	15	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	130	< 5	71	< 5
Zinc	5	mg/kg	71	< 5	94	< 5

Client Sample ID			SB7376_0.1- 0.2	SB7376_1.5- 1.6	SB7375_0.5- 0.6	SB7375_0.9- 1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-Oc19402	M19-Oc19403	M19-Oc19404	M19-Oc19405
Date Sampled			Oct 09, 2019	Oct 09, 2019	Oct 09, 2019	Oct 09, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	-	U.I.I.				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	57	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	120	< 50	74	< 50
TRH C10-C36 (Total)	50	mg/kg	177	< 50	74	< 50
BTEX	-1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	120	96	108	83
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	120	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	110	< 100	130	< 100
TRH >C10-C40 (total)*	100	mg/kg	230	< 100	130	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	67	87	66	65
p-Terphenyl-d14 (surr.)	1	%	55	65	55	57
	0.1	all			-	
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		8.9	9.6	9.8
Sulphate (as SO4)	30	mg/kg	200	< 30	< 30	80
% Moisture	1	%	10	8.5	10.0	8.6

Client Sample ID			SB7376_0.1- 0.2	SB7376_1.5- 1.6	SB7375_0.5- 0.6	SB7375_0.9- 1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-Oc19402	M19-Oc19403	M19-Oc19404	M19-Oc19405
Date Sampled			Oct 09, 2019	Oct 09, 2019	Oct 09, 2019	Oct 09, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	5.0	3.1	< 2	2.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	< 5	7.3	19
Copper	5	mg/kg	37	< 5	7.5	27
Lead	5	mg/kg	27	< 5	< 5	9.1
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	58	< 5	23	73
Zinc	5	mg/kg	92	< 5	17	69

			1
Client Sample ID			QC05
Sample Matrix			Soil
Eurofins Sample No.			M19-Oc19407
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	106
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5

Client Sample ID Sample Matrix			QC05 Soil
Eurofins Sample No.			M19-Oc19407
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		•	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	54
p-Terphenyl-d14 (surr.)	1	%	58
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	9.6
Sulphate (as SO4)	30	mg/kg	< 30
% Moisture	1	%	10
Heavy Metals	ŀ		
Arsenic	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	< 5
Copper	5	mg/kg	5.5
Lead	5	mg/kg	< 5
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	14
Zinc	5	mg/kg	10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 15, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 15, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 15, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX and Naphthalene			
BTEX	Melbourne	Oct 15, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 15, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Heavy Metals	Melbourne	Oct 15, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mercury	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Oct 14, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: POM DD							Re	rder N eport # none: ix:	#:		82320 606 0							D	eceiv ue: riority			Oct 10, Oct 17, 5 Day Lucinda		9 PM	
	oject ID:	M17571																Euro	ofins	Analy	/tical Ser	vices Ma	anager : H	Harry B	acalis
	Sample Detail					Arsenic	Cadmium	Chromium	Copper	НОГД	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons					
	oourne Laborato			271		Х	Х	X	Х	X	Х	Х	X	Х	Х	X	X	Х	Х	Х	-				
	bane Laboratory																				1				
	h Laboratory - N																				1				
	rnal Laboratory				1																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																				
1	SB09_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19394	Х	Х	Х	х		Х	Х	х	х	х	Х	Х	Х	Х	Х					
2	SB09_1.5-1.6	Oct 09, 2019		Soil	M19-Oc19395	Х	Х	X	Х		Х	Х	x	х	Х	X	Х	х	X	Х	-				
3	SB08_0.1-0.2			Soil	M19-Oc19396	Х	X	X	X		Х	Х	X	X	Х	X	Х	х	Х	Х	4				
4		Oct 09, 2019		Soil	M19-Oc19397	Х	X	X	Х		Х	Х	X	X	Х	X	Х	Х	X	Х	4				
5	SB10_0.1-0.2			Soil	M19-Oc19398	Х	X	X	Х		Х	Х	X	X	Х	X	Х	Х	X	Х	4				
6	SB10_1.0-1.1			Soil	M19-Oc19399	Х	X	X	Х		X	Х	X	Х	Х	X	X	Х	X	Х	4				
7	SB07_0.1-0.2			Soil	M19-Oc19400	X	X	X	X		X	X	X	X	X	X	X	X	X	X	4				
8	SB07_1.5-1.6			Soil	M19-Oc19401	X	X	X	X		X	X	X	X	X	X	X	X	X	X	4				
9	SB06_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19402	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х]				

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 Per

 1/21 Smallwood Place
 2/91

 Murarrie QLD 4172
 Kew

 Phone : +61 7 3902 4600
 Pho

 NATA # 1261 Site # 20794
 NAT

A o	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: POM DD Project ID: M17571						der N port i one: x:		-	82320 606 00							D P	eceiv lue: riorit <u>:</u> contac		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
Pr	oject ID:														Euro	ofins	Analy	ytical Services Manager : Harry Bacalis		
	Sample Detail				Arsenic	Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
	bourne Laborato				Х	Х	Х	х	Х	Х	Х	Х	Х	х	Х	Х	Х	X	Х	-
	ney Laboratory -							┝──┦												-
	bane Laboratory							┢──┤												-
10	SB06_1.5-1.6		Soil	M19-Oc19403	Х	X	x	х		х	Х	х	X	х	х	х	х	x	х	1
11	SB05_0.5-0.6		Soil	M19-Oc19404	х	Х	х	Х		х	х	х	Х	х	х	х	х	x	х	1
12	SB05_0.9-1.0		Soil	M19-Oc19405	Х	Х	Х	Х		Х	Х	Х	Х	Х	х	Х	Х	х	Х]
13	SB11_0.9-1.0	Oct 09, 2019	Soil	M19-Oc19406	Х	Х	х	Х		Х	Х	Х	Х	Х	Х	х	Х	х	х	
14	QC05	Oct 09, 2019	Soil	M19-Oc19407	Х	Х	х	х		х	х	Х	х	х	х	х	х	x	х	
15		Oct 09, 2019	Water		Х	Х	х	Х		Х	Х	Х		Х	х	х	Х		х	1
16	SP09_0.5-0.6		Soil	M19-Oc19409		<u> </u>			Х											-
17		Oct 09, 2019	Soil	M19-Oc19410				$\mid = \mid$	Х											4
18		Oct 09, 2019	Soil	M19-Oc19411				\square	Х											4
19	SP08_0.5-0.6		Soil	M19-Oc19412		<u> </u>		$\mid _ \mid$	Х											4
20	SP08_1.5-1.6		Soil	M19-Oc19413		 		$\mid _ \mid$	Х											-
21	SP08_1.9-2.0	Oct 09, 2019	Soil	M19-Oc19414					Х											J

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: POM DD Broject ID: M17671					Re	der N port i one: x:	#:	-	82320 606 0							D	eceiv ue: riority ontac		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
Pr	oject ID:	M17571															Euro	ofins	Analy	rtical Services Manager : Harry Bacalis
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Chromium	Copper	НОГД	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
Melk	ourne Laborato	ry - NATA Site	# 1254 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	
	ney Laboratory -																			-
	bane Laboratory																			
22	h Laboratory - N SP10_0.5-0.6		36 Soil	M19-Oc19415					x											
23	SP10_0.5-0.6 SP10_1.5-1.6		Soil						X											
24	SP10_1.9-2.0		Soil						X											
25		Oct 09, 2019	Soil						х											
26		Oct 09, 2019	Soil	M19-Oc19419					Х											
27	SP07_1.9-2.0	Oct 09, 2019	Soil	M19-Oc19420					Х											
28	SP06_0.5-0.6	Oct 09, 2019	Soil						х											
29	SP06_1.0-1.1	Oct 09, 2019	Soil	M19-Oc19422					Х											
30		Oct 09, 2019	Soil						Х											
31		Oct 09, 2019	Soil			<u> </u>			Х											
32		Oct 09, 2019	Soil			<u> </u>			Х											
33	SP11_0.5-0.6	Oct 09, 2019	Soil	M19-Oc19426					Х]

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au
 Melbourne
 3

 6 Monterey Road
 1

 Dandenong South VIC 3175
 1

 Phone : +61 3 8564 5000
 1

 NATA # 1261
 1

 Site # 1254 & 14271
 1

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address:	Senversa Pty Level 6, 15 V Melbourne VIC 3000					Re	der N port : ione: x:			82320 606 0							D	eceiv Jue: Priority Contac		ne:	Oct 17, 5 Day	2019 5:2 2019 a Trickey	9 PM		
Project Name: Project ID:	POM DD M17571																Eur	ofins	Analy	/tical Se	rvices M	anager :	Harry B	acalis	
	Sa	mple Detail			Arsenic	Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons						
Melbourne Laborator	y - NATA Site	# 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						
Sydney Laboratory -	NATA Site # 1	8217																		1					
Brisbane Laboratory	- NATA Site #	20794																		1					
Perth Laboratory - N	ATA Site # 237	36	-																	1					
34 QC01	Oct 09, 2019		Soil	M19-Oc19427					Х											1					
Test Counts					15	15	15	15	19	15	15	15	14	15	15	15	15	14	15						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

First Reported: Oct 17, 2019 Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 Date Reported: Nov 11, 2019 ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Quality Control Results

Method Blank Image in the imag	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C6C:G mgkg < 20	Method Blank					
TRH C10-C14 mgkg < 20 Pass TRH C20-S6 mgkg < 50	Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C15-C28 mgkg <.50 Pass TRH C29-C36 mgkg <.50	TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C29-C36 mg/kg < 50 Pass Method Blank mg/kg < 0.1	TRH C10-C14	mg/kg	< 20	20	Pass	
Method Blank mgkg BTEX mgkg <0.1	TRH C15-C28	mg/kg	< 50	50	Pass	
BTEX mgkg <.1 M M M Benzone mgkg <0.1	TRH C29-C36	mg/kg	< 50	50	Pass	
Benzene mgkg < 0.1 Pass Toluene mgkg < 0.1	Method Blank					
Toluene mg/kg <.0.1 0.1 Pass Ethylbenzene mg/kg <.0.1	BTEX					
Ethylbenzene mg/kg < 0.1 Pass måp-Xylenes mg/kg < 0.2	Benzene	mg/kg	< 0.1	0.1	Pass	
m8p-Xylenes mg/kg < 0.2 Pass Pass o.Xylene mg/kg < 0.1	Toluene	mg/kg	< 0.1	0.1	Pass	
o-Xylene mg/kg <.0.1 Pass Xylenes - Total mg/kg <.0.3	Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
o-Xylene mgkg < 0.1 Pass Xylenes - Total mgkg < 0.3	m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
Nylenes - Total mg/kg < 0.3 Pass Method Blank Naphthalene mg/kg < 0.5	o-Xylene		< 0.1	0.1	Pass	
Method Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions mg/kg <.0 I Naphthalene mg/kg < 0.5	Xylenes - Total		< 0.3	0.3	Pass	
Naphthalene mg/kg < 0.5 Pass TRH JC10-C16 mg/kg < 20	Method Blank	<u> </u>		 •	•	
Naphthalene mg/kg < 0.5 Pass TRH JC10-C16 mg/kg < 20	Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH C6-C10 mg/kg < 20 20 Pass TRH >C10-C16 mg/kg < 50		mg/kg	< 0.5	0.5	Pass	
TRH >C10-C16 mg/kg < 50 50 Pass TRH >C16-C34 mg/kg < 100	•				Pass	
TRH >C16-C34 mg/kg < 100 Pass Method Blank mg/kg < 100						
TRH >C34-C40 mg/kg < 100 Pass Method Blank	TRH >C16-C34					
Method Blank Image: Constraint of the second s						
Polycyclic Aromatic Hydrocarbons mg/kg < 0.5 Acenaphthene mg/kg < 0.5		1		 		
Acenaphthene mg/kg < 0.5 0.5 Pass Acenaphthylene mg/kg < 0.5						
Acenaphthylene mg/kg < 0.5 Pass Anthracene mg/kg < 0.5		ma/ka	< 0.5	0.5	Pass	
Anthracene mg/kg < 0.5 0.5 Pass Benz(a)anthracene mg/kg < 0.5	•					
Benz(a)anthracene mg/kg < 0.5 Pass Benzo(a)pyrene mg/kg < 0.5	• •					
Benzo(a)pyrene mg/kg < 0.5 Pass Benzo(b&j)fluoranthene mg/kg < 0.5						
Benzo(b&i)fluoranthene mg/kg < 0.5 Pass Benzo(g.h.i)perylene mg/kg < 0.5						
Benzo(g.h.i)perylene mg/kg < 0.5 Pass Benzo(k)fluoranthene mg/kg < 0.5						
Benzo(k)fluoranthene mg/kg < 0.5 Pass Chrysene mg/kg < 0.5						
Chrysene mg/kg < 0.5 Pass Dibenz(a.h)anthracene mg/kg < 0.5						
Dibenz(a.h)anthracene mg/kg < 0.5 Pass Fluoranthene mg/kg < 0.5						
Fluoranthene mg/kg < 0.5 0.5 Pass Fluorene mg/kg < 0.5						
Fluorene mg/kg < 0.5 0.5 Pass Indeno(1.2.3-cd)pyrene mg/kg < 0.5						
Indeno(1.2.3-cd)pyrene mg/kg < 0.5 Pass Naphthalene mg/kg < 0.5						
Naphthalene mg/kg < 0.5 0.5 Pass Phenanthrene mg/kg < 0.5						
Phenanthrene mg/kg < 0.5 Pass Pyrene mg/kg < 0.5						
Pyrene mg/kg < 0.5 Pass Method Blank Method Blank Feavy Metals Image: Kg Ima	·					
Method Blank Image: Second secon						
Heavy Metals mg/kg <2 Image: Component of the system	*	iiig/itg	0.0	0.0	1 400	
Arsenic mg/kg <2 2 Pass Cadmium mg/kg <0.4						
Cadmium mg/kg < 0.4 Pass Chromium mg/kg < 5	· · · · · · · · · · · · · · · · · · ·	ma/ka	< 2	2	Pass	
Chromium mg/kg < 5 5 Pass Copper mg/kg < 5						
Copper mg/kg < 5 5 Pass Lead mg/kg < 5						
Lead mg/kg <5 5 Pass Mercury mg/kg <0.1						
Mercury mg/kg < 0.1 Pass Nickel mg/kg < 5						
Nickel mg/kg < 5 5 Pass Zinc mg/kg < 5						
Zinc mg/kg < 5 5 Pass LCS - % Recovery						
LCS - % Recovery						
		ing/kg	<u> </u>	<u> </u>	F d 55	
TRH C6-C9 % 92 70-130 Pass		0/	00	70.400	Dess	

Tes	t		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	123		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	86		70-130	Pass	
Toluene			%	80		70-130	Pass	
Ethylbenzene			%	91		70-130	Pass	
m&p-Xylenes			%	89		70-130	Pass	
Xylenes - Total			%	90		70-130	Pass	
LCS - % Recovery				·		•		
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	tions						
Naphthalene			%	106		70-130	Pass	
TRH C6-C10			%	90		70-130	Pass	
TRH >C10-C16			%	119		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarbo	ons							
Acenaphthene			%	85		70-130	Pass	
Acenaphthylene			%	83		70-130	Pass	
Anthracene			%	78		70-130	Pass	
Benz(a)anthracene			%	73		70-130	Pass	
Benzo(a)pyrene			%	74		70-130	Pass	
Benzo(b&j)fluoranthene			%	79		70-130	Pass	
Benzo(g.h.i)perylene			%	76		70-130	Pass	
Benzo(k)fluoranthene			%	76		70-130	Pass	
Chrysene			%	82		70-130	Pass	
Dibenz(a.h)anthracene			%	72		70-130	Pass	
Fluoranthene			%	81		70-130	Pass	
Fluorene			%	83		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	84		70-130	Pass	
Phenanthrene			%	81		70-130	Pass	
Pyrene			%	82		70-130	Pass	
LCS - % Recovery				•		•		
Heavy Metals								
Arsenic			%	111		80-120	Pass	
Cadmium			%	96		80-120	Pass	
Chromium			%	117		80-120	Pass	
Copper			%	114		80-120	Pass	
Lead			%	118		80-120	Pass	
Mercury			%	102		75-125	Pass	
Nickel			%	114		80-120	Pass	
Zinc			%	112		80-120	Pass	
Test	Lab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
		Source	Units			Limits	Limits	Code
Spike - % Recovery					1	-		
Total Recoverable Hydrocarbon				Result 1				
TRH C6-C9	M19-Oc19395	CP	%	82		70-130	Pass	
TRH C10-C14	M19-Oc19395	CP	%	102		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M19-Oc19395	CP	%	89		70-130	Pass	
Toluene	M19-Oc19395	CP	%	80		70-130	Pass	
Ethylbenzene	M19-Oc19395	CP	%	84		70-130	Pass	
m&p-Xylenes	M19-Oc19395	CP	%	82		70-130	Pass	
o-Xylene	M19-Oc19395	CP	%	87		70-130	Pass	
Xylenes - Total	M19-Oc19395	CP	%	84		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1 1				
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	M19-Oc19395	CP	%	95			70-130	Pass	
TRH C6-C10	M19-Oc19395	СР	%	82			70-130	Pass	
TRH >C10-C16	M19-Oc19395	СР	%	98			70-130	Pass	
Spike - % Recovery					1 1				
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	M19-Oc19395	CP	%	113			70-130	Pass	
Acenaphthylene	M19-Oc19395	СР	%	103			70-130	Pass	
Anthracene	M19-Oc19395	CP	%	99			70-130	Pass	
Benz(a)anthracene	M19-Oc19395	CP	%	85			70-130	Pass	
Benzo(a)pyrene	M19-Oc19395	CP	%	96			70-130	Pass	
Benzo(b&j)fluoranthene	M19-Oc19395	CP	%	82			70-130	Pass	
Benzo(g.h.i)perylene	M19-Oc19395	CP	%	99			70-130	Pass	
Benzo(k)fluoranthene	M19-Oc19395	CP	%	107			70-130	Pass	
Chrysene	M19-Oc19395	CP	%	102			70-130	Pass	
Dibenz(a.h)anthracene	M19-Oc19395	CP	%	88			70-130	Pass	
Fluoranthene	M19-Oc19395	CP	%	103			70-130	Pass	
Fluorene	M19-Oc19395	CP	%	103			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-Oc19395	CP	%	105			70-130	Pass	
Naphthalene	M19-Oc19395	CP	%	105			70-130	Pass	
•		CP							
Phenanthrene	M19-Oc19395		%	104			70-130	Pass	
Pyrene	M19-Oc19395	CP	%	105			70-130	Pass	
Spike - % Recovery				Desult 1					
Heavy Metals	N40 0 40005	0.0	0/	Result 1			75.405	Dese	
Arsenic	M19-Oc19395	CP	%	103			75-125	Pass	
Cadmium	M19-Oc19395	CP	%	82			75-125	Pass	
Chromium	M19-Oc19395	CP	%	111			75-125	Pass	
Copper	M19-Oc19395	CP	%	108			75-125	Pass	
Lead	M19-Oc19395	CP	%	107			75-125	Pass	
Mercury	M19-Oc19395	CP	%	95			70-130	Pass	
Nickel	M19-Oc19395	CP	%	110			75-125	Pass	
Zinc	M19-Oc19395	CP	%	107			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1 1		1		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Oc19394	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M19-Oc19394	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M19-Oc19394	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M19-Oc19394	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				Ť	i i		1		
BTEX				Result 1	Result 2	RPD			
Benzene	M19-Oc19394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene				< 0.1	< 0.1	<1	30%	Pass	
	M19-Oc19394	CP	mg/kg	<u> </u>					
Ethylbenzene	M19-Oc19394 M19-Oc19394	CP CP	mg/kg mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene m&p-Xylenes									
	M19-Oc19394	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M19-Oc19394 M19-Oc19394	CP CP	mg/kg mg/kg	< 0.1 < 0.2	< 0.1 < 0.2	<1 <1	30% 30%	Pass Pass	
m&p-Xylenes o-Xylene	M19-Oc19394 M19-Oc19394 M19-Oc19394	CP CP CP	mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1	< 0.1 < 0.2 < 0.1	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total	M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394	CP CP CP CP	mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1	< 0.1 < 0.2 < 0.1	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Duplicate	M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394	CP CP CP CP	mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3	< 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons	M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1	< 0.1 < 0.2 < 0.1 < 0.3 Result 2	<1 <1 <1 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons Naphthalene	M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394 - 2013 NEPM Fract M19-Oc19394	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5	<1 <1 <1 <1 RPD <1	30% 30% 30% 30%	Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarbons Naphthalene TRH C6-C10	M19-Oc19394 M19-Oc19394 M19-Oc19394 M19-Oc19394 5 - 2013 NEPM Fract M19-Oc19394 M19-Oc19394	CP CP CP CP CP ions CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 RPD <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-Oc13609	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	010 0010000	1101	iiig/itg		<u> </u>		0070	1 400	
Duphouto				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as				rtoouter	rtoount 2				
rec.)	M19-Oc19394	CP	pH Units	9.7	9.9	pass	30%	Pass	
Sulphate (as SO4)	M19-Oc19394	CP	mg/kg	60	61	2.0	30%	Pass	
% Moisture	M19-Oc19394	CP	%	8.8	9.0	3.0	30%	Pass	
Duplicate				-				_	
Heavy Metals		-		Result 1	Result 2	RPD			
Arsenic	M19-Oc19394	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M19-Oc19394	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M19-Oc19394	CP	mg/kg	19	19	1.0	30%	Pass	
Copper	M19-Oc19394	CP	mg/kg	50	55	10	30%	Pass	
Lead	M19-Oc19394	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M19-Oc19394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M19-Oc19394	CP	mg/kg	120	120	<1	30%	Pass	
Zinc	M19-Oc19394	CP	mg/kg	73	72	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-Oc19395	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M19-Oc19395	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M19-Oc19395	CP	mg/kg	20	20	1.0	30%	Pass	
Copper	M19-Oc19395	CP	mg/kg	40	40	<1	30%	Pass	
Lead	M19-Oc19395	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M19-Oc19395	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M19-Oc19395	CP	mg/kg	120	120	<1	30%	Pass	
Zinc	M19-Oc19395	СР	mg/kg	70	70	1.0	30%	Pass	
	-	-		-					
Duplicate									
Duplicate				Result 1	Result 2	RPD			

Comments

V2 Amendments made to Sample ID's as per email request, Harry 11/11

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Analytical Services Manager
Senior Analyst-Metal (VIC)
Senior Analyst-Volatile (VIC)
Senior Analyst-Organic (VIC)
Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000

Lucinda Trickey

Report Project name Project ID Received Date 682320-W-V2 POM DD M17571 Oct 10, 2019

Client Sample ID			QC09
Sample Matrix			Water
Eurofins Sample No.			M19-Oc19408
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	-1	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	82
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins Sample No.			QC09 Water M19-Oc19408
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	68
p-Terphenyl-d14 (surr.)	1	%	55
Sulphate (as SO4)	5	mg/L	< 5
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 15, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX and Naphthalene			
BTEX	Melbourne	Oct 15, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Sulphate (as SO4)	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Heavy Metals	Melbourne	Oct 15, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad	ompany Name: Idress:	Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000 POM DD					Order No.: Report #: Phone: Fax:		682320 9606 0070							Received: Due: Priority: Contact Name:			Oct 17, 2019 5 Day			
	oject Name: oject ID:								Eurofins Analytical Services Manager : Harry Bac									: Harry Bacalis				
	Sample Detail						Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons		
	Melbourne Laboratory - NATA Site # 1254 & 14271				Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х			
	Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794								┝──┤													
Perth Laboratory - NATA Site # 23736																						
External Laboratory																						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	SB09_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19394	Х	Х	Х	х		Х	Х	х	Х	Х	х	Х	Х	х	Х		
2		Oct 09, 2019		Soil	M19-Oc19395	х	х	х	х		х	х	х	х	х	x	х	х	x	х		
3		Oct 09, 2019		Soil	M19-Oc19396	х	x	Х	Х		Х	Х	х	х	х	X	х	Х	x	Х		
4		Oct 09, 2019		Soil	M19-Oc19397	х	Х	Х	Х		Х	Х	Х	Х	Х	X	Х	Х	X	Х		
5	_	Oct 09, 2019		Soil	M19-Oc19398	х	Х	Х	Х		Х	Х	Х	х	х	X	Х	Х	X	Х		
6		Oct 09, 2019		Soil	M19-Oc19399	Х	X	Х	Х		Х	Х	Х	Х	Х	X	Х	Х	X	Х		
7	SB07_0.1-0.2			Soil	M19-Oc19400	Х	X	Х	Х		Х	Х	Х	Х	Х	X	Х	Х	X	Х		
8		Oct 09, 2019		Soil	M19-Oc19401	Х	X	Х	Х		Х	Х	Х	Х	Х	X	Х	Х	X	Х		
9	SB06_0.1-0.2	Oct 09, 2019		Soil	M19-Oc19402	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 Pert

 1/21 Smallwood Place
 2/91

 Murarrie QLD 4172
 Kew

 Phone : +61 7 3902 4600
 Pho

 NATA # 1261 Site # 20794
 NAT

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pre	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: POM DD Project ID: M17571					Re	der N port i one: x:		-	82320 606 00							D P	eceiv Jue: Priorit Contac		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
Pr	oject ID:														Euro	ofins	Analy	vtical Services Manager : Harry Bacalis		
	Sample Detail							Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
	ourne Laborato				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	-
	ney Laboratory -							 												-
	bane Laboratory																			
10	h Laboratory - N SB06_1.5-1.6		Soil	M19-Oc19403	х	x	x	x		Х	х	x	x	x	x	х	х	x	х	
11	SB05_0.5-0.6		Soil	M19-Oc19404	X	X	X	X		X	X	X	X	X	X	X	X	x	X	
12		Oct 09, 2019	Soil	M19-Oc19405	Х	х	х	х		х	х	х	х	х	х	х	х	x	х	
13		Oct 09, 2019	Soil	M19-Oc19406	Х	Х	Х	Х		Х	Х	х	Х	Х	х	Х	Х	х	Х	
14	QC05	Oct 09, 2019	Soil	M19-Oc19407	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
15	QC09	Oct 09, 2019	Water	M19-Oc19408	х	Х	х	Х		х	Х	х		Х	х	х	х		х	
16	SP09_0.5-0.6	Oct 09, 2019	Soil	M19-Oc19409					Х											_
17	SP09_1.0-1.1	Oct 09, 2019	Soil	M19-Oc19410					Х											_
18	SP09_2.0-2.1	Oct 09, 2019	Soil	M19-Oc19411					Х											
19	SP08_0.5-0.6	Oct 09, 2019	Soil	M19-Oc19412					Х											
20		Oct 09, 2019	Soil	M19-Oc19413					Х											
21	SP08_1.9-2.0	Oct 09, 2019	Soil	M19-Oc19414					Х]

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 Pe

 1/21 Smallwood Place
 2/4

 Murarrie QLD 4172
 Ke

 Phone: +61 7 3902 4600
 Ph

 NATA # 1261 Site # 20794
 Vc

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Address:	Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: POM DD				Re	der N port one: x:	#:		82320 606 0							D P	eceiv lue: riorit contac		Oct 10, 2019 5:29 PM Oct 17, 2019 5 Day me: Lucinda Trickey
Project ID:																Eur	ofins	Analy	rtical Services Manager : Harry Bacalis
Sample Detail					Cadmium	Chromium	Copper	HOLD	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons	
Melbourne Laborator	ry - NATA Site	# 1254 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-
Sydney Laboratory -					<u> </u>														-
Brisbane Laboratory																			
Perth Laboratory - N/22SP10_0.5-0.6		Soil	M19-Oc19415					x											
23 SP10_1.5-1.6		Soil	M19-Oc19416					X											
		Soil	M19-Oc19417					х											
25 SP07_0.5-0.6	Oct 09, 2019	Soil	M19-Oc19418					Х											-
	Oct 09, 2019	Soil	M19-Oc19419					х											_
	Oct 09, 2019	Soil	M19-Oc19420					Х											-
	Oct 09, 2019	Soil	M19-Oc19421					X											-
	Oct 09, 2019	Soil	M19-Oc19422					X											
	Oct 09, 2019	Soil Soil	M19-Oc19423		+			X X				-							•
	Oct 09, 2019 Oct 09, 2019	Soil	M19-Oc19424 M19-Oc19425					X		<u> </u>		-							4
33 SP11_0.5-0.6		Soil	M19-Oc19426		1		1	X											

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Address: Project Name: Project ID:	Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000 POM DD M17571				Re	der N port i one: x:		-	82320 606 0							D P C		y: ct Nar		Oct 17, 5 Day Lucinda	2019 5:29 2019 a Trickey anager : H	nonlin
	Sample Detai	I		Arsenic	Cadmium	Chromium	Copper	НОГД	Lead	Mercury	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Zinc	Polycyclic Aromatic Hydrocarbons	BTEX and Naphthalene	Moisture Set	Total Recoverable Hydrocarbons				
Melbourne Laborator	ry - NATA Site # 1254 & 1	4271		Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Sydney Laboratory -	NATA Site # 18217																		1			
Brisbane Laboratory	- NATA Site # 20794																		1			
Perth Laboratory - N/	ATA Site # 23736																		1			
34 QC01 (Oct 09, 2019	Soil	M19-Oc19427					Х											1			
Test Counts				15	15	15	15	19	15	15	15	14	15	15	15	15	14	15				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

First Reported: Oct 17, 2019 Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 Date Reported: Nov 11, 2019 ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		I			
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank	Ŭ				
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank			· · ·		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery			· · · · · · · · · · · · · · · · · · ·		

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions						
TRH C6-C9			%	113		70-130	Pass	
TRH C10-C14			%	108		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	105		70-130	Pass	
Toluene			%	117		70-130	Pass	
Ethylbenzene			%	111		70-130	Pass	
m&p-Xylenes			%	104		70-130	Pass	
Xylenes - Total			%	105		70-130	Pass	
LCS - % Recovery					I I	1	1	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
Naphthalene			%	99		70-130	Pass	
TRH C6-C10			%	118		70-130	Pass	
TRH >C10-C16			%	102		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarbons								
Acenaphthene			%	90		70-130	Pass	
Acenaphthylene			%	89		70-130	Pass	
Anthracene			%	60		70-130	Fail	
Benz(a)anthracene			%	80		70-130	Pass	
Benzo(a)pyrene			%	80		70-130	Pass	
Benzo(b&j)fluoranthene			%	85		70-130	Pass	
Benzo(g.h.i)perylene			%	105		70-130	Pass	
Benzo(k)fluoranthene			%	94		70-130	Pass	
Chrysene			%	96		70-130	Pass	
Dibenz(a.h)anthracene			%	118		70-130	Pass	
Fluoranthene			%	102		70-130	Pass	
Fluorene			%	90		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	108		70-130	Pass	
Naphthalene			%	85		70-130	Pass	
Phenanthrene			%	94		70-130	Pass	
Pyrene			%	99		70-130	Pass	
LCS - % Recovery								
Sulphate (as SO4)			%	107		70-130	Pass	
LCS - % Recovery				•	• •			
Heavy Metals								
Arsenic			%	95		80-120	Pass	
Cadmium			%	93		80-120	Pass	
Chromium			%	88		80-120	Pass	
Copper			%	91		80-120	Pass	
Lead			%	89		80-120	Pass	
Mercury			%	89		75-125	Pass	
Nickel			%	92		80-120	Pass	
Zinc			%	96		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	-	Jource	L	I		Linits	Linits	
Total Recoverable Hydrocarbons -	1999 NFPM Fract	ions		Result 1				
TRH C6-C9	M19-Oc20510	NCP	%	123		70-130	Pass	
TRH C10-C14	M19-Oc15993	NCP	%	103		70-130	Pass	
Spike - % Recovery			70	100		10100	1 433	
BTEX				Result 1				
Benzene	M19-Oc20510	NCP	%	111		70-130	Pass	
	WI 3-0620310	NOF	/0	1 111	l	10-130	1 035	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	M19-Oc20510	NCP	%	123			70-130	Pass	
m&p-Xylenes	M19-Oc20510	NCP	%	115			70-130	Pass	
o-Xylene	M19-Oc20510	NCP	%	117			70-130	Pass	
Xylenes - Total	M19-Oc20510	NCP	%	116			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	tions		Result 1					
Naphthalene	M19-Oc20510	NCP	%	90			70-130	Pass	
TRH C6-C10	M19-Oc20510	NCP	%	127			70-130	Pass	
TRH >C10-C16	M19-Oc15993	NCP	%	96			70-130	Pass	
Spike - % Recovery								_	
Polycyclic Aromatic Hydrocarb	ons			Result 1					
Acenaphthene	M19-Oc19408	CP	%	98			70-130	Pass	
Acenaphthylene	M19-Oc19408	CP	%	93			70-130	Pass	
Anthracene	B19-Oc15953	NCP	%	92			70-130	Pass	
Benz(a)anthracene	M19-Oc19408	CP	%	84			70-130	Pass	
Benzo(a)pyrene	M19-Oc19408	CP	%	91			70-130	Pass	
Benzo(b&j)fluoranthene	M19-Oc19408	CP	%	86			70-130	Pass	
Benzo(g.h.i)perylene	M19-Oc19408	CP	%	116			70-130	Pass	
Benzo(k)fluoranthene	M19-Oc19408	CP	%	105			70-130	Pass	
Chrysene	M19-Oc19408	CP	%	102			70-130	Pass	
Dibenz(a.h)anthracene	M19-Oc19408	CP	%	84			70-130	Pass	
Fluoranthene	M19-Oc19408	CP	%	109			70-130	Pass	
Fluorene	M19-Oc19408	CP	%	101			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-Oc19408	CP	%	107			70-130	Pass	
Naphthalene	M19-Oc19408	CP	%	98			70-130	Pass	
Phenanthrene	M19-Oc19408	CP	%	94			70-130	Pass	
Pyrene	M19-Oc19408	CP	%	111			70-130	Pass	
Spike - % Recovery				Desult 4					
Sulphate (as SO4)	M19-Oc19408	CP	%	Result 1 111			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M19-Oc20526	NCP	%	97			75-125	Pass	
Cadmium	M19-Oc20526	NCP	%	94			75-125	Pass	
Chromium	M19-Oc20526	NCP	%	96			75-125	Pass	
Copper	M19-Oc20526	NCP	%	95			75-125	Pass	
Lead	M19-Oc20526	NCP	%	96			75-125	Pass	
Mercury	M19-Oc20526	NCP	%	103			70-130	Pass	
Nickel	M19-Oc20526	NCP	%	95			75-125	Pass	
Zinc	M19-Oc20526	NCP	%	97			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				I					5040
Total Recoverable Hydrocarbor	s - 1999 NFPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Oc20516	NCP	mg/L	0.19	0.20	6.0	30%	Pass	
TRH C10-C14	M19-Oc15992	NCP	mg/L	0.13	0.06	20	30%	Pass	
TRH C15-C28	M19-Oc15992	NCP	mg/L	0.07	0.00	5.0	30%	Pass	
TRH C29-C36	M19-Oc15992	NCP	mg/L	< 0.1	< 0.1		30%	Pass	
Duplicate	10113-0010392		iiig/L	<u> </u>	<u> </u>	<u> </u>	50 /0	1 0 2 2	
BTEX				Result 1	Result 2	RPD			
	M19-Oc20516	NCP	ma/l			<1	30%	Pass	
Benzene		NCP	mg/L	< 0.001	< 0.001				
Toluene	M19-Oc20516		mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M19-Oc20516	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M19-Oc20516	NCP	mg/L	0.002	0.002	2.0	30% 30%	Pass Pass	
- Vulana						-1	3119/2	L Pacc	1
o-Xylene Xylenes - Total	M19-Oc20516 M19-Oc20516	NCP NCP	mg/L mg/L	< 0.001 < 0.003	< 0.001 < 0.003	<1 <1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-Oc20516	NCP	mg/L	0.02	0.02	5.0	30%	Pass	
TRH C6-C10	M19-Oc20516	NCP	mg/L	0.46	0.49	6.0	30%	Pass	
TRH >C10-C16	M19-Oc15992	NCP	mg/L	0.07	0.06	26	30%	Pass	
TRH >C16-C34	M19-Oc15992	NCP	mg/L	0.1	0.1	9.0	30%	Pass	
TRH >C34-C40	M19-Oc15992	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				-					
Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD			
Acenaphthene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	B19-Oc15952	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				-					
				Result 1	Result 2	RPD			
Sulphate (as SO4)	M19-Oc14258	NCP	mg/L	39	39	<1	30%	Pass	
Duplicate							1	_	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-Oc20526	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M19-Oc20526	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M19-Oc20526	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M19-Oc20526	NCP	mg/L	0.003	0.003	1.0	30%	Pass	
Lead	M19-Oc20526	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M19-Oc20526	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M19-Oc20526	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M19-Oc20526	NCP	mg/L	< 0.005	0.005	9.0	30%	Pass	

Comments

V2 Amendments made to Sample ID's as per email request, Harry 11/11

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Analytical Services Manager
Senior Analyst-Metal (VIC)
Senior Analyst-Volatile (VIC)
Senior Analyst-Organic (VIC)
Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

senversa

Chain of Custody Documentation

Senversa Pty Ltd www.senversa.com ABN 89 132 231 3 Job Number:	m.au			Laboratory: Address:	2-4 Westall Road, Springvale				1			1				Comments: e.g. Highly contaminated sampl
lob Number:				Contact: Phone:	Larissa Burns / Sample Log In 03 8549 9600	-			Zn, Hg)	Suite)						hazardous materials present; trace LORs et
		M1	7571	Purchase Order:	M17571			펍	e d	and BTEXN (W-18						
Project Name:		Due Diligence L	ease Investigation	Quote No:			ê	ammonia, TDS,	Cu, Ni,	x	표			0		
			Connor	Turn Around Time:	Standa	rd	VOCs (W-9 suite)	ia, 1	0 ວັ	BTE				1		
Sampled By:							6-M	hom	Ğ	pu	ammonia,					- I afres 1
Project Manager:			a Trickey	Page:	1	of 1	, S	am) 'S (e	ő	a					
Email Report To:	:		senversa.com.au	Phone/Mobile:	+61 424 17		<u>Š</u>	Sulphate, a	Metals (As, (W-2 suite)	TRH C6-C9	Sulphate,					
		Sample Information			Container Info		TRH,	불	N-2	문	- 특이					197008.
Lab ID	Sample 1D	Matrix *	Date	Time	Type / Code	Total Bottles					0				-	
	MW7020	Water	9/10/2019				X	X	X						+	
	MW7021	Water	9/10/2019				Х	X	X							
	MW7018	Water	9/10/2019				X	X	X							
	MW7016	Water	9/10/2019				Х	X	X							
	MW7075	Water	10/10/2019				Х	X	X							
	MW7019	Water	10/10/2019				Х		X		X					Please filter metals in the lab
	MW7015	Water	10/10/2019				Х	X	X							
	Q\$03	Water	9/10/2019				Х	X	X	1						1
	QS04	Water	9/10/2019				X	X	X							Please forward to eurofins
			9/10/2019				~		<u> </u>	X		1			-	-
	QS07	Water					х		x							
	Q\$08	Water	9/10/2019					V							+	
	QS11	Water	10/10/2019				Х	X	X	-		-		_	+	
								_		-					+	
				· · · · ·				_								
			÷													1
								_	1							
Total		R. Still Sector	Sulla Companya	1.2010.00100.00215.2	Section Aller States		×	9	11	S. A. And	A THE COLD	- mi	Tanka M	11.14 万.191	C LINES	
		A DESCRIPTION OF A DESCRIPTION		A CONTRACTOR OF THE OWNER			a a mad		des	19 - 6491 - 1				and the second	10000	
Sampler: I attest	that proper field san	npling procedures in	accordance with S	enversa standard pro	edures and/or project	Sampler Name:		Sam O'O	Connor		Signature			-	Date:	11/10/201
specifications we	ere used during the o	collection of these sa	mpies:								1				1	
Relingulshed By:				1	Method of Shipment (if a	pplicable):			Received I		1. 20 2 12	der and		0		Date: 11/10/19
Name/Signature:		Sam O'Connor		Date: 11/10/19	Carrier / Reference #: Date/Time:	xist		/	Name/Sign	ature:	VARIN	TES		10		Date: 1// 6/19 Time: 3:30
Of: Senve		0		Time: 12:05	Carrier / Reference #:	SUP	2 . 1	12	Name/Sign	ature:	GANH		0	TLE	2.6	Date: 1410
Name/Signature:	15			Time: (2:30)	Date/Time:)	16)	Of:	112010-	G	unt	ins	in	river	Time: 1.37pm
Name/Signature:				Date:	Carrier / Reference #:			1	Name/Sign	ature:						Date:
Of-				Time:	Date/Time: tric Preserved ORC; SH = Sodiu				Of:							Time:

Moledeleeve 682367

Completed by: _____

Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Senversa Pty Ltd VIC
Contact name:	Lucinda Trickey
Project name:	DUE DILIGENCE LEASE INVESTIGATION
Project ID:	M17571
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 14, 2019 1:55 PM
Eurofins reference:	682367

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 2.6 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Harry Bacalis on Phone : or by e.mail: HarryBacalis@eurofins.com

Results will be delivered electronically via e.mail to Lucinda Trickey - Lucinda.Trickey@senversa.com.au.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ado	mpany Name: dress: oject Name: oject ID:	Senversa Pt Level 6, 15 V Melbourne VIC 3000 DUE DILIGE M17571	Villiam St	INVESTIGATIO	Ν		Re	der N eport : ione: ix:	#:	6	11757 ⁻ 82367 606 00	,						D P C	Received: Due: Priority: Contact Name: ofins Analytical S	Oct 14, 2019 Oct 21, 2019 5 Day Lucinda Tricke	Эy
		Sa	mple Detail			Ammonia (as N)	Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Mercury (filtered)	Nickel (filtered)	pH (at 25°C)	Sulphate (as SO4)	Total Dissolved Solids Dried at 180°C \pm 2°C	Zinc (filtered)	Volatile Organics			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	х	-		
		- NATA Site # 1								<u> </u>									4		
		y - NATA Site #								<u> </u>				L					4		
		NATA Site # 237	736							<u> </u>				L					4		
Exter	rnal Laboratory		1	1	1														-		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	QS04	Oct 09, 2019		Water	M19-Oc19971	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	X	Х	х	-		
Test	Counts					1	1	1	1	1	1	1	1	1	1	1	1	1			

Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Lucinda Trickey

Report
Project name
Project ID
Received Date

682367-W DUE DILIGENCE LEASE INVESTIGATION M17571 Oct 14, 2019

Client Sample ID			QS04
Sample Matrix			Water
Eurofins Sample No.			M19-Oc19971
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 N		<u> </u>	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Volatile Organics	÷.		
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001
Allyl chloride	0.001	mg/L	< 0.001
Benzene	0.001	mg/L	< 0.001
Bromobenzene	0.001	mg/L	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001
Bromoform	0.001	mg/L	< 0.001
Bromomethane	0.001	mg/L	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001

Client Sample ID			QS04
Sample Matrix			Water
Eurofins Sample No.			M19-Oc19971
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Volatile Organics	2011	Onic	
Chlorobenzene	0.001	mg/L	< 0.001
Chloroethane	0.001	mg/L	< 0.001
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.001	mg/L	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
Iodomethane	0.001	mg/L	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001
o-Xylene	0.001	mg/L	< 0.001
Styrene	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
Total MAH*	0.003	mg/L	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	107
Toluene-d8 (surr.)	1	%	105
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions	1	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Ammonia (as N)	0.01	mg/L	0.52
pH (at 25°C)	0.1	pH Units	6.4
Sulphate (as SO4)	5	mg/L	1600
Total Dissolved Solids Dried at 180°C ± 2°C	10	mg/L	17000
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	0.002
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	0.002
Copper (filtered)	0.001	mg/L	0.031
Lead (filtered)	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No.			QS04 Water M19-Oc19971
Date Sampled			Oct 09, 2019
Test/Reference	LOR	Unit	
Heavy Metals			
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	0.052
Zinc (filtered)	0.005	mg/L	0.16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 21, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 21, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 21, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices (USEPA 8260)			
Ammonia (as N)	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-INO-4200 Ammonia by Discrete Analyser			
pH (at 25°C)	Melbourne	Oct 15, 2019	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Sulphate (as SO4)	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Oct 15, 2019	7 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Heavy Metals (filtered)	Melbourne	Oct 15, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mobil Metals : Metals M15	Melbourne	Oct 15, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 Pe

 1/21 Smallwood Place
 2//

 Murarrie QLD 4172
 Ke

 Phone: +61 7 3902 4600
 Ph

 NATA # 1261 Site # 20794
 No

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pro	mpany Name: dress: Dject Name: Dject ID:	Senversa Pty Level 6, 15 V Melbourne VIC 3000 DUE DILIGE M17571	Villiam St	INVESTIGATIC	ŊŊ		Re	der N port : one: x:		6	11757 82367 606 0	7						D P C		/: ct Name:	Oct 5 Da Luci	14, 2019 1:5 21, 2019 ay nda Trickey 5 Manager :	alis
		Sa	mple Detail			Ammonia (as N)	Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Mercury (filtered)	Nickel (filtered)	pH (at 25°C)	Sulphate (as SO4)	Total Dissolved Solids Dried at 180°C \pm 2°C	Zinc (filtered)	Volatile Organics	Total Recoverable Hydrocarbons				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	х	Х	х	х	х	Х	Х	Х	Х	Х	х	х				
Sydn	ney Laboratory	- NATA Site # 1	8217																				
Brisk	pane Laborator	y - NATA Site #	20794																				
Perth	n Laboratory - N	ATA Site # 237	'36																				
Exte	rnal Laboratory	,		1	1																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		
1	QS04	Oct 09, 2019		Water	M19-Oc19971	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Test	Counts					1	1	1	1	1	1	1	1	1	1	1	1	1	1				

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175

ABN : 50 005 085 521 Telephone: +61 3 8564 5000

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.001	Pass	
Methylene Chloride	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank		1 01000	0.000	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.02	0.05	Pass	
TRH >C16-C34	mg/L	< 0.00	0.00	Pass	
TRH >C34-C40		< 0.1	0.1	Pass	
Method Blank	mg/L	<u> </u>	0.1	1 0 2 2	
		10.01	0.04	Dese	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	mg/L	< 10	10	Pass	
Method Blank		1		1	
Heavy Metals				_	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery				-	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	111	70-130	Pass	
TRH C10-C14	%	99	70-130	Pass	
LCS - % Recovery					
Volatile Organics					
1.1-Dichloroethene	%	98	70-130	Pass	
1.1.1-Trichloroethane	%	95	70-130	Pass	
1.2-Dichlorobenzene	%	92	70-130	Pass	
1.2-Dichloroethane	%	95	70-130	Pass	
Benzene	%	94	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	85	70-130	Pass	
Toluene	%	95	70-130	Pass	
Trichloroethene					
	%	95	70-130	Pass	
Xylenes - Total	%	85	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	<u> </u>	446	70.400		
Naphthalene	%	116	70-130	Pass	
TRH C6-C10	%	114	70-130	Pass	
TRH >C10-C16	%	95	70-130	Pass	
LCS - % Recovery					
Ammonia (as N)	%	105	70-130	Pass	
Sulphate (as SO4)	%	104	70-130	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	%	106	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				_					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M19-Oc27750	NCP	%	122			70-130	Pass	
TRH C10-C14	M19-Oc24802	NCP	%	87			70-130	Pass	
Spike - % Recovery				1	1 1			r	
Volatile Organics	1			Result 1					
Benzene	M19-Oc27750	NCP	%	109			70-130	Pass	
Ethylbenzene	M19-Oc27750	NCP	%	116			70-130	Pass	
m&p-Xylenes	M19-Oc27750	NCP	%	105			70-130	Pass	
o-Xylene	M19-Oc27750	NCP	%	108			70-130	Pass	
Toluene	M19-Oc27750	NCP	%	110			70-130	Pass	
Xylenes - Total	M19-Oc27750	NCP	%	106			70-130	Pass	
Spike - % Recovery				1			1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract			Result 1					
Naphthalene	M19-Oc27750	NCP	%	116			70-130	Pass	
TRH C6-C10	M19-Oc27750	NCP	%	125			70-130	Pass	
TRH >C10-C16	M19-Oc24802	NCP	%	85			70-130	Pass	
Spike - % Recovery									
	1			Result 1					
Ammonia (as N)	M19-Oc27134	NCP	%	97			70-130	Pass	
Sulphate (as SO4)	M19-Oc15795	NCP	%	106			70-130	Pass	
Spike - % Recovery				1					
Heavy Metals	1			Result 1					
Arsenic (filtered)	M19-Oc21375	NCP	%	80			70-130	Pass	
Cadmium (filtered)	M19-Oc21375	NCP	%	88			70-130	Pass	
Chromium (filtered)	M19-Oc21375	NCP	%	86			70-130	Pass	
Copper (filtered)	M19-Oc21375	NCP	%	80			70-130	Pass	
Lead (filtered)	M19-Oc21375	NCP	%	86			70-130	Pass	
Mercury (filtered)	M19-Oc21375	NCP	%	89			70-130	Pass	
Nickel (filtered)	M19-Oc21375	NCP	%	82			70-130	Pass	
Zinc (filtered)	M19-Oc21375	NCP	%	81			70-130	Pass	
/									o
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Test	•	QA Source	Units				Acceptance Limits	Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract	QA Source ions		Result 1	Result 2	RPD	Limits	Pass Limits	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9	1999 NEPM Fract M19-Oc27747	QA Source ions NCP	mg/L	Result 1 < 0.02	< 0.02	<1	Limits 30%	Pass Limits Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14	1999 NEPM Fract M19-Oc27747 M19-Oc27550	QA Source ions NCP NCP	mg/L mg/L	Result 1 < 0.02 < 0.05	< 0.02 < 0.05	<1 <1	Limits 30% 30%	Pass Limits Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550	QA Source ions NCP NCP NCP	mg/L mg/L mg/L	Result 1 < 0.02 < 0.05 < 0.1	< 0.02 < 0.05 < 0.1	<1 <1 <1	Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36	1999 NEPM Fract M19-Oc27747 M19-Oc27550	QA Source ions NCP NCP	mg/L mg/L	Result 1 < 0.02 < 0.05	< 0.02 < 0.05	<1 <1	Limits 30% 30%	Pass Limits Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550	QA Source ions NCP NCP NCP	mg/L mg/L mg/L	Result 1 < 0.02 < 0.05 < 0.1 < 0.1	< 0.02 < 0.05 < 0.1 < 0.1	<1 <1 <1 <1	Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550	QA Source ions NCP NCP NCP NCP	mg/L mg/L mg/L mg/L	Result 1 < 0.02 < 0.05 < 0.1 < 0.1 Result 1	< 0.02 < 0.05 < 0.1 < 0.1 Result 2	<1 <1 <1 <1 RPD	Limits 30% 30% 30% 30%	Pass Limits Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001	<1 <1 <1 <1 RPD <1	Limits 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001	<1 <1 <1 <1 <1 RPD <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.002	<1 <1 <1 <1 <1 RPD <1 <1 <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.002 < 0.001	<1 <1 <1 <1 RPD <1 <1 <1 <1 <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.002 < 0.001 < 0.001	<1 <1 <1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene Xylenes - Total	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27757 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.002 < 0.001	<1 <1 <1 <1 RPD <1 <1 <1 <1 <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylenes o-Xylene Toluene Xylenes - Total Duplicate	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene Xylenes - Total Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27750 M19-Oc27750 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 Result 2 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27750 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.002 < 0.001 < 0.001 < 0.003 Result 2 < 0.01 < 0.003	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Total Recoverable Hydrocarbons - TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Volatile Organics Benzene Ethylbenzene m&p-Xylenes o-Xylene Toluene Xylenes - Total Duplicate Total Recoverable Hydrocarbons - Naphthalene	1999 NEPM Fract M19-Oc27747 M19-Oc27550 M19-Oc27550 M19-Oc27550 M19-Oc27750 M19-Oc27750 M19-Oc27747 M19-Oc27747	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.02	< 0.02 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 Result 2 < 0.01	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code

Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M19-Oc27134	NCP	mg/L	0.17	0.18	5.0	30%	Pass	
pH (at 25°C)	M19-Oc19165	NCP	pH Units	5.9	5.8	pass	30%	Pass	
Sulphate (as SO4)	B19-Oc18461	NCP	mg/L	76	75	1.0	30%	Pass	
Total Dissolved Solids Dried at $180^{\circ}C \pm 2^{\circ}C$	M19-Oc17975	NCP	mg/L	3500	3600	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M19-Oc21375	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	M19-Oc21375	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M19-Oc21375	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M19-Oc21375	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	M19-Oc21375	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	M19-Oc21375	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M19-Oc21375	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	M19-Oc21375	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Harry Bacalis
Emily Rosenberg
Harry Bacalis
Joseph Edouard
Julie Kay

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Volatile (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Inorganic (VIC)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS Work Order : EM1917008 Page : 1 of 17 Amendment :1 Client Laboratory : SENVERSA PTY LTD : Environmental Division Melbourne Contact : LUCINDA TRICKEY Contact : Larissa Burns Address Address : 4 Westall Rd Springvale VIC Australia 3171 : Level 6, 15 William St Melbourne VICTORIA, AUSTRALIA 3000 Telephone : +61 03 9606 0070 Telephone : +6138549 9644 Project : M17571 **Date Samples Received** : 11-Oct-2019 13:30 Order number : M17571 Date Analysis Commenced : 14-Oct-2019 C-O-C number · ____ Issue Date · 24-Oct-2019 16:58 Sampler : SAM O'CONNOR Site · ----Quote number : EN/103/18 (primary work only) Accreditation No. 825 No. of samples received : 11 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Organics, Springvale, VIC
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EP080/074: Particular sample EM1917008-005 shows minor BTEX hits. Confirmed by re-analysis.
- Sample MW7019 was filtered through a 0.45um filter prior to the dissolved metals analysis. As the sample was preserved prior to filtration however, please bear in mind the high likelihood for dissolved metals to bias high due to the potential dissolution of particulate matter.
- Amendment (23/10/19: This report has been amended and re-released to allow the reporting of additional analytical data.
- EA015H: EM1917008 #4: TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Page	: 3 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7020	MW7021	MW7018	MW7016	MW7075
	Cl	ient sampli	ng date / time	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	10-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-001	EM1917008-002	EM1917008-003	EM1917008-004	EM1917008-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.02	5.88	6.00	6.74	6.99
A015: Total Dissolved Solids dried	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	2400	4270	18100	970	460
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	270	835	1440	121	24
G020F: Dissolved Metals by ICP-MS	3							
Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.002	0.022	0.003
Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.002	0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.011	0.007	0.040	0.002	0.003
Nickel	7440-02-0	0.001	mg/L	0.024	0.030	0.062	0.012	0.004
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.084	0.072	0.202	0.030	0.019
G035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
K055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	1.89	0.19	0.64	0.02	1.88
P074A: Monocyclic Aromatic Hydro			U U					
Styrene	100-42-5	5	μg/L	<5	<5	<5	<5	<5
Isopropylbenzene	98-82-8	5	μg/L	<5	<5	<5	<5	<5
n-Propylbenzene	103-65-1	5	μg/L	<5	<5	<5	<5	<5
1.3.5-Trimethylbenzene	108-67-8	5	μg/L	<5	<5	<5	<5	<5
sec-Butylbenzene	135-98-8	5	μg/L	<5	<5	<5	<5	<5
1.2.4-Trimethylbenzene	95-63-6	5	μg/L	<5	<5	<5	<5	<5
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5	<5	<5
p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5	<5	<5	<5
n-Butylbenzene	104-51-8	5	μg/L	<5	<5	<5	<5	<5
P074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50	<50	<50
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50	<50	<50
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50	<50	<50
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50	<50	<50
P074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5	<5	<5

Page	: 4 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7020	MW7021	MW7018	MW7016	MW7075
· · · · · · · · · · · · · · · · · · ·	Clie	ent samplii	ng date / time	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	10-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-001	EM1917008-002	EM1917008-003	EM1917008-004	EM1917008-005
				Result	Result	Result	Result	Result
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	<5
EP074E: Halogenated Aliphatic Con	npounds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	<50
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50	<50
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5	<5
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5	<5
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5	<5
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5	<5

Page	5 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7020	MW7021	MW7018	MW7016	MW7075
	Client sampling date / time		09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	10-Oct-2019 00:00	
Compound	CAS Number	LOR	Unit	EM1917008-001	EM1917008-002	EM1917008-003	EM1917008-004	EM1917008-005
				Result	Result	Result	Result	Result
EP074F: Halogenated Aromatic Compou	inds							
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5	<5	<5
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5	<5
EP080/071: Total Petroleum Hydrocarbo	ns							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 2013	3 Fractior	າຣ					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	<100	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2

Page	: 6 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			MW7020	MW7021	MW7018	MW7016	MW7075
	Cli	ent sampli	ing date / time	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	10-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-001	EM1917008-002	EM1917008-003	EM1917008-004	EM1917008-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	106	101	93.3	85.0	93.0
Toluene-D8	2037-26-5	5	%	109	99.6	87.1	82.0	105
4-Bromofluorobenzene	460-00-4	5	%	110	108	97.8	94.4	106
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	124	119	105	93.1	96.1
Toluene-D8	2037-26-5	2	%	101	91.9	81.8	70.5	102
4-Bromofluorobenzene	460-00-4	2	%	119	109	103	92.4	110

Page	: 7 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7019	MW7015	Q\$03	QS07	Q\$08
	Cl	ient sampli	ng date / time	10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit		7.33	6.10		
EA015: Total Dissolved Solids dri	ed at 180 + 5 °C							
Total Dissolved Solids @180°C		10	mg/L		2700	19000		
ED041G: Sulfate (Turbidimetric) a	s SO4 2- by DA		, C					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L		230	1550		
		•			100	1000		
EG020F: Dissolved Metals by ICP- Arsenic	-MS 7440-38-2	0.001	mg/L	0.044	0.015	0.002		
Cadmium	7440-38-2	0.0001	mg/L	0.0008	<0.0001	<0.002		
Chromium	7440-43-9 7440-47-3	0.0001	mg/L	0.062	0.001	0.002		
Copper	7440-47-3 7440-50-8	0.001	mg/L	0.002	0.001	0.002		
Nickel		0.001		0.058	0.005	0.060		
	7440-02-0		mg/L		<0.001			
Lead	7439-92-1	0.001	mg/L	0.048		<0.001		
Zinc	7440-66-6	0.005	mg/L	1.15	0.014	0.198		
EG020T: Total Metals by ICP-MS							1	
Arsenic	7440-38-2	0.001	mg/L					<0.001
Cadmium	7440-43-9	0.0001	mg/L					<0.0001
Chromium	7440-47-3	0.001	mg/L					<0.001
Copper	7440-50-8	0.001	mg/L					<0.001
Nickel	7440-02-0	0.001	mg/L					<0.001
Lead	7439-92-1	0.001	mg/L					<0.001
Zinc	7440-66-6	0.005	mg/L					<0.005
EG035F: Dissolved Mercury by Fll	MS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001		
EG035T: Total Recoverable Merci	ury by FIMS							
Mercury	7439-97-6	0.0001	mg/L					<0.0001
EK055G: Ammonia as N by Discre								
Ammonia as N	7664-41-7	0.01	mg/L	3.29	0.72	0.67		
EP074A: Monocyclic Aromatic Hy			5					
Benzene	71-43-2	1	µg/L	<1				
Toluene	108-88-3	1	μg/L	<1				
Ethylbenzene	108-88-3	1	μg/L μg/L	<1				
meta- & para-Xylene		1	μg/L μg/L	<1				
• •	108-38-3 106-42-3	1	μg/L μg/L	<1				
Styrene	100-42-5	5		<5	<5	 <5		 <5
Styrene	100-42-5	3	µg/L	~ 0	~ 0	~ 0		<0

Page	: 8 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER Client sample ID (Matrix: WATER)			ent sample ID	MW7019	MW7015	QS03	Q\$07	QS08
	Clie	Client sampling date / time		10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
				Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hydro	ocarbons - Continued							
ortho-Xylene	95-47-6	1	µg/L	<1				
Isopropylbenzene	98-82-8	1	µg/L	<1				
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	<5		<5
n-Propylbenzene	103-65-1	1	µg/L	<1				
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	<5		<5
1.3.5-Trimethylbenzene	108-67-8	1	µg/L	<1				
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	<5		<5
sec-Butylbenzene	135-98-8	1	µg/L	<1				
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	<5		<5
1.2.4-Trimethylbenzene	95-63-6	1	µg/L	<1				
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	<5		<5
tert-Butylbenzene	98-06-6	1	µg/L	<1				
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5		<5
p-lsopropyltoluene	99-87-6	1	µg/L	79				
p-lsopropyltoluene	99-87-6	5	µg/L	87	<5	<5		<5
n-Butylbenzene	104-51-8	1	µg/L	<1				
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	<5		<5
` Total Xylenes		1	µg/L	<1				
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	10	µg/L	<10				
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50		<50
2-Butanone (MEK)	78-93-3	10	µg/L	<10				
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50		<50
4-Methyl-2-pentanone (MIBK)	108-10-1	10	µg/L	<10				
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50		<50
2-Hexanone (MBK)	591-78-6	10	µg/L	<10				
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50		<50
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	1	µg/L	<1				
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5		<5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	1	µg/L	<1				
2.2-Dichloropropane	594-20-7	5	μg/L	<5	<5	<5		<5
1.2-Dichloropropane	78-87-5	1	μg/L	<1				

Page	: 9 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7019	MW7015	QS03	QS07	QS08
	Client sampling date / time			10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
				Result	Result	Result	Result	Result
EP074D: Fumigants - Continued								
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5		<5
cis-1.3-Dichloropropylene	10061-01-5	2	µg/L	<2				
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5		<5
trans-1.3-Dichloropropylene	10061-02-6	2	µg/L	<2				
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5		<5
1.2-Dibromoethane (EDB)	106-93-4	1	µg/L	<1				
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5		<5
^ 1.3-Dichloropropylene (cis & trans)		2	μg/L	<2				
EP074E: Halogenated Aliphatic Compo	ounds							
Dichlorodifluoromethane	75-71-8	10	µg/L	<10				
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50		<50
Chloromethane	74-87-3	10	µg/L	<10				
Chloromethane	74-87-3	50	µg/L	<50	<50	<50		<50
Vinyl chloride	75-01-4	0.2	µg/L	<0.2				
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50		<50
Bromomethane	74-83-9	10	µg/L	<10				
Bromomethane	74-83-9	50	µg/L	<50	<50	<50		<50
Chloroethane	75-00-3	10	µg/L	<10				
Chloroethane	75-00-3	50	µg/L	<50	<50	<50		<50
Trichlorofluoromethane	75-69-4	10	µg/L	<10				
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50		<50
1.1-Dichloroethene	75-35-4	1	µg/L	<1				
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5		<5
lodomethane	74-88-4	1	µg/L	<1				
lodomethane	74-88-4	5	μg/L	<5	<5	<5		<5
Methylene chloride	75-09-2	2	µg/L	<2				
trans-1.2-Dichloroethene	156-60-5	1	µg/L	<1				
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5		<5
1.1-Dichloroethane	75-34-3	1	µg/L	1				
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5		<5
cis-1.2-Dichloroethene	156-59-2	1	µg/L	1				
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5		<5
1.1.1-Trichloroethane	71-55-6	1	µg/L	<1				
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5		<5
1.1-Dichloropropylene	563-58-6	1	µg/L	<1				

Page	: 10 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW7019	MW7015	QS03	QS07	QS08
	Clie	ent samplir	ng date / time	10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
,			-	Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Com	pounds - Continued							
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5		<5
Carbon Tetrachloride	56-23-5	1	µg/L	<1				
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5		<5
1.2-Dichloroethane	107-06-2	1	µg/L	<1				
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5		<5
Trichloroethene	79-01-6	1	µg/L	<1				
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5		<5
Dibromomethane	74-95-3	1	µg/L	<1				
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5		<5
1.1.2-Trichloroethane	79-00-5	1	µg/L	<1				
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5		<5
1.3-Dichloropropane	142-28-9	1	µg/L	<1				
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5		<5
Tetrachloroethene	127-18-4	1	µg/L	<1				
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5		<5
1.1.1.2-Tetrachloroethane	630-20-6	1	µg/L	<1				
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5		<5
trans-1.4-Dichloro-2-butene	110-57-6	1	µg/L	<1				
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5		<5
cis-1.4-Dichloro-2-butene	1476-11-5	1	µg/L	<1				
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5		<5
1.1.2.2-Tetrachloroethane	79-34-5	1	µg/L	<1				
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5		<5
1.2.3-Trichloropropane	96-18-4	1	µg/L	<1				
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5		<5
Pentachloroethane	76-01-7	1	µg/L	<1				
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5		<5
1.2-Dibromo-3-chloropropane	96-12-8	1	µg/L	<1				
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5		<5
Hexachlorobutadiene	87-68-3	0.5	µg/L	<0.5				
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5		<5
Bromochloromethane	74-97-5	1	µg/L	<1				
EP074F: Halogenated Aromatic Com								
Chlorobenzene	108-90-7	1	µg/L	4				
Chlorobenzene	108-90-7	5	μg/L	<5	<5	<5		<5

Page	: 11 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID Client sampling date / time			MW7019	MW7015	QS03	QS07	QS08
				10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
			-	Result	Result	Result	Result	Result
EP074F: Halogenated Aromatic Compo	unds - Continued							
Bromobenzene	108-86-1	1	µg/L	<1				
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5		<5
2-Chlorotoluene	95-49-8	1	µg/L	<1				
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5		<5
4-Chlorotoluene	106-43-4	1	µg/L	<1				
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5		<5
1.3-Dichlorobenzene	541-73-1	1	µg/L	<1				
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5		<5
1.4-Dichlorobenzene	106-46-7	0.1	µg/L	0.1				
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5		<5
1.2-Dichlorobenzene	95-50-1	1	µg/L	<1				
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5		<5
1.2.4-Trichlorobenzene	120-82-1	1	µg/L	<1				
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5		<5
1.2.3-Trichlorobenzene	87-61-6	1	µg/L	<1				
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5		<5
Sum of Trichlorobenzenes		1	µg/L	<1				
EP074G: Trihalomethanes								
Chloroform	67-66-3	1	µg/L	<1				
Chloroform	67-66-3	5	µg/L	<5	<5	<5		<5
Bromodichloromethane	75-27-4	1	µg/L	<1				
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5		<5
Dibromochloromethane	124-48-1	1	µg/L	<1				
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5		<5
Bromoform	75-25-2	1	µg/L	<1				
Bromoform	75-25-2	5	µg/L	<5	<5	<5		<5
Total Trihalomethanes		1	µg/L	<1				
EP074H: Naphthalene								
Naphthalene	91-20-3	5	µg/L	<5				
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	μg/L	1050	<50	<50		<50
C15 - C28 Fraction		100	µg/L	1320	<100	<100		<100
C29 - C36 Fraction		50	μg/L	480	<50	<50		<50

Page	: 12 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID Client sampling date / time			MW7019	MW7015	Q\$03	QS07	QS08
				10-Oct-2019 00:00	10-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00	09-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	EM1917008-006	EM1917008-007	EM1917008-008	EM1917008-009	EM1917008-010
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarl	bons - Continued							
^ C10 - C36 Fraction (sum)		50	μg/L	2850	<50	<50		<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	µg/L	1310	<100	<100		<100
>C16 - C34 Fraction		100	µg/L	1320	<100	<100		<100
>C34 - C40 Fraction		100	µg/L	230	<100	<100		<100
^ >C10 - C40 Fraction (sum)		100	µg/L	2860	<100	<100		<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	1310	<100	<100		<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	1	%	111				
Toluene-D8	2037-26-5	1	%	103				
4-Bromofluorobenzene	460-00-4	1	%	119				
1.2-Dichloroethane-D4	17060-07-0	5	%	96.1	100	91.9		95.6
Toluene-D8	2037-26-5	5	%	100	105	83.1		91.8
4-Bromofluorobenzene	460-00-4	5	%	104	106	95.4		96.8
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	98.6	110	105	105	109
Toluene-D8	2037-26-5	2	%	98.2	87.0	77.8	83.6	86.0
4-Bromofluorobenzene	460-00-4	2	%	110	102	97.3	99.9	101

Page	: 13 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			QS11				
	Client sampling date / time			10-Oct-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1917008-011				
				Result				
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.62				
EA015: Total Dissolved Solids dried	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	<10				
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	6				
EG020T: Total Metals by ICP-MS			J.					
Arsenic	7440-38-2	0.001	mg/L	<0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	<0.001				
Copper	7440-50-8	0.001	mg/L	<0.001				
Nickel	7440-02-0	0.001	mg/L	<0.001				
Lead	7439-92-1	0.001	mg/L	<0.001				
Zinc	7440-66-6	0.005	mg/L	<0.005				
EG035T: Total Recoverable Mercury			5					
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK055G: Ammonia as N by Discrete								
Ammonia as N	7664-41-7	0.01	mg/L	0.04				
		0.01	ilig/E	0.04				
EP074A: Monocyclic Aromatic Hydro		F		<5				
Styrene	100-42-5	5	µg/L					
Isopropylbenzene	98-82-8	5	µg/L	<5 <5				
n-Propylbenzene	103-65-1	5	µg/L					
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5				
sec-Butylbenzene	135-98-8	5	µg/L	<5				
1.2.4-Trimethylbenzene	95-63-6	5	μg/L	<5				
tert-Butylbenzene	98-06-6	5	μg/L	<5				
p-IsopropyItoluene	99-87-6	5	µg/L	<5 <5				
n-Butylbenzene	104-51-8	Э	µg/L	\$				
EP074B: Oxygenated Compounds		50						
Vinyl Acetate	108-05-4	50	µg/L	<50				
2-Butanone (MEK)	78-93-3	50	µg/L	<50				
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50				
2-Hexanone (MBK)	591-78-6	50	µg/L	<50				
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5				

Page	: 14 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QS11	 	
	Cli	ent samplii	ng date / time	10-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1917008-011	 	
				Result	 	
EP074D: Fumigants						
2.2-Dichloropropane	594-20-7	5	µg/L	<5	 	
1.2-Dichloropropane	78-87-5	5	µg/L	<5	 	
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	 	
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	 	
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	 	
EP074E: Halogenated Aliphatic Com	pounds					
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	 	
Chloromethane	74-87-3	50	µg/L	<50	 	
Vinyl chloride	75-01-4	50	µg/L	<50	 	
Bromomethane	74-83-9	50	µg/L	<50	 	
Chloroethane	75-00-3	50	µg/L	<50	 	
Trichlorofluoromethane	75-69-4	50	µg/L	<50	 	
1.1-Dichloroethene	75-35-4	5	µg/L	<5	 	
lodomethane	74-88-4	5	µg/L	<5	 	
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	 	
1.1-Dichloroethane	75-34-3	5	µg/L	<5	 	
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	 	
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	 	
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	 	
Carbon Tetrachloride	56-23-5	5	µg/L	<5	 	
1.2-Dichloroethane	107-06-2	5	µg/L	<5	 	
Trichloroethene	79-01-6	5	µg/L	<5	 	
Dibromomethane	74-95-3	5	µg/L	<5	 	
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	 	
1.3-Dichloropropane	142-28-9	5	µg/L	<5	 	
Tetrachloroethene	127-18-4	5	µg/L	<5	 	
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	 	
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	 	
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	 	
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	 	
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	 	
Pentachloroethane	76-01-7	5	µg/L	<5	 	
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	 	
Hexachlorobutadiene	87-68-3	5	µg/L	<5	 	

Page	: 15 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QS11	 	
	Cli	ent samplii	ng date / time	10-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1917008-011	 	
			-	Result	 	
EP074F: Halogenated Aromatic Compou	unds					
Chlorobenzene	108-90-7	5	µg/L	<5	 	
Bromobenzene	108-86-1	5	µg/L	<5	 	
2-Chlorotoluene	95-49-8	5	µg/L	<5	 	
4-Chlorotoluene	106-43-4	5	µg/L	<5	 	
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	 	
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	 	
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	 	
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	 	
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	 	
EP074G: Trihalomethanes						
Chloroform	67-66-3	5	µg/L	<5	 	
Bromodichloromethane	75-27-4	5	µg/L	<5	 	
Dibromochloromethane	124-48-1	5	µg/L	<5	 	
Bromoform	75-25-2	5	µg/L	<5	 	
EP080/071: Total Petroleum Hydrocarbo	ons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ıs			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	

Page	: 16 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			QS11	 	
	Cli	ent sampli	ing date / time	10-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1917008-011	 	
				Result	 	
EP080: BTEXN - Continued						
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	5	%	91.9	 	
Toluene-D8	2037-26-5	5	%	88.7	 	
4-Bromofluorobenzene	460-00-4	5	%	101	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	105	 	
Toluene-D8	2037-26-5	2	%	83.2	 	
4-Bromofluorobenzene	460-00-4	2	%	102	 	

Page	: 17 of 17
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	120
Toluene-D8	2037-26-5	70	130
4-Bromofluorobenzene	460-00-4	70	128
1.2-Dichloroethane-D4	17060-07-0	72	132
Toluene-D8	2037-26-5	77	132
4-Bromofluorobenzene	460-00-4	67	131
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	129
Toluene-D8	2037-26-5	70	125
4-Bromofluorobenzene	460-00-4	71	129

QUALITY CONTROL REPORT · EM1917008 Work Order Page : 1 of 16 Amendment :1 Client Laboratory : Environmental Division Melbourne SENVERSA PTY LTD Contact : LUCINDA TRICKEY Contact : Larissa Burns Address Address : 4 Westall Rd Springvale VIC Australia 3171 : Level 6, 15 William St Melbourne VICTORIA, AUSTRALIA 3000 Telephone : +61 03 9606 0070 Telephone : +6138549 9644 Project Date Samples Received : M17571 : 11-Oct-2019 Order number : M17571 Date Analysis Commenced : 14-Oct-2019 Issue Date · 24-Oct-2019 C-O-C number · ____ Sampler : SAM O'CONNOR Site : -----Quote number : EN/103/18 (primary work only) Accreditation No. 825 No. of samples received : 11 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Lu	VOC Section Supervisor	Melbourne Organics, Springvale, VIC
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC T	itrator (QC Lot: 2637563)								
EM1917008-002	MW7021	EA005-P: pH Value		0.01	pH Unit	5.88	5.83	0.854	0% - 20%
EM1916987-008	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.98	7.99	0.125	0% - 20%
EA015: Total Dissol	ved Solids dried at 180 ± 5	°C (QC Lot: 2643480)							
EM1916987-009	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1500	1510	0.466	0% - 20%
EM1917012-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1970	1800	9.02	0% - 20%
EA015: Total Dissol	ved Solids dried at 180 ± 5	°C (QC Lot: 2646416)							
EM1916929-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	397	414	4.07	0% - 20%
EM1917008-011	QS11	EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	<10	0.00	No Limit
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by	DA (QC Lot: 2637214)							
EM1916974-012	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	12	0.00	0% - 50%
EM1916987-009	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	18	19	0.00	0% - 50%
EG020F: Dissolved	Metals by ICP-MS (QC Lot	: 2646907)							
EM1915635-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.015	0.015	0.00	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.182	0.187	2.45	0% - 20%
EM1917008-004	MW7016	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.022	0.021	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit

Page	: 3 of 16
Work Order	EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (Q	C Lot: 2646907) - continued							
EM1917008-004	MW7016	EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.012	0.012	0.00	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.030	0.027	9.22	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lo	t: 2643503)							
EM1917014-024	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
EM1916974-022	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.003	0.002	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.024	0.024	0.00	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.011	0.010	0.00	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	C Lot: 2646908)							
EM1916937-011	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EM1917008-007	MW7015	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Rec	overable Mercury by I	FIMS (QC Lot: 2649581)							
EM1917008-010	QS08	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Ana	lyser (QC Lot: 2640392)							
EM1916982-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.06	0.00	No Limit
EM1916982-010	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.04	0.00	No Limit
	-	lyser (QC Lot: 2640394)		0.01		0.01	0.01	0.00	
EM1917008-007	MW7015		7664-41-7	0.01	mg/L	0.72	0.72	0.00	0% - 20%
EM1917069-005	Anonymous	EK055G: Ammonia as N EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.15	0.12	0.00	0% - 20%
			7004-41-7	0.01	ilig/L	0.15	0.10	0.00	070-3070
· · · · · ·	,	bons (QC Lot: 2636792)	400 40 5	-		-	-5	0.00	N a Lineit
EM1916988-001	Anonymous	EP074: Styrene	100-42-5 98-82-8	5	μg/L	<5 <5	<5 <5	0.00	No Limit
		EP074: Isopropylbenzene	90-02-0 103-65-1	5	µg/L	<5	<5	0.00	No Limit No Limit
		EP074: n-Propylbenzene		5	µg/L				
		EP074: 1.3.5-Trimethylbenzene	108-67-8 135-98-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: sec-Butylbenzene		-	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: p-Isopropyltoluene	99-87-6	5	µg/L	<5	<5	0.00	No Limit
EM1017000 000	0502	EP074: n-Butylbenzene	104-51-8	5	µg/L	<5	<5	0.00	No Limit
EM1917008-008	QS03	EP074: Styrene	100-42-5	5	µg/L	<5	<5	0.00	No Limit

Bub-Matrix: WATER					Laboratory I	Duplicate (DUP) Report			
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P074A: Monocyclic	c Aromatic Hydrocarbo	ns (QC Lot: 2636792) - continued							
EM1917008-008	QS03	EP074: Isopropylbenzene	98-82-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: n-Propylbenzene	103-65-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3.5-Trimethylbenzene	108-67-8	5	μg/L	<5	<5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <5 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <1 0.00 <50 0.00 <50 0.00 <50 0.00 <50	No Limit	
		EP074: sec-Butylbenzene	135-98-8	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trimethylbenzene	95-63-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: tert-Butylbenzene	98-06-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: p-Isopropyltoluene	99-87-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: n-Butylbenzene	104-51-8	5	μg/L	<5	<5	0.00	No Limit
P074A: Monocyclic	c Aromatic Hydrocarbo	ons (QC Lot: 2658177)							
EM1917008-006	MW7019	EP074-WF: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP074-WF: Toluene	108-88-3	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Ethylbenzene	100-41-4	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: meta- & para-Xylene	108-38-3	1	µg/L	<1	<1	0.00	No Limit
			106-42-3						
		EP074-WF: Styrene	100-42-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: ortho-Xylene	95-47-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Isopropylbenzene	98-82-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: n-Propylbenzene	103-65-1	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.3.5-Trimethylbenzene	108-67-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: sec-Butylbenzene	135-98-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2.4-Trimethylbenzene	95-63-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: tert-Butylbenzene	98-06-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: p-Isopropyltoluene	99-87-6	1	µg/L	79	74	6.16	0% - 20%
		EP074-WF: n-Butylbenzene	104-51-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Total Xylenes		1	µg/L	<1	<1	0.00	No Limit
P074B: Oxygenate	d Compounds (QC Lot	t: 2636792)							
EM1916988-001	Anonymous	EP074: Vinyl Acetate	108-05-4	50	µg/L	<50	<50	0.00	No Limit
		EP074: 2-Butanone (MEK)	78-93-3	50	μg/L	<50	<50	0.00	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	μg/L	<50	<50	0.00	No Limit
		EP074: 2-Hexanone (MBK)	591-78-6	50	μg/L	<50	<50	0.00	No Limit
M1917008-008	QS03	EP074: Vinyl Acetate	108-05-4	50	μg/L	<50	<50	0.00	No Limit
		EP074: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	μg/L	<50	<50	0.00	No Limit
		EP074: 2-Hexanone (MBK)	591-78-6	50	μg/L	<50	<50	0.00	No Limit
P074B: Oxygenate	d Compounds (QC Lot								1
M1917008-006	MW7019	EP074-WF: Vinyl Acetate	108-05-4	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Villy Acetate EP074-WF: 2-Butanone (MEK)	78-93-3	10	μg/L	<10	-		No Limit
		EP074-WF: 2-Bitanone (MEK) EP074-WF: 4-Methyl-2-pentanone (MIBK)	108-10-1	10	μg/L	<10	-		No Limit
		EP074-WF: 2-Hexanone (MBK)	591-78-6	10	μg/L	<10	-		No Limit

Page	5 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP074C: Sulfonated	d Compounds (QC Lot	:: 2636792)							
EM1916988-001	Anonymous	EP074: Carbon disulfide	75-15-0	5	µg/L	<5	<5	0.00	No Limit
EM1917008-008	QS03	EP074: Carbon disulfide	75-15-0	5	µg/L	<5	<5	0.00	No Limit
EP074C: Sulfonated	d Compounds (QC Lot	: 2658177)							
EM1917008-006	MW7019	EP074-WF: Carbon disulfide	75-15-0	1	µg/L	<1	<1	0.00	No Limit
EP074D: Fumigants	(QC Lot: 2636792)								
EM1916988-001	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	<5	0.00	No Limit
EM1917008-008	QS03	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	<5	0.00	No Limit
P074D: Fumigants	(QC Lot: 2658177)				10				
EM1917008-006	MW7019	EP074-WF: 2.2-Dichloropropane	594-20-7	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2-Dichloropropane	78-87-5	1	µg/L	<1	<1		No Limit
		EP074-WF: 1.2-Dibromoethane (EDB)	106-93-4	1	µg/L	<1	<1		No Limit
		EP074-WF: cis-1.3-Dichloropropylene	10061-01-5	2	µg/L	<2	<2	0.00 No 0.00 No	No Limit
		EP074-WF: trans-1.3-Dichloropropylene	10061-02-6	2	µg/L	<2	<2	0.00	No Limit
P074E: Halogenat	ed Aliphatic Compoun				10				
EM1916988-001	Anonymous		75-35-4	5	µg/L	<5	<5	0.00	No Limit
_101910900-001	Anonymous	EP074: 1.1-Dichloroethene	73-33-4	5	μg/L	<5	<5	0.00	No Limit
		EP074: lodomethane	156-60-5	5	μg/L	<5	<5	0.00	No Limit
		EP074: trans-1.2-Dichloroethene	75-34-3	5	μg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethane	156-59-2	5	μg/L	<5	<5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	71-55-6	5	μg/L μg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	563-58-6	5		<5	<5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	56-23-5	5	μg/L μg/L	<5	<5	0.00	No Limit
		EP074: Carbon Tetrachloride	107-06-2	5	μg/L μg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloroethane	79-01-6	5	μg/L μg/L	<5	<5	0.00	No Limit
		EP074: Trichloroethene	79-01-8	-		<5	<5		
		EP074: Dibromomethane	74-95-3	5 5	µg/L	<5	<5 <5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	142-28-9	5	µg/L	<5	<5 <5	0.00	No Limit
		EP074: 1.3-Dichloropropane		5	µg/L	<5	<5 <5		No Limit
		EP074: Tetrachloroethene	127-18-4	-	µg/L		-	0.00	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5 <5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	-	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.00	No Limit

Page	: 6 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P074E: Halogenate	ed Aliphatic Compound	ls (QC Lot: 2636792) - continued							
EM1916988-001	Anonymous	EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Pentachloroethane	79-34-5 5 96-18-4 5 76-01-7 5 96-12-8 5 87-68-3 5 75-71-8 50 74-87-3 50 75-01-4 50 75-01-3 50 75-69-4 50 75-69-4 50 75-69-4 50 75-69-4 50 75-69-4 50 75-69-4 50 75-69-4 50 75-35-4 5 75-35-4 5 75-35-4 5 75-35-3 5 156-60-5 5 71-55-6 5 563-58-6 5 563-58-6 5 563-58-6 5 563-58-7 5 107-06-2 5 79-01-6 5 79-01-7 5 142-28-9 5 127-18-4 5 630-20-6 5	µg/L	<5	<5	0.00	No Limit	
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5 0.00 <5 0.00 <5 0.00	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.00	No Limit
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: Vinyl chloride	CAS Number LOR Unit Original Result I 79-34-5 5 µg/L <5	<50	0.00	No Limit			
		EP074: Bromomethane	74-83-9	50	µg/L	<50	Duplicate Result RPD (%) <5	No Limit	
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.00	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.00	No Limit
M1917008-008	QS03	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.00	No Limit
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.00	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5		<5	<5	0.00	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5		<5	<5	0.00	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5		<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5		<5	<5	0.00	No Limit
		EP074: Pentachloroethane	76-01-7	5		<5	<5	0.00	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5		<5	<5	0.00	No Limit
		EP074: Hexachlorobutadiene							No Limit
		EP074: Dichlorodifluoromethane							No Limit
		EP074: Chloromethane							No Limit
		EP074: Vinyl chloride							No Limit
		EP074: Bromomethane			-				No Limit
		EP074: Chloroethane							No Limit
		EP074: Trichlorofluoromethane							No Limit

Page	: 7 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P074E: Halogenate	ed Aliphatic Compound	ls (QC Lot: 2658177) - continued							
M1917008-006	MW7019	EP074-WF: Vinyl chloride	75-01-4	0.2	µg/L	<0.2	<0.2	0.00	No Limit
		EP074-WF: Hexachlorobutadiene	87-68-3	0.5	µg/L	<0.5	<0.5	0.00	No Limit
		EP074-WF: 1.1-Dichloroethene	75-35-4	1	µg/L	<0.2 <0.2 <0.2 0.00 No Lin <0.5	No Limit		
		EP074-WF: lodomethane	74-88-4	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: trans-1.2-Dichloroethene	156-60-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.1-Dichloroethane	75-34-3	1	µg/L	1	1	0.00	No Limit
		EP074-WF: cis-1.2-Dichloroethene	156-59-2	0.5 $\mu g/L$ <0.5 <0.5 <0.5 <0.0 $75\cdot35\cdot4$ 1 $\mu g/L$ <1 <1 0.00 $75\cdot35\cdot4$ 1 $\mu g/L$ <1 <1 0.00 $75\cdot36\cdot5$ 1 $\mu g/L$ <1 <1 0.00 $75\cdot34\cdot3$ 1 $\mu g/L$ <1 <1 0.00 $75\cdot34\cdot3$ 1 $\mu g/L$ <1 <1 0.00 $71\cdot55\cdot6$ 1 $\mu g/L$ <1 <1 0.00 $71\cdot57:5$ 1 $\mu g/L$ <1 <1 0.00 $71\cdot57:5$ 1 $\mu g/L$ <1 <1 0.00	No Limit				
		EP074-WF: 1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.1-Dichloropropylene	563-58-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Carbon Tetrachloride	56-23-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2-Dichloroethane	107-06-2	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Trichloroethene	79-01-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Dibromomethane	74-95-3	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.1.2-Trichloroethane	79-00-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.3-Dichloropropane	142-28-9	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Tetrachloroethene	127-18-4	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.1.1.2-Tetrachloroethane	630-20-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: trans-1.4-Dichloro-2-butene	110-57-6	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: cis-1.4-Dichloro-2-butene	1476-11-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.1.2.2-Tetrachloroethane	79-34-5	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2.3-Trichloropropane	96-18-4	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Pentachloroethane	76-01-7	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2-Dibromo-3-chloropropane	96-12-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: Dichlorodifluoromethane	75-71-8	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Chloromethane	74-87-3	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Bromomethane	74-83-9	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Chloroethane	75-00-3	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Trichlorofluoromethane	75-69-4	10	µg/L	<10	<10	0.00	No Limit
		EP074-WF: Methylene chloride	75-09-2	2	µg/L	<2	<2	0.00	No Limit
P074F: Halogenate	ed Aromatic Compound	ls (QC Lot: 2636792)							
M1916988-001	Anonymous	EP074: Chlorobenzene	108-90-7	5	ug/L	<5	<5	0.00	No Limit
	- ,	EP074: Bromobenzene	108-86-1	5		<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5		No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L		-		No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	-	-		No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L		-		No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L				No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L		-		No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L		-		No Limit
EM1917008-008	QS03	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.00	No Limit

Page	: 8 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP074F: Halogena	ted Aromatic Compour	nds (QC Lot: 2636792) - continued							
EM1917008-008	QS03	EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.00	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.00	No Limit
P074F: Halogena	ted Aromatic Compour	nds (QC Lot: 2658177)							
EM1917008-006	MW7019	EP074-WF: 1.4-Dichlorobenzene	106-46-7	0.1	µg/L	0.1	0.1	0.00	No Limit
		EP074-WF: Chlorobenzene	108-90-7	1	µg/L	4	4	0.00	No Limit
		EP074-WF: Bromobenzene	108-86-1	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 2-Chlorotoluene	95-49-8	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 4-Chlorotoluene	106-43-4	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.3-Dichlorobenzene	541-73-1	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2-Dichlorobenzene	95-50-1	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2.4-Trichlorobenzene	120-82-1	1	µg/L	<1	<1	0.00	No Limit
		EP074-WF: 1.2.3-Trichlorobenzene	87-61-6	1	µg/L	<1	<1	0.00	No Limit
P074G: Trihalom	ethanes (QC Lot: 2636	792)			1				
EM1916988-001	Anonymous	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
EM1917008-008	QS03	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.00	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.00	No Limit
		EP074: Dibromochloromethane	124-48-1	5	μg/L	<5	<5	0.00	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.00	No Limit
P074G: Tribalom	ethanes (QC Lot: 2658			-	P-3	-	-		
EM1917008-006	MW7019	,	67-66-3	1	µg/L	<1	<1	0.00	No Limit
_101917000-000	101007019	EP074-WF: Chloroform	75-27-4	1	μg/L	<1	<1	0.00	No Limit
		EP074-WF: Bromodichloromethane	124-48-1	1	μg/L μg/L	<1	<1	0.00	No Limit
		EP074-WF: Dibromochloromethane	75-25-2	1	μg/L μg/L	<1	<1	0.00	No Limit
		EP074-WF: Bromoform		1	μg/L μg/L	<1	<1	0.00	No Limit
		EP074-WF: Total Trihalomethanes		I	µy/L	~1	~ 1	0.00	NO LIITIIL
	ene (QC Lot: 2658177)			_		-	-		
EM1917008-006	MW7019	EP074-WF: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
P080/071: Total P	etroleum Hydrocarbor	ns (QC Lot: 2636791)							
EM1916988-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EM1917008-008	QS03	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
P080/071: Total R	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 2636791)							

Page	: 9 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER			[Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 2636791) - continued							
EM1916988-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EM1917008-008	QS03	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	Lot: 2636791)								
EM1916988-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
EM1917008-008	QS03	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	1 - 1	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	Spike Spike Recovery (%) Recovery I	High	
EA015: Total Dissolved Solids dried at 180 \pm 5 °C (QCLo	t: 2643480)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	Ū			107
				<10	293 mg/L	102	90.0	110
EA015: Total Dissolved Solids dried at 180 \pm 5 °C (QCLo	t: 2646416)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	100	93.7	107
				<10	293 mg/L	100	90.0	110
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(QCLo	t: 2637214)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	96.0	85.8	117
				<1	100 mg/L	92.2	85.8	117
EG020F: Dissolved Metals by ICP-MS (QCLot: 2646907)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	88.5	108
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.6	83.5	108
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	83.2	105
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.4	83.1	106
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.7	84.6	107
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.3	84.3	108
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	86.3	111
EG020T: Total Metals by ICP-MS (QCLot: 2643503)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	100	89.2	113
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	104	86.4	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.6	86.9	110
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.9	86.9	109
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.3	88.3	110
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	99.4	87.9	111
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	86.7	114
EG035F: Dissolved Mercury by FIMS (QCLot: 2646908)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	81.3	71.1	112
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2	649581)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.0	72.6	115
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2	640392)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	99.7	88.0	116
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2	640394)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	101	88.0	116
			5		5		-	

Page	: 11 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074A: Monocyclic Aromatic Hydrocarbons (QC	Lot: 2636792) - continued	i						
EP074: Styrene	100-42-5	5	µg/L	<5	20 µg/L	108	80.4	117
EP074: Isopropylbenzene	98-82-8	5	µg/L	<5	20 µg/L	101	75.0	118
EP074: n-Propylbenzene	103-65-1	5	µg/L	<5	20 µg/L	103	68.7	114
EP074: 1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	20 µg/L	103	72.1	114
EP074: sec-Butylbenzene	135-98-8	5	µg/L	<5	20 µg/L	101	69.6	115
EP074: 1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	20 µg/L	105	72.4	113
EP074: tert-Butylbenzene	98-06-6	5	µg/L	<5	20 µg/L	102	72.6	116
EP074: p-Isopropyltoluene	99-87-6	5	µg/L	<5	20 µg/L	103	69.2	115
EP074: n-Butylbenzene	104-51-8	5	µg/L	<5	20 µg/L	100	61.4	115
EP074A: Monocyclic Aromatic Hydrocarbons (QC	Lot: 2658177)							
EP074-WF: Benzene	71-43-2	1	µg/L	<1	20 µg/L	108	78.8	119
EP074-WF: Toluene	108-88-3	1	µg/L	<1	20 µg/L	95.3	80.6	119
EP074-WF: Ethylbenzene	100-41-4	1	µg/L	<1	20 µg/L	98.3	79.4	119
EP074-WF: meta- & para-Xylene	108-38-3	1	µg/L	<1	40 µg/L	98.0	78.1	120
	106-42-3							
EP074-WF: Styrene	100-42-5	1	µg/L	<1	20 µg/L	101	82.2	117
EP074-WF: ortho-Xylene	95-47-6	1	µg/L	<1	20 µg/L	99.8	82.9	119
EP074-WF: Isopropylbenzene	98-82-8	1	µg/L	<1	20 µg/L	96.0	77.6	118
EP074-WF: n-Propylbenzene	103-65-1	1	µg/L	<1	20 µg/L	96.5	70.9	117
EP074-WF: 1.3.5-Trimethylbenzene	108-67-8	1	µg/L	<1	20 µg/L	99.5	73.8	116
EP074-WF: sec-Butylbenzene	135-98-8	1	µg/L	<1	20 µg/L	99.4	71.7	118
EP074-WF: 1.2.4-Trimethylbenzene	95-63-6	1	µg/L	<1	20 µg/L	99.2	74.7	116
EP074-WF: tert-Butylbenzene	98-06-6	1	µg/L	<1	20 µg/L	98.7	75.2	118
EP074-WF: p-lsopropyltoluene	99-87-6	1	µg/L	<1	20 µg/L	97.3	70.7	118
EP074-WF: n-Butylbenzene	104-51-8	1	µg/L	<1	20 µg/L	94.7	62.7	119
EP074-WF: Total Xylenes		1	µg/L	<1				
EP074B: Oxygenated Compounds (QCLot: 263679	92)							
EP074: Vinyl Acetate	108-05-4	50	µg/L	<50	200 µg/L	104	71.3	125
EP074: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	200 µg/L	108	66.4	132
EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	200 µg/L	111	75.2	132
EP074: 2-Hexanone (MBK)	591-78-6	50	µg/L	<50	200 µg/L	115	73.9	131
EP074B: Oxygenated Compounds (QCLot: 265817	77)							
EP074-WF: Vinyl Acetate	108-05-4	10	μg/L	<10	200 µg/L	109	75.2	120
EP074-WF: 2-Butanone (MEK)	78-93-3	10	μg/L	<10	200 µg/L	110	70.2	125
EP074-WF: 4-Methyl-2-pentanone (MIBK)	108-10-1	10	μg/L	<10	200 µg/L	120	74.7	127
EP074-WF: 2-Hexanone (MBK)	591-78-6	10	μg/L	<10	200 µg/L	108	74.0	128
EP074C: Sulfonated Compounds (QCLot: 2636792	2)							
EP074C. Sunonated Compounds (QCLOL 2636792 EP074: Carbon disulfide	75-15-0	5	µg/L	<5	20 µg/L	103	58.2	124

Page	: 12 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074C: Sulfonated Compounds (QCLot: 2658177)								
EP074-WF: Carbon disulfide	75-15-0	1	μg/L	<1	20 µg/L	99.8	62.8	123
EP074D: Fumigants (QCLot: 2636792)								
EP074: 2.2-Dichloropropane	594-20-7	5	μg/L	<5	20 µg/L	101	68.7	120
EP074: 1.2-Dichloropropane	78-87-5	5	μg/L	<5	20 µg/L	106	79.6	116
EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	20 µg/L	103	76.2	114
EP074: trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	20 µg/L	104	77.0	114
EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	μg/L	<5	20 µg/L	106	80.1	118
EP074D: Fumigants (QCLot: 2658177)								
P074-WF: 2.2-Dichloropropane	594-20-7	1	μg/L	<1	20 µg/L	99.7	71.5	121
EP074-WF: 1.2-Dichloropropane	78-87-5	1	μg/L	<1	20 µg/L	108	80.1	117
EP074-WF: cis-1.3-Dichloropropylene	10061-01-5	2	μg/L	<2	20 µg/L	104	77.8	114
EP074-WF: trans-1.3-Dichloropropylene	10061-02-6	2	μg/L	<2	20 µg/L	106	78.7	114
EP074-WF: 1.2-Dibromoethane (EDB)	106-93-4	1	µg/L	<1	20 µg/L	101	81.4	118
EP074E: Halogenated Aliphatic Compounds (QCLot: 26367	92)							
P074: Dichlorodifluoromethane	75-71-8	50	μg/L	<50	200 µg/L	109	53.4	140
EP074: Chloromethane	74-87-3	50	μg/L	<50	200 µg/L	102	63.8	134
EP074: Vinyl chloride	75-01-4	50	μg/L	<50	200 µg/L	106	57.1	135
EP074: Bromomethane	74-83-9	50	μg/L	<50	200 µg/L	94.5	51.1	126
EP074: Chloroethane	75-00-3	50	µg/L	<50	200 µg/L	93.9	64.9	129
EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	200 µg/L	102	65.7	127
EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	20 µg/L	102	67.4	123
EP074: Iodomethane	74-88-4	5	µg/L	<5	20 µg/L	94.1	30.9	126
EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	20 µg/L	103	69.2	119
P074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	20 µg/L	107	76.7	120
EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	20 µg/L	105	78.9	118
EP074: 1.1.1-Trichloroethane	71-55-6	5	μg/L	<5	20 µg/L	101	69.2	120
EP074: 1.1-Dichloropropylene	563-58-6	5	μg/L	<5	20 µg/L	98.8	67.0	120
EP074: Carbon Tetrachloride	56-23-5	5	μg/L	<5	20 µg/L	100	63.7	120
EP074: 1.2-Dichloroethane	107-06-2	5	μg/L	<5	20 µg/L	106	82.0	116
P074: Trichloroethene	79-01-6	5	μg/L	<5	20 µg/L	101	72.9	118
P074: Dibromomethane	74-95-3	5	μg/L	<5	20 µg/L	107	81.0	116
EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	20 µg/L	110	84.9	118
P074: 1.3-Dichloropropane	142-28-9	5	μg/L	<5	20 µg/L	113	83.4	119
P074: Tetrachloroethene	127-18-4	5	μg/L	<5	20 µg/L	104	70.4	118
P074: 1.1.1.2-Tetrachloroethane	630-20-6	5	μg/L	<5	20 µg/L	100	77.9	113
P074: trans-1.4-Dichloro-2-butene	110-57-6	5	μg/L	<5	20 µg/L	109	72.6	122
P074: cis-1.4-Dichloro-2-butene	1476-11-5	5	μg/L	<5	20 µg/L	96.6	67.8	119
EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	20 µg/L	107	83.0	125

Page	: 13 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074E: Halogenated Aliphatic Compounds (Q	CLot: 2636792) - continued							
EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	20 µg/L	112	82.4	123
EP074: Pentachloroethane	76-01-7	5	µg/L	<5	20 µg/L	99.6	72.7	111
EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	20 µg/L	106	75.4	114
EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	20 µg/L	92.6	62.6	128
EP074E: Halogenated Aliphatic Compounds (Q	CLot: 2658177)							
EP074-WF: Dichlorodifluoromethane	75-71-8	10	µg/L	<10	200 µg/L	107	55.0	139
EP074-WF: Chloromethane	74-87-3	10	µg/L	<10	200 µg/L	106	62.0	134
EP074-WF: Vinyl chloride	75-01-4	0.2	µg/L	<0.2	200 µg/L	108	58.3	137
EP074-WF: Bromomethane	74-83-9	10	µg/L	<10	200 µg/L	93.6	50.7	127
EP074-WF: Chloroethane	75-00-3	10	μg/L	<10	200 µg/L	103	66.1	128
EP074-WF: Trichlorofluoromethane	75-69-4	10	μg/L	<10	200 µg/L	102	67.9	125
EP074-WF: 1.1-Dichloroethene	75-35-4	1	μg/L	<1	20 µg/L	104	69.2	123
EP074-WF: lodomethane	74-88-4	1	µg/L	<1	20 µg/L	85.3	25.6	128
EP074-WF: Methylene chloride	75-09-2	2	µg/L	<2	20 µg/L	115	83.6	124
EP074-WF: trans-1.2-Dichloroethene	156-60-5	1	µg/L	<1	20 µg/L	103	71.8	118
EP074-WF: 1.1-Dichloroethane	75-34-3	1	µg/L	<1	20 µg/L	106	77.9	119
EP074-WF: cis-1.2-Dichloroethene	156-59-2	1	µg/L	<1	20 µg/L	108	80.3	117
EP074-WF: 1.1.1-Trichloroethane	71-55-6	1	µg/L	<1	20 µg/L	103	72.4	119
EP074-WF: 1.1-Dichloropropylene	563-58-6	1	µg/L	<1	20 µg/L	104	69.9	119
EP074-WF: Carbon Tetrachloride	56-23-5	1	µg/L	<1	20 µg/L	96.0	67.3	118
EP074-WF: 1.2-Dichloroethane	107-06-2	1	µg/L	<1	20 µg/L	108	82.4	115
EP074-WF: Trichloroethene	79-01-6	1	µg/L	<1	20 µg/L	104	73.7	118
EP074-WF: Dibromomethane	74-95-3	1	µg/L	<1	20 µg/L	105	80.7	115
EP074-WF: 1.1.2-Trichloroethane	79-00-5	1	µg/L	<1	20 µg/L	106	86.0	118
EP074-WF: 1.3-Dichloropropane	142-28-9	1	µg/L	<1	20 µg/L	102	85.0	119
EP074-WF: Tetrachloroethene	127-18-4	1	µg/L	<1	20 µg/L	96.3	72.9	120
EP074-WF: 1.1.1.2-Tetrachloroethane	630-20-6	1	μg/L	<1	20 µg/L	91.0	81.3	114
EP074-WF: trans-1.4-Dichloro-2-butene	110-57-6	1	μg/L	<1	20 µg/L	96.8	76.0	120
EP074-WF: cis-1.4-Dichloro-2-butene	1476-11-5	1	μg/L	<1	20 µg/L	86.7	71.5	115
EP074-WF: 1.1.2.2-Tetrachloroethane	79-34-5	1	μg/L	<1	20 µg/L	108	84.0	122
EP074-WF: 1.2.3-Trichloropropane	96-18-4	1	μg/L	<1	20 µg/L	103	83.6	120
EP074-WF: Pentachloroethane	76-01-7	1	μg/L	<1	20 µg/L	88.3	74.6	113
EP074-WF: 1.2-Dibromo-3-chloropropane	96-12-8	1	μg/L	<1	20 µg/L	94.4	75.3	115
EP074-WF: Hexachlorobutadiene	87-68-3	0.5	μg/L	<0.5	20 µg/L	95.7	61.9	132
EP074-WF: Bromochloromethane	74-97-5	1	μg/L	<1	20 µg/L	107	83.3	114
EP074F: Halogenated Aromatic Compounds(Q	CLot: 2636792)							
EP074: Chlorobenzene	108-90-7	5	μg/L	<5	20 µg/L	105	81.7	116
EP074: Bromobenzene	108-86-1	5	μg/L	<5	20 µg/L	108	75.2	118
EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	20 µg/L	106	75.0	114

Page	: 14 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) Report			
					Spike	Spike Recovery (%)		Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EP074F: Halogenated Aromatic Compounds(C								
EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	20 µg/L	104	72.8	113
EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	20 µg/L	104	74.7	116
EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	20 µg/L	104	75.5	119
EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	20 µg/L	105	82.0	113
EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	20 µg/L	104	64.0	123
EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	20 µg/L	100	75.5	119
EP074F: Halogenated Aromatic Compounds(C	QCLot: 2658177)							
EP074-WF: Chlorobenzene	108-90-7	1	µg/L	<1	20 µg/L	102	83.8	116
EP074-WF: Bromobenzene	108-86-1	1	µg/L	<1	20 µg/L	102	73.9	121
EP074-WF: 2-Chlorotoluene	95-49-8	1	µg/L	<1	20 µg/L	100	76.5	116
EP074-WF: 4-Chlorotoluene	106-43-4	1	µg/L	<1	20 µg/L	101	74.0	116
EP074-WF: 1.3-Dichlorobenzene	541-73-1	1	µg/L	<1	20 µg/L	102	75.9	117
EP074-WF: 1.4-Dichlorobenzene	106-46-7	0.1	µg/L	<0.1	20 µg/L	105	76.5	119
EP074-WF: 1.2-Dichlorobenzene	95-50-1	1	µg/L	<1	20 µg/L	104	83.0	114
EP074-WF: 1.2.4-Trichlorobenzene	120-82-1	1	µg/L	<1	20 µg/L	99.4	66.2	12
EP074-WF: 1.2.3-Trichlorobenzene	87-61-6	1	µg/L	<1	20 µg/L	102	76.8	121
EP074G: Trihalomethanes (QCLot: 2636792)								
EP074: Chloroform	67-66-3	5	μg/L	<5	20 µg/L	104	80.4	118
EP074: Bromodichloromethane	75-27-4	5	μg/L	<5	20 µg/L	101	78.6	115
EP074: Dibromochloromethane	124-48-1	5	μg/L	<5	20 µg/L	103	77.7	113
EP074: Bromoform	75-25-2	5	μg/L	<5	20 µg/L	100	74.2	113
EP074G: Trihalomethanes (QCLot: 2658177)								
EP074-WF: Chloroform	67-66-3	1	µg/L	<1	20 µg/L	107	81.3	117
EP074-WF: Bromodichloromethane	75-27-4	1	µg/L	<1	20 µg/L	104	79.6	114
EP074-WF: Dibromochloromethane	124-48-1	1	μg/L	<1	20 µg/L	89.1	79.9	113
EP074-WF: Bromoform	75-25-2	1	µg/L	<1	20 µg/L	85.9	76.4	112
EP074-WF: Total Trihalomethanes		1	μg/L	<1				
EP074H: Naphthalene (QCLot: 2658177)								
EP074-WF: Naphthalene	91-20-3	5	μg/L	<5	20 µg/L	103	81.8	117
EP080/071: Total Petroleum Hydrocarbons(QC	L ot: 2636791)							
EP000071. Total Petroleum Hydrocarbons (QC EP080: C6 - C9 Fraction		20	µg/L	<20	360 µg/L	91.7	65.5	129
	N att 2020007)		P-5-					
EP080/071: Total Petroleum Hydrocarbons (QC EP071: C10 - C14 Fraction	LOT: 2636967)	50	µg/L	<50	3330 µg/L	104	44.8	125
EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction		100	μg/L	<100	16500 μg/L	97.7	51.3	135
EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction		50	μg/L	<50	7800 µg/L	93.8	49.4	134
			μ <u>9</u> , Γ		7000 µg/L	30.0	73.7	13-
EP080/071: Total Recoverable Hydrocarbons - I				-00	450	01.0	04.0	101
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 µg/L	91.0	64.3	126

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Fractions (QCL	Lot: 2636967) - co	ontinued					
EP071: >C10 - C16 Fraction		100	μg/L	<100	5690 μg/L	93.3	47.3	129
EP071: >C16 - C34 Fraction		100	μg/L	<100	20700 µg/L	96.6	50.4	133
EP071: >C34 - C40 Fraction		100	µg/L	<100	1510 µg/L	96.9	45.2	136
EP080: BTEXN (QCLot: 2636791)								
EP080: Benzene	71-43-2	1	µg/L	<1	20 µg/L	92.3	69.8	124
EP080: Toluene	108-88-3	2	μg/L	<2	20 µg/L	90.9	73.6	126
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 µg/L	97.4	72.0	126
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	40 µg/L	98.9	71.5	132
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	20 µg/L	100	76.5	132
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 µg/L	101	70.5	127

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	imits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(QCLot: 26372	214)							
EM1916974-015	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	85.6	70.0	130		
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 2646907)								
EM1915635-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	102	85.0	131		
	EG020A-F: Cadmium	7440-43-9	0.05 mg/L	99.5	81.0	133			
	EG020A-F: Chromium	7440-47-3	0.2 mg/L	102	71.0	135			
	EG020A-F: Copper	7440-50-8	0.2 mg/L	98.4	76.0	130			
		EG020A-F: Lead	7439-92-1	0.2 mg/L	99.2	75.0	133		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	95.8	73.0	131		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	100	75.0	131		
EG020T: Total Met	als by ICP-MS (QCLot: 2643503)								
EM1916974-022	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	109	82.0	118		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	107	75.0	129		
		EG020A-T: Chromium	7440-47-3	1 mg/L	105	80.0	118		
		EG020A-T: Copper	7440-50-8	1 mg/L	103	81.0	115		
		EG020A-T: Lead	7439-92-1	1 mg/L	107	83.0	121		
		EG020A-T: Nickel	7440-02-0	1 mg/L	107	80.0	118		
		EG020A-T: Zinc	7440-66-6	1 mg/L	109	74.0	116		

Page	: 16 of 16
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: WATER					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	nits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035F: Dissolved	Mercury by FIMS (QCLot: 2646908) - continued						
EM1916937-037	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	87.3	70.0	120
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2649581)						
EM1917008-011	QS11	EG035T: Mercury	7439-97-6	0.01 mg/L	90.4	70.0	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 2640392)						
EM1916982-002	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	120	70.0	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 2640394)						
EM1917008-008	QS03	EK055G: Ammonia as N	7664-41-7	1 mg/L	121	70.0	130
EP074E: Halogena	ted Aliphatic Compounds (QCLot: 2636792)						
EM1916990-001	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	20 µg/L	109	40.0	124
		EP074: Trichloroethene	79-01-6	20 µg/L	104	54.0	126
EP074F: Halogena	ted Aromatic Compounds (QCLot: 2636792)						
EM1916990-001	Anonymous	EP074: Chlorobenzene	108-90-7	20 µg/L	118	68.0	132
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 2636791)						
EM1916990-001	Anonymous	EP080: C6 - C9 Fraction		280 µg/L	96.3	43.0	125
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 2636791)					
EM1916990-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	91.3	44.0	122
EP080: BTEXN (Q	CLot: 2636791)						
EM1916990-001	Anonymous	EP080: Benzene	71-43-2	20 µg/L	115	68.0	130
		EP080: Toluene	108-88-3	20 µg/L	110	72.0	132

	QA/QC Compliand	ce Assessment to assist wit	h Quality Review
Work Order	: EM1917008	Page	: 1 of 12
Amendment	:1		
Client	SENVERSA PTY LTD	Laboratory	: Environmental Division Melbourne
Contact	: LUCINDA TRICKEY	Telephone	: +6138549 9644
Project	: M17571	Date Samples Received	: 11-Oct-2019
Site	:	Issue Date	: 24-Oct-2019
Sampler	: SAM O'CONNOR	No. of samples received	: 11
Order number	: M17571	No. of samples analysed	: 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page	: 2 of 12
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		E>	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
MW7020,	MW7021,				15-Oct-2019	09-Oct-2019	6
MW7018,	MW7016,						
QS03							
Clear Plastic Bottle - Natural							
MW7075,	MW7015,				15-Oct-2019	10-Oct-2019	5
QS11							

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	14	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	14	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds WF Detection Limits	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = With	n holding time.
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) MW7020, MW7018, QS03	MW7021, MW7016,	09-Oct-2019				15-Oct-2019	09-Oct-2019	×
Clear Plastic Bottle - Natural (EA005-P) MW7075, QS11	MW7015,	10-Oct-2019				15-Oct-2019	10-Oct-2019	×

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) MW7020, MW7018, QS03	MW7021, MW7016,	09-Oct-2019				16-Oct-2019	16-Oct-2019	~
Clear Plastic Bottle - Natural (EA015H) MW7075, QS11	MW7015,	10-Oct-2019				17-Oct-2019	17-Oct-2019	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) MW7020, MW7018, QS03	MW7021, MW7016,	09-Oct-2019				16-Oct-2019	06-Nov-2019	~
Clear Plastic Bottle - Natural (ED041G) MW7075, QS11	MW7015,	10-Oct-2019				16-Oct-2019	07-Nov-2019	~
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW7020, MW7018, QS03	MW7021, MW7016,	09-Oct-2019				17-Oct-2019	06-Apr-2020	~
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW7075,	MW7015	10-Oct-2019				17-Oct-2019	07-Apr-2020	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-F) MW7019		10-Oct-2019				17-Oct-2019	07-Apr-2020	✓
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) QS08		09-Oct-2019	16-Oct-2019	06-Apr-2020	~	16-Oct-2019	06-Apr-2020	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) QS11		10-Oct-2019	16-Oct-2019	07-Apr-2020	1	16-Oct-2019	07-Apr-2020	1
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MW7020, MW7018, QS03	MW7021, MW7016,	09-Oct-2019				18-Oct-2019	06-Nov-2019	~
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) MW7075,	MW7015	10-Oct-2019				18-Oct-2019	07-Nov-2019	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035F) MW7019		10-Oct-2019				18-Oct-2019	24-Oct-2019	1

Page	: 4 of 12
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Matrix: WATER			_		Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)								
QS08		09-Oct-2019				18-Oct-2019	06-Nov-2019	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) QS11		10-Oct-2019				18-Oct-2019	07-Nov-2019	~
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW7020,	MW7021,	09-Oct-2019				16-Oct-2019	06-Nov-2019	✓
MW7018,	MW7016,							
QS03								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW7075,	MW7019,	10-Oct-2019				16-Oct-2019	07-Nov-2019	 ✓
MW7015,	QS11							
EP074A: Monocyclic Aromatic Hydrocarbons								
Amber TOC Vial - Sulfuric Acid (EP074)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019		14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	~	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								
Amber VOC Vial - Sulfuric Acid (EP074-WF)								
MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	-	23-Oct-2019	24-Oct-2019	✓
EP074B: Oxygenated Compounds								
Amber TOC Vial - Sulfuric Acid (EP074)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	-	14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	~	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								
Amber VOC Vial - Sulfuric Acid (EP074-WF)								
MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	1	23-Oct-2019	24-Oct-2019	 ✓

Matrix: WATER					Evaluatior	:: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074C: Sulfonated Compounds								
Amber TOC Vial - Sulfuric Acid (EP074)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	 ✓ 	14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	-	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								
Amber VOC Vial - Sulfuric Acid (EP074-WF)								
MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	✓	23-Oct-2019	24-Oct-2019	✓
EP074D: Fumigants								
Amber TOC Vial - Sulfuric Acid (EP074)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	✓	14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	1	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								
Amber VOC Vial - Sulfuric Acid (EP074-WF)								
MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	✓	23-Oct-2019	24-Oct-2019	✓
EP074E: Halogenated Aliphatic Compounds								
Amber TOC Vial - Sulfuric Acid (EP074)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	1
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	1	14-Oct-2019	23-Oct-2019	1
MW7018,	MW7016,							
QS03,	QS08							
Amber VOC Vial - Sulfuric Acid (EP074)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	1
QS11								
Amber VOC Vial - Sulfuric Acid (EP074-WF)								
MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	1	23-Oct-2019	24-Oct-2019	1
L								· ·

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074F: Halogenated Aromatic Compounds								
Amber TOC Vial - Sulfuric Acid (EP074) MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	~	14-Oct-2019	24-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP074) MW7020, MW7018, QS03,	MW7021, MW7016, QS08	09-Oct-2019	14-Oct-2019	23-Oct-2019	1	14-Oct-2019	23-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP074) MW7019, QS11	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	~	14-Oct-2019	24-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP074-WF) MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	1	23-Oct-2019	24-Oct-2019	1
EP074G: Trihalomethanes								
Amber TOC Vial - Sulfuric Acid (EP074) MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	1
Amber VOC Vial - Sulfuric Acid (EP074) MW7020, MW7018, QS03,	MW7021, MW7016, QS08	09-Oct-2019	14-Oct-2019	23-Oct-2019	~	14-Oct-2019	23-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP074) MW7019, QS11	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	~	14-Oct-2019	24-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP074-WF) MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	1	23-Oct-2019	24-Oct-2019	✓
EP074H: Naphthalene Amber VOC Vial - Sulfuric Acid (EP074-WF) MW7019		10-Oct-2019	23-Oct-2019	24-Oct-2019	<u>_</u>	23-Oct-2019	24-Oct-2019	√

Page	: 7 of 12
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	16-Oct-2019	1	15-Oct-2019	23-Nov-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber Glass Bottle - Unpreserved (EP071)								
MW7075,	MW7019,	10-Oct-2019	14-Oct-2019	17-Oct-2019	1	15-Oct-2019	23-Nov-2019	✓
MW7015,	QS11							
Amber TOC Vial - Sulfuric Acid (EP080)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	✓	14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	~	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS07,							
QS08								
Amber VOC Vial - Sulfuric Acid (EP080)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	16-Oct-2019	1	15-Oct-2019	23-Nov-2019	✓
MW7018,	MW7016,							
QS03,	QS08							
Amber Glass Bottle - Unpreserved (EP071)								
MW7075,	MW7019,	10-Oct-2019	14-Oct-2019	17-Oct-2019	1	15-Oct-2019	23-Nov-2019	✓
MW7015,	QS11							
Amber TOC Vial - Sulfuric Acid (EP080)								
MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	 ✓ 	14-Oct-2019	24-Oct-2019	✓
Amber VOC Vial - Sulfuric Acid (EP080)								
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	~	14-Oct-2019	23-Oct-2019	✓
MW7018,	MW7016,							
QS03,	QS07,							
QS08		 						
Amber VOC Vial - Sulfuric Acid (EP080)								
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓
QS11								

Page	: 8 of 12
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time	
Method	Method		Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080: BTEXN									
Amber TOC Vial - Sulfuric Acid (EP080) MW7075		10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓	
Amber VOC Vial - Sulfuric Acid (EP080)									
MW7020,	MW7021,	09-Oct-2019	14-Oct-2019	23-Oct-2019	1	14-Oct-2019	23-Oct-2019	✓	
MW7018,	MW7016,								
QS03,	QS07,								
QS08									
Amber VOC Vial - Sulfuric Acid (EP080)									
MW7019,	MW7015,	10-Oct-2019	14-Oct-2019	24-Oct-2019	1	14-Oct-2019	24-Oct-2019	✓	
QS11									

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
H by PC Titrator	EA005-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	14	0.00	10.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	14	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
olatile Organic Compounds	EP074	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
olatile Organic Compounds WF Detection Limits	EP074-WF	1	1	100.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
mmonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	1	NEPM 2013 B3 & ALS QC Standard
issolved Mercury by FIMS	EG035F	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
/olatile Organic Compounds	EP074	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
olatile Organic Compounds WF Detection Limits	EP074-WF	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)						-	
mmonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	 Image: A second s	NEPM 2013 B3 & ALS QC Standard
issolved Mercury by FIMS	EG035F	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	8	12.50	5.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
/olatile Organic Compounds	EP074	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
/olatile Organic Compounds WF Detection Limits	EP074-WF	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard

Page	: 10 of 12
Work Order	: EM1917008 Amendment 1
Client	: SENVERSA PTY LTD
Project	: M17571

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control freque						
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	0	14	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds	EP074	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds WF Detection Limits	EP074-WF	0	1	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Volatile Organic Compounds WF Detection Limits	EP074-WF	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

sonvorsa

Chain of Custody Documentation

Senversa Pty L				Laboratory:	ALS VIC							Änaly	sis Requ	Environmental Division				
www.senversa.c				Address: Contact: Phone:	2-4 Westall Road, Springvale Larissa Burns / Sample Log In 03 8549 9600				Zn, Hg)	TRH C6-C9 and BTEXN (W-18 Suite)							Vielbourne Work Order Refe	rence
Job Number:		M1;	7571	Purchase Order: M17571			1	표	â	N-18							ÊM1917	1000
Project Name:		Due Diligence Le	ease Investigation	Quote No:		ß	īź	l S	펍	1								
Sampled By:		S.O'C	Connor	Turn Around Time:	Standar	rd	VOCs (W-9 suite)	Sulphate, ammonia, TDS,	ວີ ວິ	l 🗒								
Project Manag	er:		a Trickey	Page:	1	of 1	။ ဦ	mor	Cq, C	and {	ammonia	.						
Email Report T			senversa.com.au	Phone/Mobile:	+61 424 172		្ត្	e, an		ទុ								
· · ·		Sample Informatio			Container Info		l ≚.	ohate	Metals (As, (W-2 suite)	100	Sulphate,							12 I III
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	TRH,		Met (W	TR	Sulp						Telephone : + 61-3-8549 9	9600
	MW7020	Water	9/10/2019				X	X	X					T	\square	·		
2	MW7021	Water	9/10/2019				X	X	X							T	1	
2	MW7018	Water	9/10/2019				X	X	X									
4	MW7016	Water	9/10/2019				X	X	X									
5	MW7075	Water	10/10/2019				X	X	X							T		
6	MW7019	Water	10/10/2019				X		X		X				Τ		Please filter metals in the	e lab
7	MW7015	Water	10/10/2019				X	X	X							T		
8	QS03	Water	9/10/2019				X	X	X							1		
-	QS04	Water	9/10/2019				X	X	X							1	Please forward to eurofin	ns
9	QS07	Water	9/10/2019							X								
10	QS08	Water	9/10/2019				X		X							1		
11	QS11	Water	10/10/2019				Х	X	X								1	
·	-									1				Î	S. C. M.	1	നിന്റെ മെ	
																12649		
										1				S.	i all'anna		ary Lab	
																20		<u> </u>
													1	101599	015	03	Date 11/15	2
															1			
Total							11	9	. 11	1	1							
		ampling procedures in a e collection of these san		enversa standard pro	cedures and/or project	Sampler Name:		Sam O'C	connor		Signatur	ê				Date:		11/10/2019
Relinquished B	iy:		· · ·		Method of Shipment (if an	pplicable):			Received b	y:								
Name/Signature		Sam O'Connor		Date: 11/10/19	Carrier / Reference #:	$\Box \rho$			Name/Signa	ature:	UA1	CMEL	~ *	CL	ک		Date: 11/16/19	
	versa	2		Time: 12:05		XUN			Of:			AL	\$				Time:	13:30
Name/Signature Of:	<u>:</u>			Date: Time:	Carrier / Reference #: Date/Time:	<u> </u>	5-1	KI-	Name/Signa Of:	ature:				·			Date:	
Name/Signature	*			Date:	Carrier / Reference #:	<u> </u>	<u> </u>	<u>v</u> ,	Name/Signa	turo:							Time:	
Of:	·			Time:	Date/Time:				Of:								Date: Time:	
V=∨	/OA Vial Hydochloric Acid	d (HCI) Preserved: VS = VOA	A Vial Sulnhuric Prese	rved: VSA = Sulphuric Pre	itric Preserved ORC; SH = Sodiur eserved Amber Glass; H = HCl Pr = Sterile Bottle; UA = Unpreserved	received Plastic: HS =	HCI Presenved Sr	necistion B	ottle: SD = Su	Inhuria Dec	anned Die	atio:			rved plast	tic;		

CERTIFICATE OF ANALYSIS

Work Order	: EM1917208	Page	: 1 of 6	
Client	SENVERSA PTY LTD	Laboratory	: Environmental Division M	elbourne
Contact	: LUCINDA TRICKEY	Contact	: Larissa Burns	
Address	: Level 6, 15 William St	Address	: 4 Westall Rd Springvale V	/IC Australia 3171
	Melbourne VICTORIA, AUSTRALIA 3000			
Telephone	: +61 03 9606 0070	Telephone	: +6138549 9644	
Project	: M17571	Date Samples Received	: 15-Oct-2019 08:45	WIIII.
Order number	:	Date Analysis Commenced	: 16-Oct-2019	
C-O-C number	:	Issue Date	: 21-Oct-2019 16:45	
Sampler	: MH			Hac-MRA NATA
Site	:			
Quote number	: EN/333 (secondary work only)			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page	: 3 of 6
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC06	 	
	Cli	ient sampli	ng date / time	09-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1917208-002	 	
Compound	CAS Nulliber	2011	- Crinc	Result	 	
EA001: pH in soil using 0.01M (Result		
pH (CaCl2)		0.1	pH Unit	8.2	 	
EA055: Moisture Content (Dried		0.1	priorite			
Moisture Content	u @ 105-110 C) 	1.0	%	9.6	 	
		1.0	70	5.0		
ED040N: Sulfate - Calcium Phoe Sulfate as SO4 2-		50	ma/ka	<50		
	14808-79-8	50	mg/kg	~ 50	 	
EG005(ED093)T: Total Metals b				-5		
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	2	 	
Copper	7440-50-8	5	mg/kg	<5	 	
Lead	7439-92-1	5	mg/kg	<5	 	
Nickel	7440-02-0	2	mg/kg	10	 	
Zinc	7440-66-6	5	mg/kg	7	 	
EG035T: Total Recoverable Me	ercury by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP075(SIM)B: Polynuclear Aror	matic Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydro		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	

Page	: 4 of 6
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC06	 	
	Cl	ient sampli	ng date / time	09-Oct-2019 00:00	 	
Commonweal		LOR	Unit	EM1917208-002	 	
Compound	CAS Number	LOIN	Onn	Result	 	
EP075(SIM)B: Polynuclear Aromatic Hy	drooorbono Con	inuad		Result		
 ^ Benzo(a)pyrene TEQ (half LOR) 	urocarbons - com	0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
		0.0				
EP080/071: Total Petroleum Hydrocarb C6 - C9 Fraction	ons 	10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
. ,				-00		
EP080/071: Total Recoverable Hydroca C6 - C10 Fraction		3 Fraction	ns mg/kg	<10		
	C6_C10	10		<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1) >C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
 ^ >C10 - C16 Fraction minus Naphthalene 		50	mg/kg	<50	 	
(F2)		50	iiig/kg	-00	 	
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-88-3	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		
^ Sum of BTEX		0.3	mg/kg	<0.2	 	
Total Xylenes		0.2		<0.2	 	
Naphthalene	 91-20-3	0.5	mg/kg mg/kg	<1	 	
•		1	шулу		 	
EP075(SIM)S: Phenolic Compound Sur	_	0.5		00.4		
Phenol-d6	13127-88-3	0.5	%	88.1	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	87.4	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	76.7	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	68.4	 	
Anthracene-d10	1719-06-8	0.5	%	84.0	 	

Page	5 of 6
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC06	 	
	Cli	ient sampli	ng date / time	09-Oct-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1917208-002	 	
				Result	 	
EP075(SIM)T: PAH Surrogates - Continued						
4-Terphenyl-d14	1718-51-0	0.5	%	96.1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	72.2	 	
Toluene-D8	2037-26-5	0.2	%	72.3	 	
4-Bromofluorobenzene	460-00-4	0.2	%	108	 	

ALS

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP075(SIM)S: Phenolic Compound	Surrogates					
Phenol-d6	13127-88-3	54	125			
2-Chlorophenol-D4	93951-73-6	65	123			
2.4.6-Tribromophenol	118-79-6	34	122			
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	61	125			
Anthracene-d10	1719-06-8	62	130			
4-Terphenyl-d14	1718-51-0	67	133			
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	51	125			
Toluene-D8	2037-26-5	55	125			
4-Bromofluorobenzene	460-00-4	56	124			

QUALITY CONTROL REPORT

Work Order	: EM1917208	Page	: 1 of 7	
Client	SENVERSA PTY LTD	Laboratory	: Environmental Division	Melbourne
Contact	: LUCINDA TRICKEY	Contact	: Larissa Burns	
Address	: Level 6, 15 William St Melbourne VICTORIA, AUSTRALIA 3000	Address	: 4 Westall Rd Springval	e VIC Australia 3171
Telephone	: +61 03 9606 0070	Telephone	: +6138549 9644	
Project	: M17571	Date Samples Received	: 15-Oct-2019	
Order number	:	Date Analysis Commenced	: 16-Oct-2019	
C-O-C number	:	Issue Date	: 21-Oct-2019	
Sampler	: MH			Hac-MRA NATA
Site	:			
Quote number	: EN/333 (secondary work only)			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES((QC Lot: 2650036)							
EM1917105-036	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	37	42	11.7	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	26	31	17.1	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	16	18	13.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	34	28	19.3	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	35	36	4.28	No Limit
EM1917203-078	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	68	74	7.54	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	43	47	8.04	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	52	38	32.3	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	7	7	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	56	63	12.7	0% - 50%
EA001: pH in soil us	ing 0.01M CaCl extract	(QC Lot: 2643823)							
EM1917129-008	Anonymous	EA001: pH (CaCl2)		0.1	pH Unit	7.2	7.3	1.65	0% - 20%
ES1933453-001	Anonymous	EA001: pH (CaCl2)		0.1	pH Unit	7.3	7.3	0.00	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2646596)							
EM1917196-002	Anonymous	EA055: Moisture Content		0.1	%	10.5	10.9	3.18	0% - 50%
EM1917216-003	Anonymous	EA055: Moisture Content		0.1	%	23.8	23.8	0.00	0% - 20%
ED040N: Sulfat <u>e - Ca</u>	alcium Phosphate Solu	ble (NEPM) (QC Lot: 2651922)				·			
EM1917208-002	QC06	ED040N: Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	<50	0.00	No Limit
EG035T: Total <u>Reco</u>	overable Mercury by FIM	MS (QC Lot: 2650035)							
EM1917105-036	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Page	: 3 of 7
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EG035T: Total Red	coverable Mercury by Fl	MS (QC Lot: 2650035) - continued										
EM1917203-078	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit			
EP075(SIM)B: Poly	nuclear Aromatic Hydro	carbons (QC Lot: 2649998)										
EM1917208-002	QC06	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
			205-82-3									
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 2643786)										
EM1917102-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit			
EM1917102-011	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit			
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 2649997)										
EM1917203-057	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit			
EM1917208-002	QC06	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2643786)										
EM1917102-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EM1917102-011	Anonymous	EP080: C6 - C10 Fraction	 C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EP080/07 <u>1: Total R</u>	ecoverable <u>Hydrocarbo</u>	ns - NEPM 2013 Fractions (QC Lot: 2649997)										
EM1917203-057	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
	,	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit			

Page	: 4 of 7
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 2649997) - continued											
EM1917208-002	QC06	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit		
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit		
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit		
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit		
EP080: BTEXN (QC	Lot: 2643786)										
EM1917102-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit		
EM1917102-011	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number LOR Unit		Unit	Result	Concentration	LCS	Low	High	
G005(ED093)T: Total Metals by ICP-AES (QCLot: 2	650036)								
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	96.6	78.5	107	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	88.1	76.2	108	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	94.2	77.7	110	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	91.9	78.1	108	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	90.4	78.4	106	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	97.3	79.9	109	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	90.8	79.1	110	
ED040N: Sulfate - Calcium Phosphate Soluble (NEPI	M) (QCLot: 2651922)								
ED040N: Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	3000 mg/kg	101	86.1	116	
EG035T: Total Recoverable Mercury by FIMS (QCL	ot: 2650035)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	100	76.9	110	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(OCL at: 26/9998)				0.0				
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	113	84.6	128	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	104	76.9	127	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	106	85.3	128	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	107	82.1	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	98.2	85.4	133	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	104	88.7	136	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	# 81.7	83.4	136	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	87.7	85.1	140	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	82.2	80.7	130	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	86.2	85.2	141	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	93.9	68.5	120	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	103	80.1	132	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	116	67.4	120	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	83.2	66.0	126	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	90.6	65.4	127	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	88.9	67.8	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	2643786)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	75.3	61.2	127	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	2649997)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	688 mg/kg	102	71.8	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	3100 mg/kg	96.4	83.9	125	

Page	: 6 of 7
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons(C	CLot: 2649997) - continued								
EP071: C29 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	93.0	77.9	119	
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCL	ot: 2643786)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	71.6	59.5	125	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCL	.ot: 2649997)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1050 mg/kg	96.4	72.2	128	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3960 mg/kg	97.6	82.1	122	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	280 mg/kg	81.5	55.1	131	
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50					
EP080: BTEXN (QCLot: 2643786)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	68.1	62.7	119	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	79.4	66.6	126	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	76.9	66.3	124	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	88.0	67.5	128	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	92.8	73.0	128	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	91.4	61.2	123	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	Concentration	MS	Low	High	
EG005(ED093)T: To	tal Metals by ICP-AES (QCLot: 2650036)						
EM1917105-038	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	90.3	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	89.8	84.0	116
		EG005T: Chromium	7440-47-3	50 mg/kg	89.5	79.0	121
		EG005T: Copper	7440-50-8	50 mg/kg	93.2	82.0	124
		EG005T: Lead	7439-92-1	50 mg/kg	90.8	76.0	124
		EG005T: Nickel	7440-02-0	50 mg/kg	90.4	78.0	120
		EG005T: Zinc	7440-66-6	50 mg/kg	86.5	74.0	128
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 2650035)						
EM1917105-038	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	105	76.0	116
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2649998)						
EM1917235-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	94.8	67.0	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	70.3	52.0	148

Page	: 7 of 7
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2643786)						
EM1917102-002	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	80.7	42.0	131
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2649997)						
EM1917191-001	Anonymous	EP071: C10 - C14 Fraction		688 mg/kg	114	53.0	123
		EP071: C15 - C28 Fraction		3100 mg/kg	# Not Determined	70.0	124
		EP071: C29 - C36 Fraction		1490 mg/kg	# Not Determined	64.0	118
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 2643786)					
EM1917102-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	75.1	39.0	129
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 2649997)					
EM1917191-001	Anonymous	EP071: >C10 - C16 Fraction		1050 mg/kg	116	65.0	123
		EP071: >C16 - C34 Fraction		3960 mg/kg	# Not Determined	67.0	121
		EP071: >C34 - C40 Fraction		280 mg/kg	# Not Determined	44.0	126
EP080: BTEXN (Q	CLot: 2643786)						
EM1917102-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	84.0	50.0	136
		EP080: Toluene	108-88-3	2 mg/kg	94.6	56.0	139

QA/QC Compliance Assessment to assist with Quality Review									
Work Order	: EM1917208	Page	: 1 of 6						
Client		Laboratory	: Environmental Division Melbourne						
Contact	: LUCINDA TRICKEY	Telephone	: +6138549 9644						
Project	: M17571	Date Samples Received	: 15-Oct-2019						
Site	:	Issue Date	: 21-Oct-2019						
Sampler	: MH	No. of samples received	: 2						
Order number	:	No. of samples analysed	: 1						

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2649998-001		Fluoranthene	206-44-0	81.7 %	83.4-136%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
EP080/071: Total Petroleum Hydrocarbons	EM1917191001	Anonymous	C15 - C28 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Petroleum Hydrocarbons	EM1917191001	Anonymous	C29 - C36 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	2 EM1917191001	Anonymous	>C16 - C34 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	2 EM1917191001	Anonymous	>C34 - C40 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Со	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Sulfate - Calcium Phosphate Soluble	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract							
Soil Glass Jar - Unpreserved (EA001) QC06	09-Oct-2019	16-Oct-2019	16-Oct-2019	1	16-Oct-2019	16-Oct-2019	~
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) QC06	09-Oct-2019				17-Oct-2019	23-Oct-2019	~

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED040N: Sulfate - Calcium Phosphate Soluble (NEPM)							
Soil Glass Jar - Unpreserved (ED040N) QC06	09-Oct-2019	19-Oct-2019	06-Apr-2020	1	21-Oct-2019	06-Apr-2020	1
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QC06	09-Oct-2019	18-Oct-2019	06-Apr-2020	~	18-Oct-2019	06-Apr-2020	~
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QC06	09-Oct-2019	18-Oct-2019	06-Nov-2019	1	19-Oct-2019	06-Nov-2019	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) QC06	09-Oct-2019	18-Oct-2019	23-Oct-2019	~	20-Oct-2019	27-Nov-2019	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) QC06	09-Oct-2019	16-Oct-2019	23-Oct-2019	~	18-Oct-2019	23-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071) QC06	09-Oct-2019	18-Oct-2019	23-Oct-2019	1	20-Oct-2019	27-Nov-2019	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) QC06	09-Oct-2019	16-Oct-2019	23-Oct-2019	1	18-Oct-2019	23-Oct-2019	✓
Soil Glass Jar - Unpreserved (EP071) QC06	09-Oct-2019	18-Oct-2019	23-Oct-2019	1	20-Oct-2019	27-Nov-2019	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QC06	09-Oct-2019	16-Oct-2019	23-Oct-2019	1	18-Oct-2019	23-Oct-2019	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH in soil using a 0.01M CaCl2 extract	EA001	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	1	1	100.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate - Calcium Phosphate Soluble	ED040N	0	1	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons (2011) 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3)
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Sulfate - Calcium Phosphate Soluble	ED040N	SOIL	In house: The sample is extracted with a calcium phosphate solution. The phosphate ion displaces the adsorbed sulfate while calcium ions depress the extraction of interfering S from soil organic matter. SO4 in the extract is determined by ICPAES and reported as dry weight in the original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 406)
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Higginson 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Calcium Phosphate Extraction for Sulphate as SO4 2-	ED040NPR	SOIL	The sample is extracted with a calcium phosphate solution. The phosphate ion displaces the adsorbed sulphate while calcium ions depress the extraction of interfering S from soil organic matter. SO4 in the extract is determined by ICPAES and reported as dry weight in the original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 406)

Page	: 6 of 6
Work Order	: EM1917208
Client	: SENVERSA PTY LTD
Project	: M17571

Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EM1917208						
Client Contact Address	 SENVERSA PTY LTD LUCINDA TRICKEY Level 6, 15 William St Melbourne VICTORIA, AUSTRALIA 3000 	Contact : Larissa	mental Division Melbourne Burns Il Rd Springvale VIC Australia				
E-mail Telephone Facsimile	: lucinda.trickey@senversa.com.au : +61 03 9606 0070 : +61 03 9606 0074	E-mail : Larissa. Telephone : +613854 Facsimile : +61-3-8					
Project Order number	: M17571 :	(second	 1 of 2 EM2017SENVER0009 (EN/333 (secondary work only)) NEPM 2013 B3 & ALS QC Standard 				
C-O-C number Site Sampler	: : : MH		U13 B3 & ALS QC Standard				
Dates Date Samples Receiv Client Requested Due Date		Issue Date Scheduled Reporting Date	: 16-Oct-2019 : 22-Oct-2019				
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S : Carrier : 2 :	Security Seal Temperature No. of samples received / analyse	: Not Available : 5.8°C - Ice present d : 2 / 1				

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Matrix: SOIL Laboratory sample	Client sampling date / time	Client sample ID	(On Hold) SOIL No analysis reque:	SOIL - EA001 pH (CaCl)	SOIL - EA055-103 Moisture Content	SOIL - ED040N Calcium Phosphat	SOIL - S-26 8 metals/TRH/BTE
EM1917208-001	09-Oct-2019 00:00	QC02	✓				
EM1917208-002	09-Oct-2019 00:00	QC06		1	1	1	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

LUCINDA TRICKEY

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

SUPPLIER ACCOUNTS

- A4 - AU Tax Invoice (INV)

Email Email Email Email Email Email Email Email

Email

osphate Extractable Sulfate

s requested

RH/BTEXN/PAH

lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au lucinda.trickey@senversa.com.au

supplieraccounts@senversa.com.a u

senversa

Chain of Custody Documentation

Senversa P	tv Ltd			Laboratory:	mgt/Eurofins VIC			Analysis Required								
www.senver	sa.com.au			Address: Contact: Phone:	6 Monterey Road, Dandenong Harry Bacalis/ Sample Log In 03 9564 7055	South, VIC 3175	tals									<u>Comments</u> : e.g. Highly contaminated sample; hazardous materials present; trace LORs etc.
Job Numbe	r:	17	571	Purchase Order:			8 metals									
Project Nan		E	SA	Quote No:			×.			X						
Sampled By			50		furn Around Time: STANDARD											2
			a Trickey		- TRH / PAH / BTEX /			(C6-C9) and BTEX								
Project Mar				Page:	101 404 47	H/P			ပို							
Email Repo	rt 10:	Sample Informatio	senversa.com.au	Phone/Mobile:	1	+61 424 172 065 Container Information										
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	B7 -	Sulphate	Ha	TRH						
	SB7381_0.1-0.2	Soil	19/11/2019	AM		1 Jar										
	SB7381 0.4-0.5	Soil	19/11/2019	AM		1 Jar	Х	X	X							
	SB7381 0.9-1.0	Soil	19/11/2019	AM		1 Jar										
	SB7381_1.9-2.0	Soil	19/11/2019	AM		1 Jar	Х	X	X							
	SB7382 0.1-0.2	Soil	19/11/2019	AM		1 Jar	X	X	X							
	SB7382_0.4-0.5	Soil	19/11/2019	AM		1 Jar						1				
	SB7382 0.8-0.9	Soil	19/11/2019	AM		1 Jar	Х	X	X							
	SB7382 1.9-2.0	Soil	19/11/2019	AM		1 Jar	~									
	SB7383 0.1-0.2	Soil	19/11/2019	AM		1 Jar	Х	X	X							
	SB7383 0.4-0.5	Soil	19/11/2019	AM		1 Jar										
	SB7383_0.9-1.0	Soil	19/11/2019	AM		1 Jar	X	X	X			1				
	SB7383_1.9-2.0	Soil	19/11/2019	AM		1 Jar						1				
	SB7384 0.1-0.2	Soil	19/11/2019	AM		1 Jar	Х	X	X			1				
		Soil	19/11/2019	AM		1 Jar	X	X	X			+				
	SB7384_0.4-0.5	Soil		AM								-				
	SB7384_0.9-1.0	Soil	19/11/2019	AM		1 Jar		-				-				
	SB7384_1.9-2.0		19/11/2019	AM		1 Jar				X		-				
	QS01	Water	10/11/2010			1 Jar	Х					-		-		
	QS02	Soil	19/11/2019	AM			X	-		-		-		-		Please forward to ALS
	QS03	Soil	19/11/2019	AM		1 Jar	X		-			-			-	Please forward to ALS
-	QS04	Water	and the second second			Married The				1	100 H (100 H (100 H	-				
Total							11	8	8	1						
	attest that proper field samp ons were used during the co			nversa standard proce	edures and/or project	Sampler Name:					Signature:				Date:	
Relinquish	ed By:				Method of Shipment (if an	plicable):			Receiv		1 inter to	0				
Name/Signa		Sam O'Connor		Date: 19/11/19	Carrier / Reference #:	-					* Mollis		serre	e		Date: 9-1/-19
	Senversa			Time: 2 10m	Date/Time:		00	10	Of:	B	C.C.	1N	>			Time: 4:55
Name/Signa Of:	ture:			Date: /	Carrier / Reference #: Date/Time:		-	Aut	Of:	Signatur);					Time:
Name/Signa	iture:			Date:	Carrier / Reference #:			14.		Signatur	fure:				Date:	
Of:				Time:	Date/Time:		~	Of: Time:						Time:		
	Water Container Codes: P = U V = VOA Vial Hydochloric Acid (H F = Formaldehyde Preserved Gla	ICI) Preserved: VS = V	OA Vial Sulphuric Pres	erved: VSA = Sulphuric Pa	reserved Amber Glass; H = HCI	Preserved Plastic; HS	= HCI P	reserved	Speciatio	n Bottle;	SP = Sulphuric F	reserved	Plastic;			erved plastic;

Completed by: _____ Checked by: _____

1089915 19/11/19 A. 550 300me

571

ş

Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Senversa Pty Ltd VIC
Contact name:	Lucinda Trickey
Project name:	ESA
Project ID:	17571
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Nov 19, 2019 4:55 PM
Eurofins reference:	688915

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 6.2 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Harry Bacalis on Phone : or by e.mail: HarryBacalis@eurofins.com

Results will be delivered electronically via e.mail to Lucinda Trickey - Lucinda.Trickey@senversa.com.au.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad Pr	ompany Name: Idress: oject Name: oject ID:	ect Name: ESA					Order No.: Report #: 6889 Phone: 9606 Fax:						Received: Nov 19, 2019 4:55 PM Due: Nov 26, 2019 Priority: 5 Day Contact Name: Lucinda Trickey
	Sample Detail							Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
	ourne Laborato			71		Х	Х	Х	Х	Х	Х	Х	
	ney Laboratory bane Laboratory												_
	h Laboratory - N												-
	rnal Laboratory		00										-
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SB7381_0.4- 0.5	Nov 19, 2019		Soil	M19-No26582		х	х			х	х	
2	SB7381_1.9- 2.0	Nov 19, 2019		Soil	M19-No26583		x	х			х	х	
3	SB7382_0.8- 0.9	Nov 19, 2019		Soil	M19-No26584		x	х			х	х	
4	SB7383_0.1- 0.2	Nov 19, 2019		Soil	M19-No26585		x	х			х	х	
5	SB7383_0.9- 1.0	Nov 19, 2019		Soil	M19-No26586		x	х			х	x	
6	SB7384_0.1-	Nov 19, 2019		Soil	M19-No26587		х	х			х	х	

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ac	Company Name:Senversa Pty Ltd VICAddress:Level 6, 15 William St Melbourne VIC 3000Project Name:ESA 17571						der N port i ione: x:	#:		88915 606 0		Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda TrickeyEurofins Analytical Services Manager : Harry Bacalis
	Sample Detail							TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
		ory - NATA Site # 125	4 & 14271		х	Х	х	Х	х	х	х	
		- NATA Site # 18217										
		y - NATA Site # 20794	4									-
Pert		NATA Site # 23736										-
7	0.2 SB7384_0.4- 0.5	Nov 19, 2019	Soil	M19-No26588		x	x			x	х	
8	QS01	Nov 19, 2019	Water	M19-No26589				х	х			
9	QS04	Nov 19, 2019	Water	M19-No26590							Х	
10	SB7381_0.1- 0.2	Nov 19, 2019	Soil	M19-No26591	х							
11	SB7381_0.9- 1.0	Nov 19, 2019	Soil	M19-No26592	x							
12	SB7382_0.4- 0.5	Nov 19, 2019	Soil	M19-No26593	х							
13	SB7382_1.9- 2.0	Nov 19, 2019	Soil	M19-No26594	х							
14	SB7383_0.4-	Nov 19, 2019	Soil	M19-No26595	Х							

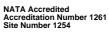
ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: ESA											Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda Trickey
	oject Name: oject ID:	ESA 17571										Eurofins Analytical Services Manager : Harry Bacalis
	Sample Detail						Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
		ory - NATA Site #			Х	Х	X	Х	Х	Х	Х	-
		- NATA Site # 182 y - NATA Site # 20										-
		NATA Site # 23736										-
ren	0.5		, 									-
15	SB7383_1.9- 2.0	Nov 19, 2019	Soil	M19-No26596	х							
16	SB7384_0.9- 1.0	Nov 19, 2019	Soil	M19-No26597	х							
17	SB7384_1.9- 2.0	Nov 19, 2019	Soil	M19-No26598	x							
18	SB7382_0.1- 0.2	Nov 19, 2019	Soil	M19-No26599		х	х			х	х	
19	QS02	Nov 19, 2019	Soil	M19-No26600		х	х			Х	х	
Test	Counts				8	9	9	1	1	9	10	

Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000

Attention:


Lucinda Trickey

Report
Project name
Project ID
Received Date

688915-S ESA 17571 Nov 19, 2019

Client Sample ID			SB7381_0.4- 0.5	SB7381_1.9- 2.0	SB7382_0.8- 0.9	SB7383_0.1- 0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-No26582	M19-No26583	M19-No26584	M19-No26585
Date Sampled			Nov 19, 2019	Nov 19, 2019	Nov 19, 2019	Nov 19, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	89	86	88
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

te Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			SB7381_0.4- 0.5	SB7381_1.9- 2.0	SB7382_0.8- 0.9	SB7383_0.1- 0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-No26582	M19-No26583	M19-No26584	M19-No26585
Date Sampled			Nov 19, 2019	Nov 19, 2019	Nov 19, 2019	Nov 19, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	68	71	74	81
p-Terphenyl-d14 (surr.)	1	%	97	116	146	112
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.9	8.7	8.0	8.7
Sulphate (as SO4)	30	mg/kg	750	600	< 30	< 30
% Moisture	1	%	6.7	19	5.7	12
Heavy Metals	·					
Arsenic	2	mg/kg	16	6.1	< 2	8.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	31	8.0	< 5	23
Copper	5	mg/kg	170	< 5	< 5	44
Lead	5	mg/kg	80	< 5	< 5	40
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	17	< 5	< 5	57
Zinc	5	mg/kg	630	5.1	< 5	210

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SB7383_0.9- 1.0 Soil M19-No26586 Nov 19, 2019	SB7384_0.1- 0.2 Soil M19-No26587 Nov 19, 2019	SB7384_0.4- 0.5 Soil M19-No26588 Nov 19, 2019	SB7382_0.1- 0.2 Soil M19-No26599 Nov 19, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	620	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	640	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	1260	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	110	72	74

Client Sample ID			SB7383_0.9-	SB7384_0.1-	SB7384_0.4-	SB7382_0.1-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M19-No26586	M19-No26587	M19-No26588	M19-No26599
•						
Date Sampled			Nov 19, 2019	Nov 19, 2019	Nov 19, 2019	Nov 19, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fr						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	1100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	310	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	1410	< 100	< 100
Polycyclic Aromatic Hydrocarbons				_		_
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	18	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	18	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	18	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	5.9	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	15	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	6.3	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	4.2	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	6.9	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	11	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	1.0	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	15	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	3.4	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.8	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	18	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	87.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	97	50	86	59
p-Terphenyl-d14 (surr.)	1	%	79	80	116	76
		,,,				
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.7	8.5	9.3	8.5
Sulphate (as SO4)	30	mg/kg	41	< 30	< 30	< 30
% Moisture	1	%	9.7	22	21	9.4
Heavy Metals		70	0.7		<u> </u>	
Arsenic	2	mg/kg	4.5	9.6	24	4.8
Cadmium	0.4	mg/kg	< 0.4	0.7	< 0.4	< 0.4
Chromium	5		<u>< 0.4</u> 10.0	26	<u>< 0.4</u> 54	14
	5	mg/kg	< 5	86	21	34
Copper		mg/kg			12	34
Lead	5	mg/kg	< 5	46		
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel Zinc	5	mg/kg mg/kg	7.4 8.9	<u>39</u> 200	<u>32</u> 50	<u>22</u> 98

Client Sample ID			0502
Sample Matrix			QS02 Soil
· ·			
Eurofins Sample No.			M19-No26600
Date Sampled			Nov 19, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
втех		1	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	59
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	69 55
p-Terphenyl-d14 (surr.)	1	%	55
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.7
Sulphate (as SO4)	30	mg/kg	< 30
% Moisture		mg/кg %	
	1	70	21

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			QS02 Soil M19-No26600 Nov 19, 2019
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	20
Cadmium	0.4	mg/kg	0.5
Chromium	5	mg/kg	39
Copper	5	mg/kg	70
Lead	5	mg/kg	55
Mercury	0.1	mg/kg	0.1
Nickel	5	mg/kg	33
Zinc	5	mg/kg	300

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 21, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Nov 21, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 21, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 21, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Nov 21, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Nov 21, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Nov 21, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Melbourne	Nov 21, 2019	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
% Moisture	Melbourne	Nov 19, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad Pre	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: ESA Project ID: 17571						Order No.: Report #: 688915 Phone: 9606 0070 Fax:						Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda Trickey
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
				71		Х	Х	Х	Х	Х	Х	Х	
	ney Laboratory												
	<u>bane Laboratory</u> h Laboratory - N												
	rnal Laboratory		30										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SB7381_0.4- 0.5	Nov 19, 2019		Soil	M19-No26582		x	х			х	х	
2	SB7381_1.9- 2.0	Nov 19, 2019		Soil	M19-No26583		х	х			х	х	
3	SB7382_0.8- 0.9	Nov 19, 2019		Soil	M19-No26584		x	х			х	x	
4	SB7383_0.1- 0.2	Nov 19, 2019		Soil	M19-No26585		x	х			х	х	
5	SB7383_0.9- 1.0	Nov 19, 2019		Soil	M19-No26586		x	х			х	х	
6	SB7384_0.1-	Nov 19, 2019		Soil	M19-No26587		х	х			х	х	

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ac Pr	company Name: Senversa Pty Ltd VIC .ddress: Level 6, 15 William St Melbourne VIC 3000 roject Name: ESA roject ID: 17571				Level 6, 15 William St Report #: 688915 Melbourne Phone: 9606 0070 VIC 3000 Fax: ESA ESA ESA				Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda TrickeyEurofins Analytical Services Manager : Harry Bacalis			
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
			4 & 14271		Х	Х	Х	Х	Х	Х	Х	
		- NATA Site # 18217										_
		y - NATA Site # 20794	1									_
Pert		NATA Site # 23736										_
7	0.2 SB7384_0.4- 0.5	Nov 19, 2019	Soil	M19-No26588		x	x			x	х	-
8	QS01	Nov 19, 2019	Water	M19-No26589				Х	Х			
9	QS04	Nov 19, 2019	Water	M19-No26590							Х	
10	SB7381_0.1- 0.2	Nov 19, 2019	Soil	M19-No26591	х							
11	SB7381_0.9- 1.0	Nov 19, 2019	Soil	M19-No26592	х							
12	SB7382_0.4- 0.5	Nov 19, 2019	Soil	M19-No26593	х							
13	SB7382_1.9- 2.0	Nov 19, 2019	Soil	M19-No26594	х							
14	SB7383_0.4-	Nov 19, 2019	Soil	M19-No26595	Х							

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad Pr	ompany Name: Senversa Pty Ltd VIC ddress: Level 6, 15 William St Melbourne VIC 3000 roject Name: ESA roject ID: 17571						Re	der N port a one: x:	#:		38915 606 00		Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda Trickey
Pr	oject ID:	17571											Eurofins Analytical Services Manager : Harry Bacalis
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
				.71		Х	Х	Х	Х	Х	Х	Х	
		- NATA Site # 182 y - NATA Site # 20				-							-
		y - NATA Site # 20 NATA Site # 23730											-
- Crt	0.5		•										
15	SB7383_1.9- 2.0	Nov 19, 2019		Soil	M19-No26596	х							
16	SB7384_0.9- 1.0	Nov 19, 2019		Soil	M19-No26597	х							
17	SB7384_1.9- 2.0	Nov 19, 2019		Soil	M19-No26598	х							
18	SB7382_0.1- 0.2	Nov 19, 2019		Soil	M19-No26599		x	х			х	х	
19	QS02	Nov 19, 2019		Soil	M19-No26600		х	Х			Х	х	
Test	Counts					8	9	9	1	1	9	10	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank		•	· · ·		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Sulphate (as SO4)	mg/kg	< 30	30	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery			· · · · ·		

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions						
TRH C6-C9			%	105		70-130	Pass	
TRH C10-C14				127		70-130	Pass	
LCS - % Recovery						-		
BTEX								
Benzene			%	120		70-130	Pass	
Toluene			%	124		70-130	Pass	
Ethylbenzene			%	118		70-130	Pass	
m&p-Xylenes			%	119		70-130	Pass	
Xylenes - Total			%	116		70-130	Pass	
LCS - % Recovery				1			1	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions						
Naphthalene			%	110		70-130	Pass	
TRH C6-C10			%	102		70-130	Pass	
TRH >C10-C16			%	122		70-130	Pass	
LCS - % Recovery				1			1	
Polycyclic Aromatic Hydrocarbons								
Acenaphthene			%	96		70-130	Pass	
Acenaphthylene			%	88		70-130	Pass	
Anthracene			%	100		70-130	Pass	
Benz(a)anthracene			%	80		70-130	Pass	
Benzo(a)pyrene			%	77		70-130	Pass	
Benzo(b&j)fluoranthene			%	82		70-130	Pass	
Benzo(g.h.i)perylene			%	84		70-130	Pass	
Benzo(k)fluoranthene			%	92		70-130	Pass	
Chrysene			%	103		70-130	Pass	
Dibenz(a.h)anthracene			%	72		70-130	Pass	
Fluoranthene			%	117		70-130	Pass	
Fluorene			%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	77		70-130	Pass	
Naphthalene			%	94		70-130	Pass	
Phenanthrene			%	99		70-130	Pass	
Pyrene			%	115		70-130	Pass	
LCS - % Recovery			0/	00		70.400	Deee	
Sulphate (as SO4)			%	96		70-130	Pass	
LCS - % Recovery							[
Heavy Metals			%	90		80.120	Deee	
Arsenic Cadmium			%	90 100		80-120 80-120	Pass Pass	
Cadmium			%	91		80-120	Pass	
Copper			%	90		80-120	Pass	
Lead			%	88		80-120	Pass	
Mercury			%	94		75-125	Pass	
Nickel			%	89		80-120	Pass	
Zinc			%	91		80-120	Pass	
Test	Lab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
Spike - % Recovery		Source				Limits	Limits	Code
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	M19-No26545	NCP	%	94		70-130	Pass	
Acenaphthylene	M19-No26545	NCP	%	85		70-130	Pass	
Anthracene	M19-No26545	NCP	%	102		70-130	Pass	
Benz(a)anthracene	M19-No26545	NCP	%	73		70-130	Pass	
Benzo(a)pyrene	M19-No26545	NCP	%	84		70-130	Pass	
Benzo(b&j)fluoranthene	M19-No26545	NCP	%	77		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene	M19-No26545	NCP	%	73			70-130	Pass	
Benzo(k)fluoranthene	M19-No26545	NCP	%	107			70-130	Pass	
Chrysene	M19-No26545	NCP	%	88			70-130	Pass	
Dibenz(a.h)anthracene	M19-No26545	NCP	%	70			70-130	Pass	
Fluoranthene	M19-No26545	NCP	%	90			70-130	Pass	
Fluorene	M19-No26545	NCP	%	100			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-No26545	NCP	%	79			70-130	Pass	
Naphthalene	M19-No26545	NCP	%	93			70-130	Pass	
Phenanthrene	M19-No26545	NCP	%	91			70-130	Pass	
Pyrene	M19-No26545	NCP	%	89			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M19-No27522	NCP	%	107			75-125	Pass	
Cadmium	M19-No27522	NCP	%	95			75-125	Pass	
Copper	M19-No27522	NCP	%	109			75-125	Pass	
Lead	M19-No27522	NCP	%	108			75-125	Pass	
Mercury	M19-No27522	NCP	%	75			70-130	Pass	
Nickel	M19-No27522	NCP	%	107			75-125	Pass	
Zinc	M19-No27522	NCP	%	113			75-125	Pass	
Spike - % Recovery			,,,	1 110			10.20	1 400	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M19-No26583	CP	%	126			70-130	Pass	
TRH C10-C14	M19-No26583	CP	%	93			70-130	Pass	
Spike - % Recovery	1110 11020000		70		II		10 100	1 400	
BTEX				Result 1			1		
Benzene	M19-No26583	CP	%	114			70-130	Pass	
Toluene	M19-No26583	CP	%	120			70-130	Pass	
Ethylbenzene	M19-No26583	CP	%	112			70-130	Pass	
m&p-Xylenes	M19-No26583	CP	%	112			70-130	Pass	
o-Xylene	M19-No26583	CP	%	123			70-130	Pass	
Xylenes - Total	M19-No26583	CP	%	120			70-130	Pass	
Spike - % Recovery	10113-11020303		70	120			10 100	1 433	
Total Recoverable Hydrocarbons -	2013 NEPM Eract	ione		Result 1			1		
Naphthalene	M19-No26583	CP	%	105			70-130	Pass	
TRH C6-C10	M19-No26583	CP	%	123			70-130	Pass	
TRH >C10-C16	M19-No26583	CP	%	89			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M19-No29917	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M19-No26582	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M19-No26582	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M19-No26582	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M19-No29917	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Denzene					< 0.1	<1	30%	Pass	
	M19-No29917	I NCP I	ma/ka	< 0.1					
Toluene	M19-No29917 M19-No29917	NCP NCP	mg/kg ma/ka	< 0.1					
Toluene Ethylbenzene	M19-No29917	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene									

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-No29917	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M19-No29917	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M19-No26582	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M19-No26582	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M19-No26582	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	1110 11020002	01	iiig/kg	100			0070	1 400	
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M19-No26544	NCP		< 0.5	< 0.5	<1	30%	Pass	
		NCP	mg/kg		1 1		30%		
Benzo(g.h.i)perylene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1		Pass	
Benzo(k)fluoranthene	M19-No26544		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M19-No26544	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							_	-	
	1		1	Result 1	Result 2	RPD			
Sulphate (as SO4)	M19-No26406	NCP	mg/kg	11000	8700	21	30%	Pass	
% Moisture	M19-No26561	NCP	%	19	19	<1	30%	Pass	
Duplicate					1 1		1		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-No27522	NCP	mg/kg	4.1	4.2	2.0	30%	Pass	
Cadmium	M19-No27521	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M19-No27522	NCP	mg/kg	130	130	4.0	30%	Pass	
Copper	M19-No27522	NCP	mg/kg	12	13	2.0	30%	Pass	
Lead	M19-No27522	NCP	mg/kg	24	24	<1	30%	Pass	
Mercury	M19-No27522	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M19-No27522	NCP	mg/kg	9.8	9.8	<1	30%	Pass	
Zinc	M19-No27522	NCP	mg/kg	6.2	6.2	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	M19-No26599	СР	pH Units	8.5	8.5	pass	30%	Pass	
Duplicate						·			
•				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	M19-No26600	СР	pH Units	8.7	8.6	pass	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Analytical Services Manager
Senior Analyst-Metal (VIC)
Senior Analyst-Volatile (VIC)
Senior Analyst-Organic (VIC)
Senior Analyst-Inorganic (VIC)

li falle

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000

Attention:

Lucinda Trickey

Report Project name Project ID Received Date 688915-W ESA 17571 Nov 19, 2019

Client Sample ID			QS01	QS04
Sample Matrix			Water	Water
Eurofins Sample No.			M19-No26589	M19-No26590
Date Sampled			Nov 19, 2019	Nov 19, 2019
Test/Reference	LOR	Unit		,
Total Recoverable Hydrocarbons - 1999 NEPM	-	Onit		
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	_	< 0.05
TRH C15-C28	0.1	mg/L	-	< 0.1
TRH C29-C36	0.1	mg/L	-	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	-	< 0.1
втех	•			
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	102	108
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01
TRH C6-C10	0.02	mg/L	-	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	< 0.1
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	-	< 0.001
Acenaphthylene	0.001	mg/L	-	< 0.001
Anthracene	0.001	mg/L	-	< 0.001
Benz(a)anthracene	0.001	mg/L	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	< 0.001
Chrysene	0.001	mg/L	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	-	< 0.001
Fluoranthene	0.001	mg/L	-	< 0.001
Fluorene	0.001	mg/L	-	< 0.001

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			QS01 Water	QS04 Water
Eurofins Sample No.			M19-No26589	M19-No26590
Date Sampled			Nov 19, 2019	Nov 19, 2019
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	< 0.001
Naphthalene	0.001	mg/L	-	< 0.001
Phenanthrene	0.001	mg/L	-	< 0.001
Pyrene	0.001	mg/L	-	< 0.001
Total PAH*	0.001	mg/L	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	128
p-Terphenyl-d14 (surr.)	1	%	-	120
Heavy Metals				
Arsenic	0.001	mg/L	-	< 0.001
Cadmium	0.0002	mg/L	-	< 0.0002
Chromium	0.001	mg/L	-	< 0.001
Copper	0.001	mg/L	-	< 0.001
Lead	0.001	mg/L	-	< 0.001
Mercury	0.0001	mg/L	-	< 0.0001
Nickel	0.001	mg/L	-	< 0.001
Zinc	0.005	mg/L	-	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Eurofins mat Suite B7	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Nov 20, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Melbourne	Nov 20, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 20. 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		,	, Dayo
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Nov 20, 2019	
Polycyclic Aromatic Hydrocarbons - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water	Melbourne	Nov 20, 2019	7 Days
Metals M8	Melbourne	Nov 20, 2019	180 Days
- Method: I TM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pr	Company Name: Address:Senversa Pty Ltd VIC Level 6, 15 William St Melbourne 							der N port a one: x:			38915 506 00		Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda TrickeyEurofins Analytical Services Manager : Harry Bacalis
	Sample Detail					HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
		ory - NATA Site		71		Х	Х	Х	Х	Х	Х	Х	
		- NATA Site # 1											-
		y - NATA Site # NATA Site # 237											-
	rnal Laboratory		50										-
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SB7381_0.4- 0.5	Nov 19, 2019		Soil	M19-No26582		x	х			х	х	
2	SB7381_1.9- 2.0	Nov 19, 2019		Soil	M19-No26583		x	х			х	х	
3	SB7382_0.8- 0.9	Nov 19, 2019		Soil	M19-No26584		x	х			х	х	
4	SB7383_0.1- 0.2	Nov 19, 2019		Soil	M19-No26585		x	х			х	х	
5	SB7383_0.9- 1.0	Nov 19, 2019		Soil	M19-No26586		x	х			х	х	
6	SB7384_0.1-	Nov 19, 2019		Soil	M19-No26587		х	х			х	х	

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pre	Company Name: Address:Senversa Pty Ltd VIC Level 6, 15 William St Melbourne 						der N eport a ione: ix:	#:	-	88915 606 0		Received: Nov 19, 2019 4:55 PM Due: Nov 26, 2019 Priority: 5 Day Contact Name: Lucinda Trickey
Sample Detail					HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
		ory - NATA Site # 125	4 & 14271		х	Х	х	Х	х	х	х	
		- NATA Site # 18217										_
		<u>y - NATA Site # 2079</u> NATA Site # 23736	4									-
Feit	0.2	NATA Sile # 25750										-
7	SB7384_0.4- 0.5	Nov 19, 2019	Soil	M19-No26588		x	x			x	х	< <u> </u>
8	QS01	Nov 19, 2019	Water	M19-No26589				Х	Х			
9	QS04	Nov 19, 2019	Water	M19-No26590							Х	κ.
10	SB7381_0.1- 0.2	Nov 19, 2019	Soil	M19-No26591	х							
11	SB7381_0.9- 1.0	Nov 19, 2019	Soil	M19-No26592	х							
12	SB7382_0.4- 0.5	Nov 19, 2019	Soil	M19-No26593	х							
13	SB7382_1.9- 2.0	Nov 19, 2019	Soil	M19-No26594	х							
14	SB7383_0.4-	Nov 19, 2019	Soil	M19-No26595	х							

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	Company Name: Senversa Pty Ltd VIC Address: Level 6, 15 William St Melbourne VIC 3000 Project Name: ESA					Re	der N port i ione: x:	#:		88915 606 0		Received:Nov 19, 2019 4:55 PMDue:Nov 26, 2019Priority:5 DayContact Name:Lucinda Trickey	
	oject ID:	17571											Eurofins Analytical Services Manager : Harry Bacalis
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	TRH C6-C9	BTEX	Moisture Set	Eurofins mgt Suite B7	
				271		X	Х	X	Х	Х	Х	Х	_
		- NATA Site # 18 y - NATA Site #											_
		VATA Site # 237											-
I CIT	0.5		50										-
15	SB7383_1.9- 2.0	Nov 19, 2019		Soil	M19-No26596	х							
16	SB7384_0.9- 1.0	Nov 19, 2019		Soil	M19-No26597	х							
17	SB7384_1.9- 2.0	Nov 19, 2019		Soil	M19-No26598	х							
18	SB7382_0.1- 0.2	Nov 19, 2019		Soil	M19-No26599		х	x			х	х	
19	QS02	Nov 19, 2019		Soil	M19-No26600		х	х			х	Х	
Test	Counts					8	9	9	1	1	9	10	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				Linits	ooue
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				1	
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank			· · · · ·		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	95	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	109		70-130	Pass	
LCS - % Recovery				•				
BTEX								
Benzene			%	92		70-130	Pass	
Toluene			%	94		70-130	Pass	
Ethylbenzene			%	92		70-130	Pass	
m&p-Xylenes			%	90		70-130	Pass	
Xylenes - Total			%	91		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions						
Naphthalene			%	115		70-130	Pass	
TRH C6-C10			%	100		70-130	Pass	
TRH >C10-C16			%	104		70-130	Pass	
LCS - % Recovery				1				
Polycyclic Aromatic Hydrocarbons	6							
Acenaphthene			%	109		70-130	Pass	
Acenaphthylene			%	112		70-130	Pass	<u> </u>
Anthracene			%	106		70-130	Pass	
Benz(a)anthracene			%	96		70-130	Pass	
Benzo(a)pyrene			%	83		70-130	Pass	
Benzo(b&j)fluoranthene			%	75		70-130	Pass	
Benzo(g.h.i)perylene			%	76		70-130	Pass	
Benzo(k)fluoranthene			%	107		70-130	Pass	
Chrysene			%	118		70-130	Pass	
Dibenz(a.h)anthracene			%	89		70-130	Pass	
Fluoranthene			%	92		70-130	Pass	
Fluorene			%	116		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	93		70-130	Pass	
Naphthalene			%	102		70-130	Pass	
Phenanthrene			%	105		70-130	Pass	
Pyrene			%	92		70-130	Pass	
LCS - % Recovery				1		1	1	
Heavy Metals							<u> </u>	
Arsenic			%	102		80-120	Pass	
Cadmium			%	101		80-120	Pass	
Chromium			%	98		80-120	Pass	
Copper			%	104		80-120	Pass	
Lead			%	94		80-120	Pass	
Mercury			%	103		75-125	Pass	
Nickel			%	98		80-120	Pass	
Zinc			%	93		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					I			
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1				
TRH C6-C9	M19-No25321	NCP	%	105		70-130	Pass	
Spike - % Recovery					· · · · · · · · · · · · · · · · · · ·			
BTEX				Result 1				
Benzene	M19-No25321	NCP	%	102		70-130	Pass	
Toluene	M19-No25321	NCP	%	102		70-130	Pass	
Ethylbenzene	M19-No25321	NCP	%	101		70-130	Pass	
	M19-No25321	NCP	%	101		70-130	Pass	
m&p-Xylenes								
m&p-Xylenes o-Xylene	M19-No25321	NCP	%	104		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	B19-No27270	NCP	%	93			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M19-No25321	NCP	%	119			70-130	Pass	
TRH C6-C10	M19-No25321	NCP	%	108			70-130	Pass	
TRH >C10-C16	B19-No27270	NCP	%	87			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	S			Result 1					
Acenaphthene	M19-No25765	NCP	%	97			70-130	Pass	
Acenaphthylene	M19-No25765	NCP	%	96			70-130	Pass	
Anthracene	M19-No25765	NCP	%	72			70-130	Pass	
Benz(a)anthracene	M19-No25765	NCP	%	87			70-130	Pass	
Benzo(a)pyrene	M19-No25765	NCP	%	84			70-130	Pass	
Benzo(b&j)fluoranthene	M19-No25765	NCP	%	78			70-130	Pass	
Benzo(g.h.i)perylene	M19-No25765	NCP	%	93			70-130	Pass	
Benzo(k)fluoranthene	M19-No25765	NCP	%	86			70-130	Pass	
Chrysene	M19-No25765	NCP	%	87			70-130	Pass	
Dibenz(a.h)anthracene	M19-No25765	NCP	%	104			70-130	Pass	
Fluoranthene	M19-No25765	NCP	%	90			70-130	Pass	
Fluorene	M19-No25765	NCP	%	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-No25765	NCP	%	98			70-130	Pass	
Naphthalene	M19-No25765	NCP	%	95			70-130	Pass	
Phenanthrene	M19-No25765	NCP	%	97			70-130	Pass	
Pyrene	M19-No25765	NCP	%	93			70-130	Pass	
Spike - % Recovery					I				
Heavy Metals				Result 1					
Mercury	M19-No29221	NCP	%	88			70-130	Pass	
,									
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Test	Lab Sample ID	QA	Units	Result 1					
	•	QA Source	Units	Result 1 Result 1	Result 2	RPD			
Duplicate	•	QA Source	Units mg/L		Result 2 < 0.05	RPD <1			
Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract	QA Source		Result 1			Limits	Limits	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14	- 1999 NEPM Fract B19-No30370	QA Source ions NCP	mg/L	Result 1 < 0.05	< 0.05	<1	Limits 30%	Limits Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28	1999 NEPM Fract B19-No30370 B19-No30370	QA Source ions NCP NCP	mg/L mg/L	Result 1 < 0.05 < 0.1	< 0.05 < 0.1	<1 <1	Limits 30% 30%	Limits Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370	QA Source ions NCP NCP NCP	mg/L mg/L	Result 1 < 0.05 < 0.1	< 0.05 < 0.1	<1 <1	Limits 30% 30%	Limits Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370	QA Source ions NCP NCP NCP	mg/L mg/L	Result 1 < 0.05 < 0.1 < 0.1	< 0.05 < 0.1 < 0.1	<1 <1 <1	Limits 30% 30%	Limits Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract	QA Source NCP NCP NCP	mg/L mg/L mg/L	Result 1 < 0.05 < 0.1 < 0.1 Result 1	< 0.05 < 0.1 < 0.1 Result 2	<1 <1 <1 RPD	Limits 30% 30% 30%	Limits Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 Construction B19-No30370 B19-No30370	QA Source ions NCP NCP NCP ions NCP	mg/L mg/L mg/L mg/L	Result 1 < 0.05 < 0.1 < 0.1 Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05	<1 <1 <1 RPD <1	Limits 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C10-C16 TRH >C16-C34	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370	QA Source	mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1	<1 <1 <1 RPD <1 <1	Limits 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370	QA Source	mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1	<1 <1 <1 RPD <1 <1	Limits 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C16-C34 TRH >C34-C40 Duplicate	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370	QA Source	mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1	<1 <1 <1 RPD <1 <1 <1	Limits 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 Constant B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370	QA Source ions NCP NCP NCP ions NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2	<1 <1 RPD <1 <1 <1 <1 RPD	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001	<1 <1 RPD <1 <1 <1 <1 RPD <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	1999 NEPM Fract B19-No30370 B19-No21983 M19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	1999 NEPM Fract B19-No30370 B19-No21983 M19-No21983 M19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 Constant B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983 M19-No21983 M19-No21983 M19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	 1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983 	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 Result 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene	 1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 2013 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983 	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene	 1999 NEPM Fract B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No30370 B19-No21983 M19-No21983 	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	
Duplicate Total Recoverable Hydrocarbons - TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	1999 NEPM Fract B19-No30370 B19-No21983 M19-No21983	QA Source	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 < 0.05	< 0.05 < 0.1 < 0.1 < 0.1 Result 2 < 0.05 < 0.1 < 0.1 < 0.1 < 0.01 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Limits 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Limits Pass Pass Pass Pass Pass Pass Pass Pa	

Duplicate												
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD						
Naphthalene M19-No21983 NCP mg/L		< 0.001	< 0.001	<1	30%	Pass						
Phenanthrene	nanthrene M19-No21983 NCP mg/L		< 0.001	< 0.001	<1	30%	Pass					
Pyrene	rene M19-No21983 NCP mg/L		< 0.001	< 0.001	<1	30%	Pass					
Duplicate												
Heavy Metals			Result 1	Result 2	RPD							
Mercury	M19-No29221	NCP	mg/L	0.0017	0.0015	13	30%	Pass				

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Harry Bacalis	Analytical Services Manager
Emily Rosenberg	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

///

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EM1919770					
Client	: SENVERSA PTY LTD	Laboratory	: Environmental Division Melbourne	9		
Contact	: LUCINDA TRICKEY	Contact	: Larissa Burns			
Address	: 190 Flinders Street ADELAIDE SA 5000	Address	4 Westall Rd Springvale VIC Austr 3171	ralia		
E-mail	: lucinda.trickey@senversa.com.au	E-mail	: Larissa.burns@alsglobal.com			
Telephone	: +61 03 9606 0070	Telephone	: +6138549 9644			
Facsimile	: +61 03 9606 0074	Facsimile	: +61-3-8549 9626			
Project	: 17571	Page	: 1 of 2			
Order number	:	Quote number	EM2017SENVER0009 (EN/333 (secondary work only))			
C-O-C number	:	QC Level	: NEPM 2013 B3 & ALS QC Standa	ard		
Site	:					
Sampler	: SO					
Dates						
Date Samples Reco	eived : 20-Nov-2019 08:55	Issue Date	: 20-Nov-2019			
Client Requested D Date	bue : 27-Nov-2019	Scheduled Reportin	ig Date : 27-Nov-2019			
Delivery Det	aile					

Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Not Available
No. of coolers/boxes	: 1	Temperature	: 9.5°C - Ice present
Receipt Detail	:	No. of samples received / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample(s) received in non-ALS container(s).
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- . Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

is provided, the	sampling date w	ill be assumed by the		AH H
laboratory and	displayed in bra	ickets without a time		EXN/P
component			± 33	
Matrix: SOIL			EA055-10 e Conten	S-26 s/TRH/B
Laboratory sample	Client sampling	Client sample ID	OIL - oistur	OIL -
ID	date / time		ωΣ	ω ŵ
EM1919770-001	19-Nov-2019 00:00	QS03	1	 ✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

I UCINDA TRICKEY

Email	lucinda.trickey@senversa.com.au
Email	lucinda.trickey@senversa.com.au
Email	supplieraccounts@senversa.com.a
	Email Email Email Email Email Email

s⊘nv	⊘ ≈ rs a			(3)		Chain of (Cust	ody [Docu	ment	tation	I					
Senversa Pt				Laboratory									Analysis	Required			
www.senvers ABN 89 132				Address: Contact: Phone:	6 Monterey Road, Dandenong Harry Bacalis/ Sample Log In 03 9564 7055) South, VIC 3175										<u>Comments</u> : e.g. Highly contamin sample: hazardous materials pre LORs etc.	
Job Number			7571	Purchase Order:			metals										
Project Nam			ISA	Quote No:			×/8	1		Ш							
			so ·	Turn Around Time:	STANDA	BD	TRH / PAH / BTEX / 8			BTE							
Sampled By					of		H			and BTI							
Project Mana			a Trickey	Page:			/P/	1		TRH (C6-C9)							
Email Repor	ail Report To: lucinda.trickey@serversa.com.a			Phone/Mobile:	+61 424 172		臣	Sulphate		Ű							
Lab ID	Sample ID	Sample Information	Date	Time	Container Info Type / Code	Total Bottles	B7 -	gub	표	臣							
	SB7381_0.1-0.2	Soil	19/11/2019	AM		1 Jar		<u> </u>	<u> </u>								
	SB7381_0.4-0.5	Soil	19/11/2019	AM		1 Jar	X	X	X								
	SB7381_0.9-1.0	Soil	19/11/2019	AM		1 Jar								I · · ·		Division	
	SB7381 1.9-2.0	Soil	19/11/2019	AM	·	1 Jar	X	X	X					E	inviron	mental Division	<u></u>
	SB7382 0.1-0.2	Soil	19/11/2019	АМ		1 Jar	X	X	X					- N	leibou	order Reference	
	SB7382_0.4-0.5	Soil	19/11/2019	АМ		1 Jar										rne ^{Order Referience} 11919770	
	SB7382_0.8-0.9	Soil	19/11/2019	AM		1 Jar	Х	. X	X								
	SB7382 1.9-2.0	Soil	19/11/2019	AM		1 Jar											
	SB7383_0.1-0.2	. Soil	19/11/2019	АМ		1 Jar	X	X	X								
	SB7383 0.4-0.5	Soil	19/11/2019	АМ		1 Jar							1 1				
	SB7383_0.9-1.0	Soil	19/11/2019	АМ		1 Jar	Х	X	X						111	りたちやもの割川	
	SB7383_1.9-2.0	Soil	19/11/2019	АМ		1 Jar									111		
	SB7384_0.1-0.2	Soil	19/11/2019	АМ		1 Jar	Х	X	X						Telephon	e : + 61-3-8549 9600	
	SB7384_0.4-0.5	Soil	19/11/2019	АМ		1 Jar	Х	X	X								
	SB7384_0.9-1.0	Soil	19/11/2019	АМ		1 Jar								<u> </u>			
	SB7384_1.9-2.0	Soil	19/11/2019	АМ		1 Jar											
	QS01	Water								X							
	Q\$02	Soil	19/11/2019	AM		1 Jar	Х										
\bigcirc	Q\$03	Soil	19/11/2019	АМ		1 Jar	Х									Please forward to ALS	
50°	Q\$04	Water					Х										
Total			Constant State State				. 11	8	8	1							
Sampler: at specification	test that proper field samp is were used during the co	ling procedures in a llection of these sar	accordance with Se	nversa standard proce	dures and/or project	Sampler Name:					Signatu	re:		<u> </u>	Date:	******	
Relinguished			•		Method of Shipment (if a	nlicable):			Receive	ed by:	1.					1.	
Name/Signati	f	Sam O'Connor		Date: 19/11/19	Carrier / Reference #:		<i>p</i>			Signature	<u> 14</u>	mar				Date: 20/4	
	enversa			Time: 2:10 ~	Date/Time:		Ύ		Of:			pro				Time: 95	25
Name/Signati				Date: 20/m/19	Carrier / Reference #:		-Y-,	.		Signature	9:					Date:	
Of:	ELLROFIN	0		Time: 7.3000	Date/Time:		({	<u> </u>	Of:	Nanchi						Time:	
Name/Signati Of:	Jre:			Date: Time:	Carrier / Reference #: Date/Time:	(l		1	Name/S Of:	Signature	9:					Date: Time:	
	Water Container Codes: P = Unpreserved Plastic; N = Nitric Acid (HNO ₃) Preserved Plastic; ORC = Nitric Preserved ORC; SH =								1944 - C								

CERTIFICATE OF ANALYSIS : EM1919770 Page : 1 of 6 : SENVERSA PTY LTD Laboratory : Environmental Division Melbourne : LUCINDA TRICKEY Contact : Larissa Burns Address : 4 Westall Rd Springvale VIC Australia 3171 : 190 Flinders Street ADELAIDE SA 5000 : +61 03 9606 0070 Telephone : +6138549 9644 Date Samples Received : 17571 : 20-Nov-2019 08:55 Date Analysis Commenced : -----: 21-Nov-2019 Issue Date · 26-Nov-2019 16:29 · ____ : SO · ____

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

: 1

: EN/333 (secondary work only)

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Work Order

Client

Contact

Address

Telephone

Order number

C-O-C number

Quote number

No. of samples received

No. of samples analysed

Project

Sampler

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page	: 3 of 6
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Analytical Results

Sub-Matrix: SOIL		Clie	ent sample ID	QS03	 	
(Matrix: SOIL)	L) Client sampling date / time		19-Nov-2019 00:00			
Compound	CAS Number	LOR	Unit	EM1919770-001	 	
				Result	 	
EA055: Moisture Content (Dried						
Moisture Content		1.0	%	20.9	 	
EG005(ED093)T: Total Metals by	ICP-AES					
Arsenic	7440-38-2	5	mg/kg	10	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	21	 	
Copper	7440-50-8	5	mg/kg	94	 	
Lead	7439-92-1	5	mg/kg	42	 	
Nickel	7440-02-0	2	mg/kg	31	 	
Zinc	7440-66-6	5	mg/kg	169	 	
EG035T: Total Recoverable Mere	curv by FIMS					
Mercury	7439-97-6	0.1	mg/kg	0.2	 	
EP075(SIM)B: Polynuclear Aroma						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	2.0	 	
Pyrene	129-00-0	0.5	mg/kg	2.6	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	1.7	 	
Chrysene	218-01-9	0.5	mg/kg	1.7	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	3.0	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.1	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	2.6	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.9	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.0	 	
^ Sum of polycyclic aromatic hydroc		0.5	mg/kg	16.6	 	
 [^] Benzo(a)pyrene TEQ (zero) 		0.5	mg/kg	3.3	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	3.5	 	
 [^] Benzo(a)pyrene TEQ (LOR) 		0.5	mg/kg	3.8	 	
		0.0				
EP080/071: Total Petroleum Hydr		10	malka	~10		
C6 - C9 Fraction		10	mg/kg	<10	 	

Page	: 4 of 6
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QS03	 	
	Cl	ient sampli	ng date / time	19-Nov-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1919770-001	 	
Compound	er te Hamber			Result	 	
EP080/071: Total Petroleum Hydrocar	rbons - Continued					
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	400	 	
C29 - C36 Fraction		100	mg/kg	280	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	680	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)	-					
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	600	 	
>C34 - C40 Fraction		100	mg/kg	140	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	740	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP075(SIM)S: Phenolic Compound Su	urrogates					
Phenol-d6	13127-88-3	0.5	%	100	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	91.7	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	74.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	109	 	
Anthracene-d10	1719-06-8	0.5	%	87.8	 	
4-Terphenyl-d14	1718-51-0	0.5	%	103	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	69.2	 	
Toluene-D8	2037-26-5	0.2	%	77.5	 	

Page	5 of 6
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QS03			
Client sampling date / time				19-Nov-2019 00:00			
Compound	CAS Number	LOR	Unit	EM1919770-001			
				Result			
EP080S: TPH(V)/BTEX Surrogates - Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	110			

Page	: 6 of 6
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surro	ogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124

QUALITY CONTROL REPORT

Work Order	: EM1919770	Page	: 1 of 7	
Client	SENVERSA PTY LTD	Laboratory	: Environmental Division	Melbourne
Contact	: LUCINDA TRICKEY	Contact	: Larissa Burns	
Address	: 190 Flinders Street ADELAIDE SA 5000	Address	: 4 Westall Rd Springvale	e VIC Australia 3171
Telephone	: +61 03 9606 0070	Telephone	: +6138549 9644	
Project	: 17571	Date Samples Received	: 20-Nov-2019	SWIIII.
Order number	:	Date Analysis Commenced	: 21-Nov-2019	
C-O-C number	:	Issue Date	: 26-Nov-2019	NATA
Sampler	: SO			Hac-MRA NATA
Site	:			
Quote number	: EN/333 (secondary work only)			Accreditation No. 825
No. of samples received	:1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page	: 2 of 7
Work Order	EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G005(ED093)T: To	tal Metals by ICP-AES (C	QC Lot: 2716222)							
EM1919716-004	Anonymous	EG005T: Nickel	7440-02-0	2	mg/kg	51	53	2.98	0% - 20%
EM1919716-004	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	98	82	17.7	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	7	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	23	21	11.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	13	12	10.6	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	24	23	7.76	No Limit
EM1919716-028	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	112	103	8.61	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	24	23	4.73	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	19	16	18.2	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	14	14	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	12	14	12.5	No Limit
A055: Moisture Co	ontent (Dried @ 105-110°C	C) (QC Lot: 2715825)							
EM1919752-023	Anonymous	EA055: Moisture Content		0.1	%	9.5	10.3	7.45	0% - 20%
EM1919752-049	Anonymous	EA055: Moisture Content		0.1	%	17.0	18.8	10.1	0% - 20%
G035T: Total Reco	overable Mercury by FIM	S (QC Lot: 2716221)							
EM1919716-004	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1919716-028	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P075(SIM)B: Polyn	uclear Aromatic Hydroca	arbons (QC Lot: 2718350)							
EM1919714-056	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 3 of 7
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Sub-Matrix: SOIL]			Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydroc	carbons (QC Lot: 2718350) - continued							
EM1919714-056	Anonymous	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EM1919770-001	QS03	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.0	<0.5	119	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	2.6	<0.5	137	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.7	<0.5	110	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.7	<0.5	110	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	3.0	<0.5	143	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.1	<0.5	75.4	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	2.6	<0.5	134	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.9	<0.5	58.2	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.0	<0.5	66.9	No Limit
EP080/071: Total Pet	troleum Hydrocarbons	(QC Lot: 2715734)							
EM1919752-013	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	563	# 445	23.5	0% - 20%
EM1919752-035	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Pet	troleum Hydrocarbons	(QC Lot: 2718349)							
EM1919714-056	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1919770-001	QS03	EP071: C15 - C28 Fraction		100	mg/kg	400	140	99.2	No Limit

Page	: 4 of 7
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2718349) - continued								
EM1919770-001	QS03	EP071: C29 - C36 Fraction		100	mg/kg	280	130	73.9	No Limit	
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	680	# 270	86.3	0% - 50%	
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2715734)								
EM1919752-013	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	736	# 577	24.2	0% - 20%	
EM1919752-035	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit	
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2718349)								
EM1919714-056	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit	
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit	
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit	
EM1919770-001	QS03	EP071: >C16 - C34 Fraction		100	mg/kg	600	230	90.7	No Limit	
		EP071: >C34 - C40 Fraction		100	mg/kg	140	<100	35.1	No Limit	
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit	
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	740	# 230	105	0% - 50%	
EP080: BTEXN (QC	Lot: 2715734)									
EM1919752-013	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	36.7	# 29.3	22.4	0% - 20%	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	24.7	# 19.8	22.0	0% - 20%	
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	127	105	19.3	0% - 20%	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	56.8	# 45.4	22.4	0% - 20%	
		EP080: Naphthalene	91-20-3	1	mg/kg	5	4	21.9	No Limit	
EM1919752-035	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES(QCL	ot: 2716222)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	90.7	78.5	107
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	83.1	76.2	108
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	99.1	77.7	110
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	93.9	78.1	108
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	82.8	78.4	106
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	91.6	79.9	109
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	87.2	79.1	110
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2716221)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	95.9	76.9	110
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 2718350)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	104	84.6	128
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	99.2	76.9	127
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	97.4	85.3	128
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	96.0	82.1	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	91.8	85.4	133
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	94.4	88.7	136
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	94.6	83.4	136
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	98.3	85.1	140
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	91.3	80.7	130
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	98.8	85.2	141
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	97.4	68.5	120
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	115	80.1	132
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	95.7	67.4	120
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	93.2	66.0	126
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	94.3	65.4	127
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	93.6	67.8	127
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2715734)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	108	61.2	127
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2718349)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	750 mg/kg	110	71.8	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	3040 mg/kg	107	83.9	125
EP071: C29 - C36 Fraction		100	mg/kg	<100	1450 mg/kg	108	77.9	119
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50				

Page	: 6 of 7
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 2715734)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	105	59.5	125
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 2718349)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1090 mg/kg	109	72.2	128
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3930 mg/kg	108	82.1	122
EP071: >C34 - C40 Fraction		100	mg/kg	<100	268 mg/kg	115	55.1	131
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50				
EP080: BTEXN (QCLot: 2715734)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	92.9	62.7	119
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	102	66.6	126
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	101	66.3	124
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	113	67.5	128
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	113	73.0	128
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	90.4	61.2	123

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES(QCLot: 27162	222)					
EM1919716-008	Anonymous	EG005T: Chromium	7440-47-3	50 mg/kg	93.0	79.0	121
EM1919716-008	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	83.3	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	86.0	84.0	116
		EG005T: Copper	7440-50-8	50 mg/kg	92.5	82.0	124
		EG005T: Lead	7439-92-1	50 mg/kg	84.3	76.0	124
		EG005T: Nickel	7440-02-0	50 mg/kg	87.4	78.0	120
		EG005T: Zinc	7440-66-6	50 mg/kg	83.2	74.0	128
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2	716221)					
EM1919716-008	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	101	76.0	116
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCI	Lot: 2718350)					
EM1919714-096	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	108	67.0	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	107	52.0	148
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 271	5734)					
EM1919752-014	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	87.4	42.0	131

Page	: 7 of 7
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2718349)						
EM1919714-061 Anonymous	Anonymous	EP071: C10 - C14 Fraction		750 mg/kg	109	53.0	123
	EP071: C15 - C28 Fraction		3040 mg/kg	106	70.0	124	
		EP071: C29 - C36 Fraction		1450 mg/kg	107	64.0	118
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 2715734)					
EM1919752-014	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	84.2	39.0	129
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 2718349)					
EM1919714-061	Anonymous	EP071: >C10 - C16 Fraction		1090 mg/kg	108	65.0	123
		EP071: >C16 - C34 Fraction		3930 mg/kg	107	67.0	121
		EP071: >C34 - C40 Fraction		268 mg/kg	113	44.0	126
EP080: BTEXN (Q	CLot: 2715734)						
EM1919752-014	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	88.1	50.0	136
		EP080: Toluene	108-88-3	2 mg/kg	84.6	56.0	139

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: EM1919770	Page	: 1 of 5			
Client	SENVERSA PTY LTD	Laboratory	: Environmental Division Melbourne			
Contact	: LUCINDA TRICKEY	Telephone	: +6138549 9644			
Project	: 17571	Date Samples Received	: 20-Nov-2019			
Site	:	Issue Date	: 26-Nov-2019			
Sampler	: SO	No. of samples received	: 1			
Order number	:	No. of samples analysed	: 1			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP080/071: Total Petroleum Hydrocarbons	EM1919770001	QS03	C10 - C36 Fraction		86.3 %	0% - 50%	RPD exceeds LOR based limits
			(sum)				
EP080/071: Total Petroleum Hydrocarbons	EM1919752013	Anonymous	C6 - C9 Fraction		23.5 %	0% - 20%	RPD exceeds LOR based limits
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	EM1919770001	QS03	>C10 - C40 Fraction		105 %	0% - 50%	RPD exceeds LOR based limits
			(sum)				
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	2 EM1919752013	Anonymous	C6 - C10 Fraction	C6_C10	24.2 %	0% - 20%	RPD exceeds LOR based limits
EP080: BTEXN	EM1919752013	Anonymous	Toluene	108-88-3	22.4 %	0% - 20%	RPD exceeds LOR based limits
EP080: BTEXN	EM1919752013	Anonymous	Ethylbenzene	100-41-4	22.0 %	0% - 20%	RPD exceeds LOR based limits
EP080: BTEXN	EM1919752013	Anonymous	ortho-Xylene	95-47-6	22.4 %	0% - 20%	RPD exceeds LOR based limits

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Sample Date Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) QS03	19-Nov-2019				21-Nov-2019	03-Dec-2019	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QS03	19-Nov-2019	22-Nov-2019	17-May-2020	1	22-Nov-2019	17-May-2020	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QS03	19-Nov-2019	22-Nov-2019	17-Dec-2019	1	23-Nov-2019	17-Dec-2019	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	~	23-Nov-2019	01-Jan-2020	~
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	1	22-Nov-2019	03-Dec-2019	~
Soil Glass Jar - Unpreserved (EP071) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	1	23-Nov-2019	01-Jan-2020	~

Page	: 3 of 5
Work Order	: EM1919770
Client	: SENVERSA PTY LTD
Project	: 17571

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.	
Method	Sample Date	Extraction / Preparation				Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP080) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	~	22-Nov-2019	03-Dec-2019	✓	
Soil Glass Jar - Unpreserved (EP071) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	1	23-Nov-2019	01-Jan-2020	1	
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) QS03	19-Nov-2019	22-Nov-2019	03-Dec-2019	1	22-Nov-2019	03-Dec-2019	~	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	3	18	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Appendix F: Waste Transport Certificate

WASTE TRANSPORT CERTIFICATE

No authorisation for input. Scroll down to view Summary Section or Certificate.

SUMMARY

Certificate Number	0050759811
Waste Producer Details	
Name of Waste Producer	QEST ENVIRONMENTS (9426 available)
Address of Site of Waste Source	34-36 EDOLS ST, NORTH GEELONG VIC 3215
Waste Origin	
Name of Emergency Contact	Mrs. Rachel Morrison
Emergency Contact Phone	0352773204
Consignment Number	
Description of Waste	
Waste Code	N121
Waste Form	P
Class	9
Packing Group	N/A
U.N. Number	3082
Description of Waste	Hydro Slurry
Hazard Category	С
Contaminants	13
Bulk / No. of Packages	Bulk
Waste Amount Unknown	
Amount of Waste	2,000 L
Producer Comments	Senversa Pty Ltd - South Wharf Port Melbourne
Proposed Waste Disposal	
Proposed Disposal / Treatment / Storage Site	RTD ENVIRONMENTAL PTY LTD [DERRIMUT]
Intended Disposal Option	Chem/Phys Treatment
Proposed Waste Transporter	QEST ENVIRONMENTS

Waste Transporter Details

Name of Waste Transporter	QEST ENVIRONMENTS
Address of Waste Transporter	34-36 EDOLS ST, NORTH GEELONG VIC 3215
Vehicle Registration	1KJ5AT
Vehicle Transport Permit Number	159330
Trailer Registration	
Trailer Transport Permit Number	
Driver's Name	NATHAN ILEWIS
Waste Transportation Date	19/11/2019

Waste Receiver Details

Name of Waste Receiver	RTD ENVIRONMENTAL PTY LTD [DERRIMUT]
Address of Waste Receiver	33-37 EAST DERRIMUT CR., DERRIMUT VIC 3030
Waste Receiver Licence No.	120773
Waste Received Date	19/11/2019
Type of Treatment	D9C
Amount of Waste	2,000 L
Discrepancies	
Discrepancy Reasons	
Discrepancy (Comments)	
Other Waste Receiver State	NONE
Waste Receiver Other	
Waste Receiver Other Address	
Final Intended Disposal Option	
Part C Submitted By	Ms. Suzy Jankovic

Certificate No. 0050759811

Part A: Completed by the	Producer of Waste						
Name of Waste Producer							
QEST ENVIRONMENTS (94	126 available)						
Address of Site of Waste Source	-					Waste origin	
34-36 EDOLS ST, NORTH (SEELONG VIC 3215						
Name of Emergency Contact					1	Emergency Co	ntact Phone
Mrs. Rachel Morrison						0352773204	
Consignment No			Wast P	e Code No N121	1	Class	
De alvie e Creaue				Number		9	
Packing Group N/A			0.N. 3082				
Description of Waste			5002	-			
Hydro Slurry							
Hazard Category	Contaminants		Bulk/	No. of Packages		Amount of Wa	ste
C	13		Bulk				L
Producer Comments						_,	
Senversa Pty Ltd - South WI	narf Port Melbourne						
Proposed Disposal / Treatment	/ Storage Site						State
RTD ENVIRONMENTAL PT	· · · · · · · · · · · · · · · · · · ·						VIC
Intended Disposal Option	Proposed Waste Transpo	orter					
Chem/Phys Treatment	QEST ENVIRONMEN						
-			omitted	by			Date
I declare that to the best of my the above information is true a				hel Morrison			19/11/2019
Part B: Completed by the							
Name of Transporter QEST ENVIRONMENTS							
Address of Transporter							
34-36 EDOLS ST, NORTH (GEELONG VIC 3215						
Vehicle Registration	Transport Permit No		Traile	er Registration		Trailer Permit	No
1KJ5AT	159330			-			
	· · · · · · · · ·	Driv	/er's Na	ame	1		Date
I acknowledge receipt of the v	vaste described in Part A	' NA	THAN	ILEWIS			19/11/2019
Part C: Completed by the	Waste Receiver						
. ,							
Name of Disposal/Treatment/Sto	orage Facility						
RTD ENVIRONMENTAL PT	Y LTD [DERRIMUT]						
Address						Licence No	
Address 33-37 EAST DERRIMUT CF			-			120773	
Address 33-37 EAST DERRIMUT CF Waste Received Date				of Treatment		120773 Amount of Was	
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019	R., DERRIMUT VIC 3030		D9C			120773 Amount of Was	ste L
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet	R., DERRIMUT VIC 3030 ween the wastes described		D9C			120773 Amount of Was	
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet Yes No Discrepa	R., DERRIMUT VIC 3030 ween the wastes described		D9C			120773 Amount of War 2,000	L
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet	R., DERRIMUT VIC 3030 ween the wastes described		D9C			120773 Amount of War 2,000	
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet Yes No Discrepa	R., DERRIMUT VIC 3030 ween the wastes described		D9C			120773 Amount of War 2,000	L
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet Yes No Discrepa Waste Receiver Other	R., DERRIMUT VIC 3030 ween the wastes described		D9C			120773 Amount of War 2,000	L disposal option
Address 33-37 EAST DERRIMUT CF Waste Received Date 19/11/2019 Are there any discrepancies bet Yes No Discrepa Waste Receiver Other	R., DERRIMUT VIC 3030 ween the wastes described ancy:	above	D9C	e waste received		120773 Amount of War 2,000	L disposal option State

Certificate No. 0050732373

Part A: Completed by the	Producer of	Waste						
Name of Waste Producer								
SENVERSA PTY LTD [MEL	BOURNE] (10	0 availabl	e)					
Address of Site of Waste Source)						Waste origin	
Level 6, 15 WILLIAM STREE	ET, MELBOU	RNE, 3000	VIC				33 South Wh	arf, Port Melbou
Name of Emergency Contact							Emergency Co	ntact Phone
Steven Brazil							0417553604	
Consignment No				Was	te Code No		Class	
				L	J120		N/A	
Packing Group				1				
N/A				30X	Y			
Description of Waste								
Groundwater								
Hazard Category	Contaminant	s		Bulk	/No. of Packages			ste
N 100								
Producer Comments								
Producer - Port of Melbourne	9							
Proposed Disposal / Treatment /	Storage Site							State
CLEANAWAY CO PTY LTD	[LAVERTON	NORTH]						VIC
Intended Disposal Option	Proposed W	aste Transp	orter					
Other	GREENCA	RE ENVIR	ONME	INTAL	SOLUTIONS P LTE	D		
I declare that to the best of my	knowledge	and belief,	Su	bmitteo	i by			Date
the above information is true a	and correct		He	elen La	awrence			10/10/2019
Part B: Completed by the	Transporter	of Waste)					
Name of Transporter								
GREENCARE ENVIRONME	NTAL SOLU	FIONS PT	Y LTD					
Address of Transporter								
61 YORK ST, SOUTH MELB	OURNE VIC	3205						
Vehicle Registration	Transport Pe	rmit No		Trail	er Registration		Trailer Permit N	No
SENVERSA PTY LTD [MELBOURNE] (100 available) Address of Site of Waste Source Waste origin Level 6, 15 WILLIAM STREET, MELBOURNE, 3000 VIC 33 South Wharf, Port Mell Name of Emergency Contact Emergency Contact Phone Steven Brazil 0417553604 Consignment No Waste Code No L J120 N/A Packing Group U.N. Number N/A 30XY Description of Waste Groundwater Hazard Category Contaminants Bulk/No. of Packages Amount of Waste N 1 100 L Producer Comments Producer - Port of Melbourne Vic Proposed Disposal / Treatment / Storage Site State Vic CLEANAWAY CO PTY LTD [LAVERTON NORTH] Vic Vic Intended Disposal / Treatment and correct Submitted by Date Hea above information is true and correct Submitted by Date Helen Lawrence 10/10/2019 Part B: Completed by the Transporter of Waste Name of Transporter GREENCARE ENVIRONMENTAL SOLUTIONS PTY LTD Address of Transporter G14 YORK ST, SOUTH MELBOURNE VIC 3205 Vehicle Regist								
I acknowledge receipt of the w	asta describ	d in Part	Δ					Date
a determined by the second of the w		annall	` Ar	tony H	lolmes			10/10/2019

Appendix G: Quality Assurance / Quality Control

\bigcap

Appendix G: Quality Assurance / Quality Control

The data quality assurance and control (QA/QC) procedures adopted by Senversa provide a consistent approach to evaluation of whether the data quality objectives (DQO's) required by the project have been achieved. The process focuses on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated. The approach is generally based on guidance from the following sources:

- Australian Standard (AS) 4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds.
- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B2: Guideline on Site Characterisation.
- NEPC National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B3: Guideline on Laboratory Analysis of Potentially Contaminated Soils.
- United States Environmental Protection Agency (USEPA) *Guidance on Systematic Planning Using the Data Quality Objectives Process* (EPA QA/G-4).
- USEPA Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8).

Quality Assurance Procedure

The following data quality objectives, measures and acceptance criteria were adopted to verify compliance with the planned QA procedures:

Quality Data Quality Assurance Element Process		Objectives and Measure	Acceptance Criteria				
Standard Procedures	Comparability, Reproducibility, Representativeness	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used				
Equipment Accuracy Calibration		All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications				
Testing Method Accreditation	Accuracy and Comparability	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined				
Quality Control	Precision and	Field QC sampling frequency	Field Duplicates – ≥ 1 in 20 primary samples				
Sampling Frequency	Repeatability	in accordance with AS4482.1- 2005	Secondary Duplicates $- \ge 1$ in 20 primary samples				
requency		2000	Rinsate Blanks – ≥ 1 per day, per matrix per equipment				
			Trip Blanks – ≥ 1 per esky containing samples for volatile analyses				

Quality Assurance Process	Data Quality Element	Objectives and Measure	Acceptance Criteria
	Accuracy, Precision and Comparability	Laboratory QC analysis frequency in accordance with	Laboratory Duplicates – at least 1 in 10 analyses or one per process batch
		NEPC (2013), Schedule B3	Method Blanks – at least 1 per process batch
			Surrogate Recoveries – all samples spiked where appropriate (e.g. chromatographic analysis of organics)
			Laboratory Control Samples – at least 1 per process batch
			Matrix Spikes – at least 1 per matrix type per process batch
Sample Preservation, Handling and Holding Times	Accuracy	Samples appropriately preserved upon collection , stored and transported, and analysed within holding times	Sample containers, holding times and preservation in accordance laboratory specific method requirements.
Data Management	Accuracy	No errors in data transcription	Entry of field data verified by peer.
Data Useability	Completeness	Limits of reporting less than adopted beneficial use investigation levels. Sample volumes and analytical methods selected to enable required limits of reporting to be achieved	Limits of reporting less than investigation levels.

Quality Control Sampling and Analysis

The following data quality objectives, measures and acceptance criteria were adopted to evaluate the validity of the analytical data produced.

Quality Control Process	Data Quality Element	Objectives and Measure	Acceptance Criteria
Field Duplicate Sampling and Analysis	Precision and Field Repeatability	Field duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess level of precision.	Analysed for same chemicals as primary sample RPD1 <30% of mean concentration where both concentrations >20 x limit of reporting RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting RPD - No limit where both concentrations < 10 x limit of reporting
Secondary Duplicate Sampling and Analysis	Accuracy	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory	Analysed for same chemicals as primary sample RPD <30% of mean concentration where both concentrations >20 x limit of reporting RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting RPD - No limit where both concentrations < 10 x limit of reporting

¹ Relative Percent Difference (%): Calculated as: (Result No.1 – Result No. 2/Mean Result)*100

Quality Control Process	Data Quality Element	Objectives and Measure	Acceptance Criteria
Field Rinsate Blank Preparation and Analysis	Accuracy and Representativeness	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Rinsate blank samples prepared for each sampling procedure. Where possible the rinsate blanks are prepared immediately after sampling locations known to contain concentrations of the chemicals of concern above the limit of quantification and / or before sampling locations where the chemicals being targeted in the laboratory analysis are to be compared to investigation levels near the limit of quantification of the chemical.	Analyte concentrations below limits of reporting
Trip Blank Sampling and Analysis	Accuracy and Representativeness	Cross contamination between samples does not occur in transit or as an artefact of the sample handling procedure. Trip blank samples prepared by the laboratory which accompany the empty sampling containers from the laboratory to the sampling site, and return with the samples to the laboratory to assess whether cross contamination occurs between samples or as an artefact of the sampling procedure.	Analyte concentrations below limits of reporting
Laboratory QC Analysis	Laboratory Precision and	Laboratory duplicates	As specified by the laboratory.
	Accuracy	Laboratory control spike	Dynamic recovery limits as specified by the laboratory.
		Certified reference material	As specified by the laboratory (generally dynamic recovery limits).
		Surrogate recovery	Dynamic recovery limits as specified by the laboratory.
		Matrix spike recovery	Recovery 70% – 130% or dynamic recovery limits specified by laboratory. However note that recovery of phenols is generally significantly lower and a recovery in the range 20% to 130% is considered acceptable by most laboratories.
		Matrix spike recovery duplicate	RPD < 30%, or as specified by the laboratory.

Data Verification and Validation

The data validation process involved the checking of analytical procedure compliance with acceptance criteria and an assessment of the accuracy and precision of analytical data from the range of quality control indicators generated from both the sampling and analytical programmes.

The checks undertaken are summarised in the attached data validation checklist tables (one table per sample batch/delivery group). Field replicate and field blank analytical results relevant to the project are summarised in **Table G-1**, **Table G-2** and **Table G-3**.

Instances where the data quality acceptance criteria were not achieved are discussed below:

Trip Blanks

No trip blanks were collected for the soil investigation. This non-conformance is only considered minor given all primary samples reported concentrations of TRH (C6-C9 Fraction) below LOR.

Field Duplicate RPDs

Relative percentage difference between results received for some soil analyses undertaken for reports 688915 and EM1919770 exceeded acceptance limits. This is considered likely due to the heterogeneous nature of the fill soils sampled. Overall, duplicate results appear comparable and indicate that the results can be considered representative.

Laboratory Quality Control Sampling Frequency

The expected frequency for matrix spikes in report EM1917208 (Soil) was not met for sulfate and in report EM1917008 (Water) for TRH and VOCs. The expected frequency was also not met for TRH in report EM1917008 (Water) for laboratory duplicates.

These non-conformances were isolated and not considered to impact on the overall representativeness of the data.

Holding Time

A holding time breach was reported for pH by PC titrator in report EM1917008 (Water). While the analysis was requested 6 days late, the accepted holding time for pH is 6 hours and therefore not considered feasible to analyse within holding time.

In-field measurements of pH were also collected immediately prior to sampling and are considered suitably representative of conditions. The comparison indicates in-field measurements of pH in groundwater is slightly more acidic than what is reported in the laboratory results. For interpretation purposes, the in-field measurements have been utilised as a conservative approach.

Rinsate Blank

A low-level detection of Ammonia (as N) and Sulphate (as SO4) was identified in report EM1917008 (Water) for the rinsate sample. This is potentially due to incorrect rinsate water and bottles being used. The SAQP indicates that only metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg), TRH and BTEX were to be analysed for a rinsate sample however an error was made on the COC and ammonia and sulfate were also analysed.

The concentrations of ammonia and sulfate in the rinsate sample were low, at least 3 orders of magnitude for sulfate. Due to this, the non-conformance is not considered to affect the reliability of the data as the results within the groundwater samples are higher than that of the rinsate blank.

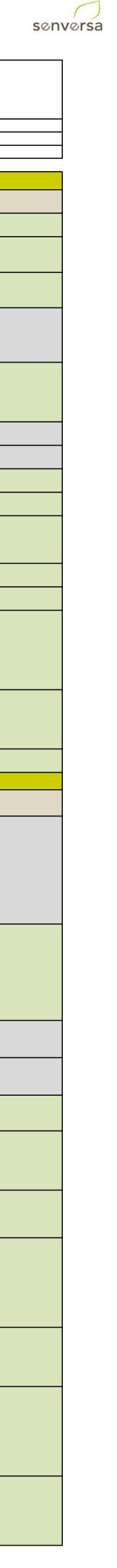
Laboratory Control Samples

Report EM1917208 (Soil) identified the recovery of the laboratory control sample for fluoranthene to be below the lower control limit. This non-conformance could suggest a slightly lower bias for fluoranthene.

Laboratory Duplicate RPDs

Relative percentage differences between duplicate analyses undertaken for analysis of the secondary laboratory soil sample collected 19 November 2019 exceeded acceptance limits for some TPH/TRH fractions, toluene, ethylbenzene and ortho-xylene. When comparing the secondary laboratory results to those of the primary sample RPDs are within acceptance limits as are those calculated for all laboratory duplicates undertaken by the primary laboratory, therefore the results are considered representative.

Matrix Spike Recovery


The matrix spike recovery was not determined in report EM1917208 (Soil) for TRH and TPH fractions as the background level was greater than or equal to 4 x the spike level. This is not considered to impact on the overall representativeness of the data.

Data Suitability

While a small number of QC results were outside specified acceptance criteria, these were not considered to significantly impact on the quality or representativeness of the data, and majority of results indicated that the precision and accuracy of the data was within acceptable limits. The results are therefore considered to be representative of chemical concentrations in the environmental media sampled at the time of sampling, and to be suitable to be used for their intended purpose in forming conclusions relating to the contamination status of soil and groundwater at the site.

Job Number:	M17571	
Report Title:	End of Lease Due Diligence ESA	
Client:	PoM	
Completed By:	Lucinda Trickey	
Date:	18-Nov-19	
Verified By:	Matthew Hunt	
Data	40 No.	

Client:	PoM	_														
Completed By:	Lucinda Trickey			SAMPLE DELIVERY GROUP (SDG)	682320	SAMPLE DELIVERY GROUP (SDG):	<i>)</i> .	688915	SAMPLE DELIVERY GROUP (SDG):	EM1917208	SAMPLE DELIVERY GROUP (SDG)	EM1919770	SAMPLE DELIVERY GROUP (SDG):	EM1917008	SAMPLE DELIVERY GROUP (SDG):	682367
Date:	18-Nov-19	_		Laboratory:	Eurofins	Laboratory:	Eurofins		Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory: Eurofins	
Verified By: Date:	Matthew Hunt 18-Nov	_		Sample Dates: Sample Media:	9-Oct-19 Soil	Sample Dates: Sample Media:	19-Nov-1 Soil		Sample Dates: Sample Media:		Sample Dates: Sample Media:	19-Nov-19 Soil	Sample Dates: Sample Media:	9 and 10-Oct-19 Groundwater	Sample Dates: 9-Oct-19 Sample Media: Groundwate	 ۲
					Primary Soil		Primary S	Soil		Secondary Soil		Secondary Soil		Primary Water	Secondary	Water
Quality Assurance Process Standard Procedures	Objectives & Measure Standard field sampling procedures and forms used	Acceptance Criteria No deviation from standard procedure	Source of Information Borelogs, field sheets, COCs,	Acceptance Criteria Met? Yes	Notes/Details of Nonconformance	Acceptance Criteria Met? Yes	Notes/De		Acceptance Criteria Met? Yes	Notes/Details of Nonconformance	Acceptance Criteria Met? Yes	Notes/Details of Nonconformance	Acceptance Criteria Met? Yes	Notes/Details of Nonconformance	Acceptance Notes/Deta Criteria Met?	ails of Nonconformance
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	and forms used. All equipment calibrated in accordance with manufacturers specifications.	data tables Calibration Certificates / Records	s Yes		Yes			Yes		Yes		Yes		Yes	
0	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes			Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)) Yes		Yes			N/A		N/A		Yes		N/A	
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)) N/A		N/A			Yes		Yes		N/A		Yes	
		Rinsate Blanks - ≥ 1 per day, per matrix	QA/QC register (within field book)) Yes		Yes			N/A		N/A		Yes		N/A	
		per equipment. Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)) No	No trip blanks were collected.	Yes	No trip bla	anks were collected.	N/A		N/A		Yes		N/A	
	Laboratory QC analysis frequency in accordance with NEPC 2013			Yes Yes		Yes			Yes		Yes Yes		No	The expected frequency of 10% was not met for TRH.	Yes Yes	
		batch. Surrogate Recoveries - all samples spiked where appropriate (e.g.	Laboratory Reports	Yes		Yes		· · · · · · · · · · · · · · · · · · ·	Yes		Yes		Yes		Yes	
		chromatographic analysis of organics). Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes			Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	Yes		Yes			No	The expected frequecy of 5% for sulfate was not met.	Yes		No	The expected frequecy of 5% was not met of TRH and	d Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by		Yes		Yes			Yes		No	Sample received at temperature of 9.5 °C.	No	Holding time exceedance for pH by PC titrator.	Yes	
Data Management	No errors in data transcription	the laboratory at < 6°C. Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered	Yes		Yes			Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant	data (e.g. field parameters, gauging data). Results Tables	Yes		Yes			Yes		Yes		Yes		Yes	
		investigation levels.														
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data	a												
Field (Intra-laboratory) Duplicate Sampling and Analysis	laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their	n sample. RPD <30% of mean conc. where both conc. >20 x LOR	 ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples. 	Yes	As shown in attached Table G-1.	Yes	As shown	n in attached Table G-1.	N/A		N/A		Yes	As shown in attached Table G-2.	N/A	
	holding times may be undertaken to further assess precision level of precision.	RPD No limit where both conc. < 10 x LOR	_													
laborator) Duplicate Sampling and Analysis	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	Analysed for same chemicals as primary sample. RPD <30% of mean conc. where both conc. >20 x LOR. RPD <50% of mean conc. where both conc. 10-20 x LOR. RPD no limit where both conc. < 10 x	relative percent difference (RPD)			N/A			Yes	As shown in attached Table G-1.	Yes	As shown in attached Table G-1.	N/A	As shown in attached Table.	Yes As shown in	n attached Table G-2.
Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	Yes	As shown in attached Table.	Yes	As shown	n in attached Table.	N/A	As shown in attached Table.	N/A	As shown in attached Table.	No	Ammonia (as N) and Sulfate (as SO4) (filtered) was reported. As shown in attached table G-3	N/A As shown in	n attached Table.
Trip Blank Sampling and Analysis	Cross contamination between samples does not occu in transit or as an artefact of the sampling handling procedure.		ESDAT generated summary of field blank analytical results.	N/A	As shown in attached Table.	N/A	As shown	n in attached Table.	N/A	As shown in attached Table.	N/A	As shown in attached Table.	Yes	As shown in attached Table.	N/A As shown in	n attached Table.
	Laboratory duplicates are used to test the precision o the laboratory measurements.		Laboratory reports	Yes		Yes			Yes		No	Laboratory duplicate RPDs for TPH/TRH fractions, toluene, ethylbenzene and ortho-xylene exceeded acceptance limits	Yes		Yes	
Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest	s laboratory. t.	Laboratory reports	Yes		Yes			NO	The recovery for fluoranthene was less than the lower control limit.	Yes		Yes		Yes	
	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results	Laboratory reports	Yes		Yes			Yes		Yes		Yes		Yes	
	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample- specific basis.		Laboratory reports	Yes		Yes		· · · · · · · · · · · · · · · · · · ·	Yes		Yes		Yes		Yes	
	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in	specified by laboratory.	Laboratory reports	Yes		Yes			No	The matrix spike recovery was not determined for TRH and TPH fractions as the background level was greater than or equal to 4 x the spike level.			Yes		Yes	
Blanks	a given sample matrix. Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laborator to assess contamination introduced during sample preparation activities.		Laboratory reports	Yes		Yes			Yes		Yes		Yes		Yes	
	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent consistent with field measurements, and consistent with expected and/or historica results based on CSM														

Table G-2: Field Blank Analytical Results

Baseline Due Diligence Investigation 32 - 34 South Wharf, Port Melbourne

	E	Date	FB_201016 20/10/2016	FB_211016 21/10/2016	QC09 9/10/2019	QS01 19/11/2019	QS04 19/11/2019	QS07 9/10/2019	QS08 9/10/2019	QS11 10/10/2019
	-	Sample Type Lab Report No.		Field_B 520784	Rinsate 682320	Trip_B 688915	Rinsate 688915	Trip_B EM1917008	Rinsate EM1917008	Rinsate EM191700
	Unit	EQL		•		•	•			•
hysical Parameters Total Dissolved Solids	mg/L	10	-	-	-	-	-	-	-	<10
pH (Lab) norganics	pH Units	0.01	-	-	-	-	-	-	-	5.62
Ammonia (as N) lajor lons	mg/L	0.01	-	-	-	-	-	-	-	0.04
Sulfate (as SO4) Sulfate (as SO4) (filtered)	mg/L mg/L	5 1	-	-	<5	-	-	-	-	- 6
etals Arsenic	mg/L	0.001	-	-	<0.001	-	< 0.001	-	<0.001	<0.00
Cadmium Chromium	mg/L mg/L	0.0001	-	-	<0.0002 <0.001	-	<0.0002 <0.001	-	<0.0001 <0.001	<0.00 <0.00
Copper Lead	mg/L mg/L	0.001 0.001	-	-	<0.001 <0.001		<0.001 <0.001	-	<0.001 <0.001	<0.00
Mercury Nickel	mg/L mg/L	0.0001 0.001	-	-	<0.0001 <0.001		<0.0001 <0.001	-	<0.0001 <0.001	<0.00
Zinc TEX	mg/L	0.005	-	-	<0.005	-	< 0.005	-	< 0.005	<0.00
Benzene Toluene	μg/L μg/L	1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <2	<1 <2	<1
Ethylbenzene Xylene (m & p)	μg/L μg/L	1 2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<2	<2 <2	<2
Xylene (o) Total Xylene	μg/L μg/L	1 2	<1 <3	<1 <3	<1 <3	<1 <3	<1 <3	<2	<2	<2
Total BTEX Dtal Petroleum Hydrocarbons	μg/L	1	-	-	-	-	-	<1	<1	<1
C6-C9 Fraction C10-C14 Fraction	μg/L μg/L	20 50	<20 -	<20 -	<20 <50	<20	<20 <50	<20 -	<20 <50	<20
C15-C28 Fraction C29-C36 Fraction	μg/L μg/L	100 50	-	-	<100 <100	-	<100 <100	-	<100 <50	<10 <50
C10-C36 Fraction (Sum) otal Recoverable Hydrocarbons	μg/L	50	-	-	<100	-	<100	-	<50	<50
C6-C10 Fraction C6-C10 Fraction minus BTEX (F1)	μg/L μg/L	20 20 50	<20 <20	<20 <20	<20 <20	-	<20 <20	<20 <20	<20 <20	<20
>C10-C16 Fraction >C10-C16 Fraction minus naphthalene (F2)	μg/L μg/L	50 50	-	-	<50 <50	-	<50 <50	-	<100 <100	<10
>C16-C34 Fraction >C34-C40 Fraction	μg/L μg/L	100 100	-	-	<100 <100	-	<100 <100	-	<100 <100	<10
>C10-C40 Fraction (Sum) AHs	µg/L	100	-	-	<100	-	<100	-	<100	<10
Acenaphthene Acenaphthylene	μg/L μg/L	1	-		<1 <1		<1	-		-
Anthracene Benz(a)anthracene	μg/L μg/L	1	-	-	<1	-	<1 <1	-	-	-
Benzo(a)pyrene Benzo(b+j)fluoranthene	μg/L μg/L	<u>1</u> 1	-	-	<1 <1	-	<1 <1	-	-	-
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/L μg/L	<u>1</u> 1	-	-	<1 <1	-	<1 <1	-	-	-
Chrysene Dibenz(a,h)anthracene	μg/L μg/L	1 1	-	-	<1 <1		<1 <1	-		-
Fluoranthene Fluorene	μg/L μg/L	1 1	-	-	<1 <1		<1 <1	-		-
Indeno(1,2,3-c,d)pyrene Naphthalene	μg/L μg/L	1 1	<10	<10	<1 <1		<1 <1	- <5	<5	-<5
Phenanthrene Pyrene	μg/L μg/L	<u>1</u> 1	-		<1 <1		<1 <1			-
Sum of Polycyclic aromatic hydrocarbons (PAH) AH		1	-	-	<1	-	<1	-	-	-
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	mg/L mg/L	0.005 0.005	-					-	<0.005 <0.005	<0.0 <0.0
Isopropylbenzene n-Butylbenzene	mg/L mg/L	0.005 0.005	-	-				-	<0.005 <0.005	<0.0 <0.0
n-Propylbenzene p-lsopropyltoluene	mg/L mg/L	0.005	-	-	-	-	-	-	<0.005 <0.005	<0.0 <0.0
sec-Butylbenzene tert-Butylbenzene	mg/L mg/L	0.005	-	-	-	-	-	-	<0.005 <0.005	<0.0
Styrene Ilogenated Benzenes	mg/L	0.005	-	-	-	-	-	-	<0.005	<0.0
1,2,3-Trichlorobenzene 1,2-Dichlorobenzene	μg/L μg/L	5 5	-	-	-	-	-	-	<5 <5	<5 <5
1,2,4-Trichlorobenzene 1,3-Dichlorobenzene	μg/L μg/L	5 5	-	-			-	-	<5 <5	<5 <5
2-Chlorotoluene 1,4-Dichlorobenzene	μg/L μg/L	5 5	-	-			-	-	<5 <5	<5 <5
4-Chlorotoluene Bromobenzene	μg/L μg/L	5 5	-	-			-	-	<5 <5	<5 <5
Chlorobenzene Ilogenated Hydrocarbons	µg/L	5	-	-	-	-	-	-	<5	<5
1,2-Dibromoethane Bromomethane	μg/L μg/L	5 50	-	-				-	<5 <50	<5 <5
Dichlorodifluoromethane Iodomethane	μg/L μg/L	50 5	-	-				-	<50 <5	<50 <5
Trichlorofluoromethane Ilorinated Hydrocarbons	µg/L	50	-	-	-	-	-	-	<50	<50
1,1-Dichloropropene 1,1-Dichloroethane	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5
1,1-Dichloroethene 1,1,1,2-Tetrachloroethane	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5
1,1,1-Trichloroethane 1,2-Dibromo-3-chloropropane	μg/L μg/L	5 5	-	-	-	-	-	-	<5 <5	<5
1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane	μg/L μg/L	5 5	-	-	-	-	-	-	<5 <5	<5 <5
1,2,3-Trichloropropane 1,2-Dichloroethane	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5
1,3-Dichloropropane 1,2-Dichloropropane	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5 <5
2,2-Dichloropropane Bromodichloromethane	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5 <5
Bromoform Carbon Tetrachloride	μg/L μg/L	5	-	-		-	-		<5 <5	<5
Chlorodibromomethane Chloroethane	μg/L μg/L	5 50	-			-	-	-	<5 <50	<5
Chloroform Chloromethane	μg/L μg/L	5 50	-	-	-	-	-	-	<5 <50	<5
cis-1,4-Dichloro-2-butene cis-1,2-Dichloroethene	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5
Dibromomethane cis-1,3-Dichloropropene	μg/L μg/L	5 5	-	-		-	-	-	<5 <5	<5
Hexachlorobutadiene Pentachloroethane	μg/L μg/L	5	-	-	-	-	-	-	<5 <5	<5
Tetrachloroethene trans-1,4-Dichloro-2-butene	μg/L μg/L	5 5	-	-	-	-	-	-	<5 <5	<5 <5
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	μg/L μg/L	5 5	-	-	-	-	-	-	<5 <5	<5 <5
Trichloroethene Vinyl Chloride	μg/L μg/L	5 50	-	-	-	-	-	-	<5 <50	<5 <5(
Divents Methyl Ethyl Ketone (MEK)	µg/L	50	-	-	-	-	-	-	<50	<50
2-Hexanone (MBK) 4-Methyl-2-pentanone	μg/L μg/L	50 50				-	-	-	<50 <50	<50 <50
Carbon disulfide Vinyl acetate	μg/L μg/L	5 50	-	-	-	-	-	-	<5 <50	<5 <50

1 of 1

		Location Code	SB05	SB05		SB05	SB05		SB7384	SB7384		SB7384	SB7384	
		Field ID	SB05_0.5-0.6	QC05		SB05_0.5-0.6	QC06		SB7384 0.1-0.2	QS02		SB7384 0.1-0.2	QS03	
	-		9/10/2019	9/10/2019	_	9/10/2019	9/10/2019		19/11/2019	19/11/2019		19/11/2019	19/11/2019	
	-				—		Interlab_D							
	-	Sample Type		Field_D		Normal			Normal	Field_D		Normal	Interlab_D	
		Lab Report No.	682320	682320	RPD	682320	EM1917208	RPD	688915	688915	RPD	688915	EM1919770	RPD
	Unit	EQL												
hysical Parameters														
Moisture Content	%	1	10.0	10	0	10.0	9.6	4	22	21	5	22	20.9	5
pH (aqueous extract)	pH Units	0.1	9.6	9.6	0	9.6	8.2	16	8.5	8.7	2	8.5	-	-
lajor lons					_						_			
Sulfate (as SO4)	mg/kg	30	<30	<30	0	<30	<50	0	<30	<30	0	<30	-	-
letals	"													
Arsenic	mg/kg	2	<2	<2	0	<2	<5	0	9.6	20	70	9.6	10	4
Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<1	0	0.7	0.5	33		<1	0
Chromium	mg/kg	2	7.3	<5	37	7.3	2	114	26	39	40	26	21	21
Copper	mg/kg	5	7.5	5.5	31	7.5	<5	40	86	70	21	86	94	9
Lead	mg/kg	5	<5	<5	0	<5	<5	0	46	55	18	46	42	9
Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0	0.1	0.1	0	0.1	0.2	67
Nickel	mg/kg	2	23	14	49	23	10	79	39	33	17	39	31	23
Zinc	mg/kg	5	17	10	52	17	7	83	200	300	40	200	169	17
BTEX	100 m //	0.4	0.4	0.4		0.4	0.0		0.4	<u> </u>		A	0.0	<u> </u>
Benzene	mg/kg	0.1	<0.1	< 0.1	0	<0.1	< 0.2	0	<0.1	<0.1	0	<0.1	< 0.2	0
Toluene	mg/kg	0.1	<0.1	< 0.1	0	<0.1	< 0.5	0	<0.1	<0.1	0	< 0.1	< 0.5	0
Ethylbenzene	mg/kg	0.1	<0.1	< 0.1	0	<0.1	< 0.5	0	<0.1	<0.1	0	< 0.1	< 0.5	0
Xylene (m & p)	mg/kg	0.2	<0.2	< 0.2	0	< 0.2	<0.5	0	<0.2	<0.2	0	< 0.2	< 0.5	0
Xylene (o)	mg/kg	0.1	<0.1	<0.1	0	<0.1	< 0.5	0	<0.1	<0.1	0	< 0.1	< 0.5	0
Total Xylene	mg/kg	0.3	<0.3	<0.3	0	<0.3	< 0.5	0	<0.3	<0.3	0	<0.3	< 0.5	0
Total BTEX	mg/kg	0.2	-	-	-	-	<0.2	-	-	-	-	-	<0.2	-
otal Petroleum Hydrocarbons		10					4.0						4.0	
C6-C9 Fraction	mg/kg	10	<20	<20	0	<20	<10	0	<20	<20	0	<20	<10	0
C10-C14 Fraction	mg/kg	20	<20	<20	0	<20	<50	0	<20	<20	0	<20	<50	0
C15-C28 Fraction	mg/kg	50	<50	<50	0	<50	<100	0	620	<50	170		400	43
C29-C36 Fraction	mg/kg	50	74	<50	39	74	<100	0	640	<50	171		280	78
C10-C36 Fraction (Sum)	mg/kg	50	74	<50	39	74	<50	39	1,260	<50	185	1,260	680	60
otal Recoverable Hydrocarbons		10				0.0	1.0	-	0.0	0.0			10	
C6-C10 Fraction	mg/kg	10	<20	<20	0	<20	<10	0	<20	<20	0	<20	<10	0
C6-C10 Fraction minus BTEX (F1)	mg/kg	10	<20	<20	0	<20	<10	0	<20	<20	0	<20	<10	0
>C10-C16 Fraction	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50	0	<50	<50	0
>C10-C16 Fraction minus naphthalene (F2)	mg/kg	50	<50	<50	0	<50	<50	0	<50	<50	0	<50	<50	0
>C16-C34 Fraction	mg/kg	100	<100	<100	0	<100	<100	0	1,100	<100	167	-	600	59
>C34-C40 Fraction >C10-C40 Fraction (Sum)	mg/kg	100	130 130	<100 <100	26	130 130	<100 <50	26	310 1,410	<100 <100	102 174		140 740	76
AHs	mg/kg	50	130	<100	26	130	06>	89	1,410	<100	174	1,410	740	62
Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	5.9	<0.5	169		1.7	111
Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	15	<0.5	187		2.6	141
Benzo(b+j)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	6.3	<0.5	171		3.0	71
Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	4.2	<0.5	157		1.0	123
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	6.9	<0.5	173		1.1	145
Chrysene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	11	<0.5	183		1.7	146
Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	1.0	<0.5	67	1.0	<0.5	67
Fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	15	<0.5	187		2.0	153
Fluorene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	3.4	<0.5	149		0.9	116
Naphthalene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
Phenanthrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	0.8	<0.5	46		<0.5	46
Pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	18	<0.5	189		2.6	150
Benzo(a)pyrene TEQ (Zero)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	18	<0.5	189		3.3	138
Sum of Polycyclic aromatic hydrocarbons (PAH)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0	87.5	<0.5	109		16.6	136

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL)) *Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Appendix H: Assessment Criteria

Appendix H: Assessment Guidelines and Regulatory Framework

The following sections outline the regulatory framework under which contamination of land and groundwater is assessed and managed in Victoria. Relevant objectives and/or investigation levels have been adopted for initial assessment of whether pollution is present at the site.

The following sections outline the regulatory framework under which contamination of land and groundwater is assessed and managed in Victoria, and specify relevant objectives and/or investigation levels which have been adopted for initial assessment of whether pollution is present at the site.

1.1 Soil

1.1.1 Regulatory Framework

The State Environment Protection Policy (Prevention and Management of Contamination of Land) 2002 (SEPP (PMCL)) sets out the regulatory framework for the prevention and management of contaminated land within the State of Victoria. The intent of this framework is to maintain and maximise, to the extent practicable, the quality of the land environment in Victoria, in order to protect its existing and potential beneficial uses. The SEPP (PMCL) was declared in June 2002 in accordance with Section 16 of the Environment Protection Act, 1970, and EPA Victoria is responsible for its implementation.

The SEPP (PMCL) identifies a range of land use categories and relevant protected beneficial uses for each of these categories, as well as indicators (chemical or other characteristics) and objectives for these indicators to determine whether the level of an indicator may pose an unacceptable risk to (i.e. precludes) protected beneficial uses. A state of pollution exists where the concentration of a physical, chemical, biological or radiological characteristic (indicator) does not meet the relevant soil quality objective for that indicator and therefore precludes a protected beneficial use for a relevant land use category.

 The protected beneficial uses of land at the site, and the soil quality objectives specified in the SEPP (PMCL) for each protected beneficial use of land, are discussed in the following sections.

1.1.2 Protected Beneficial Uses of Land

In accordance with the SEPP (PMCL) the protected beneficial uses of land used for a commercial/industrial purpose are the following:

- Maintenance of highly modified ecosystems.
- Human health.
- Buildings and structures.
- Aesthetics (commercial use only).

1.1.3 Soil Investigation and Screening Levels

Soil quality objectives (also commonly referred to as investigation levels) for the protected beneficial uses of land were adopted in accordance with Table 2 of the SEPP (PMCL), and are detailed in the following table.

Beneficial Use	Adopted Soil Quality Objectives / Investigation Levels						
Maintenance of Ecosystems (Highly Modified)	The SEPP (PMCL) states that the level of a chemical substance or waste (indicator) must not be greater than any regional Ecological Investigation Level (EIL) developed in accordance with the <i>National Environment Protection (Assessment of Site Contamination) Measure</i> ('the NEPM"; NEPC, 2013), or until such time that a regional EIL applicable to the site is published, the Interim Urban EILs nominated in the NEPM.						
	The current version of the NEPM (NEPC, 2013) specifies the following ecologically based investigation and/or screening levels:						
	 Default EILs for arsenic, lead, DDT and naphthalene. A methodology for derivation of site-specific EILs for nickel, chromium III, copper and zinc. The derivation process requires determination of ambient background concentrations (ABC) and added contaminant limits (ACLs) for these chemicals, and the EIL is then calculated as the ABC plus the ACL. Ecological screening levels (ESLs) for BTEX, benzo(a)pyrene and petroleum hydrocarbon fractions. 						
	The EILs and ESLs have been developed for three generic land use settings, based on a range of species protection levels:						
	 Areas of ecological significance (99% species protection). Urban residential and public open space (80% species protection). Commercial and industrial (60% species protection). 						
	Based on the current and foreseeable future land use(s) at the site, EILs/ESLs for commercial and industrial land have been adopted.						
	For initial screening purposes, EILs for nickel, chromium III, copper and zinc have been derived for aged soils based on adoption of conservative screening assumptions regarding soil properties, as follows:						
	 EILs were calculated as the sum of the ABC and the ACL. ABCs were assumed to be the default (most conservative) values for aged soils with low traffic. ACLs were assumed to be the minimum (most conservative) values specified in Table 1B(1) to 1B(4) within NEPC (2013) Schedule B1. 						
Human Health	The SEPP (PMCL) states that the level of a chemical substance or waste must not be greater than the investigation level specified for human health in the NEPM.						
	Schedule B(1) of the current version of the NEPM (NEPC, 2013) provides a range of investigation levels for the protection of human health, referred to as Health-based Investigation Levels (HILs), and provides Health Screening Levels (HSLs) for BTEX and petroleum hydrocarbons. HILs and HSLs are provided for four generic land use settings as follows:						
	 HIL/HSL A – Residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry). This category also includes children's day-care centres, kindergartens, preschools and primary schools. HIL/HSL B – Residential with minimal opportunities for soil access. Includes dwellings with fully and permanently paved yard space such as high-rise apartments and flats. HIL/HSL C – Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate. HIL/HSL D – Commercial/industrial such as shops, offices, factories and industrial sites. 						
	It is emphasised within the NEPM that HILs are not intended for use as default remediation trigger criteria but are intended to prompt an appropriate site-specific assessment of risk when they are exceeded. This is consistent with Table 2 of the SEPP (PMCL), which allows for objectives derived using a risk-based methodology to be adopted in place of HILs.						
	Based on the current and foreseeable future use of the site, NEPM HIL/HSL D values are the most appropriate guideline values.						
	For chemicals for which HILs or HSLs are not specified in the NEPM, Regional Screening Levels (RSLs) published by the USEPA (USEPA, 2018) have been adopted. The release date of the screening levels adopted is dated May 2018. 'Industrial' values have been adopted for assessment of commercial and/or industrial land uses (Setting D).						

Beneficial Use	Adopted Soil Quality Objectives / Investigation Levels							
	With respect to the use of HSLs, the following is noted:							
	 The HSLs in the NEPM (for TRH, BTEX and naphthalene) were derived with consideration of potential vapour exposure, and consider a range of soil types and contamination depths. Friebel and Nadebaum (2011), who derived the HSLs currently adopted in the NEPM, also derived values for direct contact exposure, however these were not published in the NEPM. The HSL values adopted for this assessment were the lowest of those derived for vapour intrusion (published in the NEPM) or direct contact pathways (published by Friebel and Nadebaum, 2011) for the relevant land use(s). Where relevant, the most conservative of the vapour-based values (those derived for sand lithology and with contamination at depths of 0 to <1 m depth) were adopted. The HSLs for BTEX and naphthalene (which are not saturation or solubility limited) are considered appropriate for use at sites where the source of contamination includes petroleum and/or non-petroleum based activities (e.g. gas manufacture). However, the HSLs for TRH fractions have been derived for typical petroleum mixtures (petrol and diesel) and are not appropriate for assessment of non-petroleum contamination. Based on the source of TRH at the site, application of the TRH HSLs to the site is considered appropriate. 							
	It is noted that the HSLs have been derived with consideration to potential vapour inhalation health risks, however the NEPC (2013) HILs and the USEPA (2018) RSLs have not. Therefore, where volatile contaminants are reported to be present in soils above laboratory detection limits, consideration of potential vapour intrusion risks may be warranted even where reported concentrations are below the adopted investigation levels, if the adopted investigation levels were sourced from NEPC (2013) or USEPA (2018).							
Buildings and Structures	The SEPP (PMCL) states "Contamination must not cause the land to be corrosive to or adversely affect the integrity of structures or building materials".							
	Relevant indicators are stated by the SEPP (PMCL) to be "pH, sulfate, redox potential, salinity or any chemical substance or waste that may have a detrimental impact on the structural integrity of buildings or other structures."							
	Objectives for these key indicators have primarily been sourced from Australian Standard 2159–2009 <i>Piling Design and Installation</i> , in which levels of pH, chloride and sulfate which are considered to represent mild and/or non-aggressive conditions for concrete or steel piles are specified. The values adopted for initial screening (<5,000 mg/kg sulfate, pH >5 and <5,000 mg/kg chloride) are the most conservative of those reported in AS2159 for concrete and steel piles, and are considered to be associated with mild or non-aggressive conditions only where all objectives are met. Where one or more objective is not met, conditions may still be acceptable, but exposure conditions should be further evaluated in accordance with Tables 6.4.2(C) and 6.5.2(C) within AS2159.							
	The potential for organic compounds (e.g. solvents or petroleum hydrocarbons) to corrode or adversely impact (e.g. permeate) non-metal underground services should also be considered, particularly where saturated concentrations or free phase product are in contact with buildings and/or structures.							
	The assessment of soil for protection of buildings and structures is considered beyond the scope of this investigation.							
Aesthetics	The SEPP (PMCL) states, "Contamination must not cause the land to be offensive to the senses of human beings." In an industrial setting, aesthetics is not a protected beneficial use so has not been assessed as part of this investigation.							

1.2 Groundwater

1.2.1 Regulatory Framework

The State Environment Protection Policy (Waters) (SEPP Waters; State of Victoria, 2018) sets out the framework to protect and improve the quality of Victoria's waters (including groundwater), having regard to the principles of environment protection set out in the *Environment Protection Act 1970* (the Act).

The SEPP Waters defines a range of protected beneficial uses for defined segments of the groundwater environment, based on groundwater salinity (as TDS). The SEPP Waters also specifies indicators (chemical or other characteristics) and objectives to determine whether the level of an indicator may pose an unacceptable risk (i.e. potentially precludes) protected beneficial uses. Groundwater is considered polluted where one or more of the following situations exists:

- The groundwater quality objectives for any protected beneficial use are exceeded. Where groundwater quality objectives are exceeded by natural levels, the natural background levels become the objective.
- There is otherwise a detriment to a beneficial use (e.g. the presence of odours in water used for irrigation or recreation use).
- Non-aqueous phase liquid (NAPL) is present. All beneficial uses of groundwater are considered precluded where NAPL is present with the exception of Buildings and Structures which is considered precluded only when in contact with groundwater.

1.2.2 Relevant Groundwater Segment

A review of laboratory analysis and field data from the site was undertaken to assess the groundwater segment at the site. The review indicated that:

• The field measured TDS concentrations ranged from 867 mg/L (MW7016) to 16,137 mg/L (MW7018). The average and median TDS concentration measured from this investigation was 4,594 mg/L and 2,488 mg/L respectively.

Taking into consideration the above information and historical averages, the shallow groundwater is considered conservatively to be Segment C (as defined in the SEPP Waters).

1.2.3 Protected Beneficial Uses of Groundwater

The SEPP Waters requires that Segment C groundwater is protected for the following beneficial uses:

- Water dependent ecosystems and species.
- Potable mineral water supply.
- Agriculture and irrigation (stock watering).
- Industrial and commercial.
- Water based recreation (primary contact recreation).
- Traditional owners' cultural values.
- Cultural and spiritual values.
- Buildings and structures.
- Geothermal properties.

1.2.4 Groundwater Quality Objectives

Groundwater quality objectives (also commonly referred to as investigation levels) for the protected beneficial uses of groundwater were adopted in accordance with Table 2 of the SEPP Waters, and are detailed in the following table:

Beneficial Use	Adopted Groundwater Quality Objectives / Investigation Levels						
Water Dependent Ecosystems and Species	The SEPP Waters states that "groundwater must not cause receiving waters to be affected to the extent that the level of any environmental quality indicator is greater than the levelspecified for surface waters in this Policy" and "groundwater quality must not adversely affect the maintenance of environmental values that depend on groundwater." Therefore, the beneficial uses of surface waters and environmental quality indicators and objectives as set out in Schedules 2 and 3 of SEPP Waters apply. The beneficial uses and objectives specified in the SEPP Waters depend on the receiving surface water body and apply at the zone of discharge						
	Based on the inferred groundwater flow direction and identified surface water receptors in the vicinity of the site, the Yarra River located immediately adjacent north of the site (approximately $30 - 50$ m) is considered likely to be the nearest major surface water body which would receive groundwater migrating from the site. The discharge area from the site along the Yarra River is likely to be tidally influenced with substantial variation in salinity due to mixing of marine and fresh waters. The waters of the Yarra River fall within the Hobsons Bay Marine and Estuarine subsegment of Port Phillip Bay and is defined in SEPP Waters and as a "slightly to moderately modified" ecosystem.						
	Water quality objectives for the Hobsons Bay subsegment are specified in Section 1 of Schedule 3 of the SEPP Waters to be those listed in the <i>Australian Water Quality Guidelines for Fresh and Marine Waters</i> (ANZECC/ARMCANZ ¹ , 2000), unless alternative objectives are listed in Table 1 of Schedule 3. Table 1 of Schedule 3 specifies the following:						
	 Objectives for toxicants are those for the protection of aquatic ecosystems as listed in ANZECC/ARMCANZ (2000). As the Hobsons Bay subsegment is defined within Schedule 2 as a "slightly to moderately modified", the 95% protection levels set out in ANZECC/ARMCANZ (2000) are considered to apply (as per clause 1(6)(b) of Schedule 3 to SEPP Waters). For toxicants which are bioaccumulative the next highest level of protection has been adopted in accordance with clause 1(6)(b)(iv) of Schedule 3. Where high and/or moderate reliability trigger values for a chemical are not published, Senversa has adopted low reliability trigger values (where available) as an indicative interim working level, in accordance with ANZECC/ARMCANZ (2000). Objectives for water quality parameters (pH, electrical conductivity, dissolved oxygen, turbidity) and some nutrients (total phosphorus and total nitrogen) are listed and have been adopted as indicative screening levels where these parameters are considered to have been impacted by site contamination. However, Senversa notes that these objectives may not be achievable in natural aquifer systems prior to discharge even in the absence of contamination, due to natural geochemical and biochemical conditions with the aquifer. 						
Potable Mineral Water Supply	This beneficial use is not considered relevant at the site as groundwater does not have mineral water characteristics (e.g. carbon dioxide and other soluble matter in sufficient concentration to cause effervescence) as defined in SEPP Waters. As such this beneficial use is not considered further.						
Agriculture and Irrigation (Stock Watering)	For agriculture and irrigation (stock watering), the SEPP Waters specifies indicators and objectives from ANZECC/ARMCANZ (2000) i.e. those for <i>Livestock Drinking Water Quality</i> within Section 4.3 of the guidelines.						
	For contaminants for which no livestock drinking water quality criteria are provided, drinking water guidelines for human health have been adopted. Current drinking water guidelines to supplement the above values were adopted from the following sources (in order of preference):						
	 NHMRC (2011), Australian Drinking Water Guidelines - Health WHO (2011), <i>Guidelines for Drinking Water Quality</i> (and associated rolling revisions) USEPA . <i>Regional Screening Levels - Tap Water</i> (<u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u>). 						

¹ Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resources Management Council of Australia and New Zealand (ARMCANZ).

Beneficial Use	Adopted Groundwater Quality Objectives / Investigation Levels							
	Based on the variable groundwater salinity and port land use, the likelihood of this beneficial use being realised on or in the vicinity of the site is considered to be low and has not been considered further.							
Industrial and Commercial	The SEPP Waters states that "groundwater must not be affected to the extent that industrial or commercial water quality is impacted."							
	No generic investigation levels or thresholds for industrial and commercial water quality are provided in ANZECC/ARMCANZ (2000). However, where an existing, proposed or likely industrial or commercial use may occur on or in the vicinity of the site, the potential for contamination to preclude this beneficial use was further considered. SEPP Waters states that consideration must be given to Section 2.2.4 of ANZECC/ARMCANZ (2000) for guidance on deriving guidelines for compounds where no guidelines currently exist.							
	Based on the variable groundwater salinity and port land use, the likelihood of this beneficial use being realised on or in the vicinity of the site is considered to be low and has not been considered further.							
Water Based Recreation (Primary Contact	For primary contact recreation, the SEPP Waters specifies indicators and objectives from NHMRC (2008) <i>Guidelines for Managing Risks in Recreational Water</i> .							
Recreation)	Drinking water guidelines were recommended by the above source in order to protect swimmers from harmful effects through ingestion. NHMRC (2008) specifies that higher concentrations of toxicants may be acceptable for water used for recreational purposes as a person is considered to ingest a maximum of 200 mL water during recreational exposure, compared to an ingestion rate of 2 litres per day assumed in the derivation of drinking water guidelines. However, this document also notes that special care must be taken for substances that can enter the body through skin absorption and/or inhalation during recreational use.							
	In keeping with the principles of the above guidance document, Senversa has adopted the current drinking water guidelines as objectives for protection of the primary contact recreation beneficial use. Drinking water objectives were sourced from Australian or international sources in the following order of preference:							
	 NHMRC (2011), Australian Drinking Water Guidelines - Health and/or Aesthetic (lower of health or aesthetic guideline adopted where applicable). WHO (2011), Guidelines for Drinking Water Quality (and associated rolling revisions) USEPA. Regional Screening Levels - Tap Water (<u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u>). 							
	Where the above objectives adopted for initial screening are exceeded, consideration should be given to whether an adjustment of the drinking water guideline is appropriate (as per NHMRC, 2008).							
	For microbiological parameters, SEPP Waters states:							
	 Microbial water quality must not be affected to the extent that the environmental quality indicator of E. coli is greater than 10 E. coli/100 mL. When human faecal contamination sources have been identified, no E. coli must be present. 							
Traditional Owners' Cultural Values & Cultural and Spiritual Values	No environmental quality objectives for traditional owners' cultural values and for cultural and spiritual values have been specified in SEPP Waters, therefore the objectives for water dependent ecosystems and species and water based recreation have be adopted as default objectives on the assumption that if these objectives are achieved, then the beneficial use of traditional owners' cultural values will also be protected. In circumstances where these objectives were not attained, clause 17(4) identifies that <i>if the level of any environmental quality indicator or objective is not provided for in Schedule 3, contamination must not cause an adverse impact on the beneficial uses</i> .							

Beneficial Use	Adopted Groundwater Quality Objectives / Investigation Levels						
Buildings and Structures	The SEPP Waters states "introduced contaminants must not cause groundwater to become corrosive to structures or building materials" therefore naturally elevated indicators were not considered.						
	Relevant indicators are stated by the SEPP Waters to be pH, sulphate, chloride, redox potential, salinity or any chemical substance which may have a detrimental impact on the structural integrity of buildings or other structures.						
	Objectives for these indicators have primarily been sourced from Australian Standard 2159-2009 (<i>Piling – Design and Installation</i>), in which levels of pH, chloride and sulphate considered to represent mild and/or non-aggressive conditions for concrete or steel piles are specified. The objectives adopted for initial screening (<1,000 mg/L sulphate, pH >5 and <1,000 mg/L chloride) are the most conservative of those reported in AS2159 for concrete and steel piles and are considered to be associated with mild or non-aggressive conditions may still be acceptable, but exposure conditions should be further evaluated in accordance with Tables 6.4.2(C) and 6.5.2(C) within AS2159.						
	In addition, particularly reducing or oxidising conditions (as indicated by field-measured redox potential) need to be considered where shallow groundwater is present.						
	Based on the depth to groundwater and the nature of the development at the site, it is considered possible that building foundations and/or other infrastructure (e.g. service conduits) will come into direct contact with groundwater.						
Geothermal Properties	The SEPP Waters states "no activity must affect the geothermal properties of groundwater". Indicators that natural groundwater geothermal properties need protection "include temperature between 30 and 70 degrees Celsius".						
	The measured temperature of groundwater at and the vicinity of the site ranges from 18.8 to 22.4 C, indicating that geothermal use is not protected in groundwater at the site. As such this beneficial use is not considered further.						
Navigation and Shipping	The SEPP Waters includes Navigation and Shipping as a protected beneficial use for the surface waters of Swanson and Appleton Dock. Appleton Dock is located approximately 100 m south of the site, downgradient of the inferred direction of groundwater flow. The SEPP Waters requires <i>"water quality that is suitable for shipping transport and harbour facilities"</i> . No environmental quality objectives have been specified in SEPP Waters for this protected beneficial use. Given the intertidal exchange and mixing zones, the potential for groundwater quality to impact this beneficial use is considered negligible and therefore is not considered further.						

A groundwater quality objective for TPH is not available from the above references. Petroleum hydrocarbon mixtures are typically made up of numerous individual hydrocarbons with varying physical, environmental and toxicological properties. Serversa has adopted an investigation value of 0.6 mg/L developed by the Netherlands Ministry of Housing, Spatial Planning and the Environment Intervention Values for "mineral oil" (VROM 2013) as an indicator of the presence of petroleum hydrocarbons. However, where TPH is detectable, the specific chemical constituents contributing to the analytical result should be assessed individually. If the specific chemical analyses undertaken, the nature and source of hydrocarbons present at the site should be further investigated.

1 sonvorsa

tel: + 61 3 9606 0070 fax: + 61 3 9606 0074 enquiries@senversa.com.au <u>www.senversa.com.au</u> Level 6, 15 William Street, Melbourne, VIC 3000

Senversa Pty Ltd ABN 89 132 231 380

