

DRAFT REPORT R011332

Air Quality Assessment of Various Emissions from a Particle Board Manufacturing Plant -Proposed WESP system upgrade D&R Henderson Pty Ltd (Monsbent), Benalla

www.ektimo.com.au

Document Information

Client Name:	D&R Henderson Pty Ltd (Monsbent)
Report Number:	R011332
Date of Issue:	29 October 2021
Attention:	
Address:	Yarrawonga Road BENALLA VIC 3672

Report Status

Format	Document Number	Report Date	Prepared By	Reviewed By
Draft	R011332[DRAFT]	10 th September, 2021		
2 nd Draft	R011332[DRAFT2]	29 th September, 2021		
Final Report	R011332	29 th October, 2021		
Amend Report				

Amendment Record

Document Number	Initiator	Report Date	Sections	Reason

Report Authorisation

Ektimo Pty Ltd

This document is confidential and is prepared for the exclusive use of D&R Henderson Pty Ltd (Monsbent) and those granted permission by D&R Henderson Pty Ltd (Monsbent). The report shall not be reproduced except in full.

Table of Contents

1 E	XECUTI	VE SUMMARY	5
1.1	Backgr	round	5
1.2	Projec	t Overview	5
1.3	Outco	me and Concluding Comments	6
2 A	SSESSIV	IENT METHOD	8
2.1	Air Qu	ality Assessment Criteria (AQAC)	9
2.2	Emissi	ons Inventory	10
2	.2.1	Supplier 1 WESP	10
2	.2.2	Supplier 2 WESP	11
2	.2.3	Comparison with previous emissions	11
2	.2.4	Equivalent odour emissions	12
2	.2.5	Other emission sources	14
2.3	Receiv	ving Environment	
2.4	Backgr	round Air Quality	15
2.7	Meter	viological data	16
2.5	Model	selection and configuration	17
2.0 2 A			18
21	Forma	Idahuda	18
J.1 2	1 011110	Supplier 1 WESD emissions	10
د د	.1.1	Supplier 2 WESP emissions	10
כ סיר	Ovidor	of Nitrogon as 100% Nitrogon Diavida	24
3.Z 2	Oxides	Supplier 1 WESD emissions	24
3 2	.2.1	Supplier 2 WESP emissions	24
3	0.2.2	Supplier 2 wesp emissions	24
3.3	Carboi		26
3	.3.1	Supplier 1 WESP emissions	26
3	.3.2	Supplier 2 WESP emissions	26
3.4	Particl	es smaller than 2.5 micron aerodynamic equivalent (PM2.5)	27
3	.4.1	Supplier 1 WESP emissions	27
3	.4.2	Supplier 2 WESP emissions	27
3.5	Particl	es smaller than 10 micron aerodynamic equivalent (PM10)	28
3	.5.1	Supplier 1 WESP emissions	28
3	.5.2	Supplier 2 WESP emissions	28
3.6	Total S	Suspended Particulate (PM50)	29
3	.6.1	Supplier 1 WESP emissions	29
3	.6.2	Supplier 2 WESP emissions	29
3.7	Odour		30
3	.7.1	Supplier 1 WESP emissions	30
3	.7.2	Supplier 2 WESP emissions	30
4 R	RISK TRE	ATMENT PLAN	31
4.1	Key Se	nsitive Receptors	31

4	.2 Risk Events	31
4	.3 Controls to Address Hazards	31
4	.4 Performance Measurement	35
5	LIMITATIONS	36
6	APPENDIX – Meteorological Data Summary Report	37
7	APPENDIX – Example AERMOD Input Configuration File	38

1 EXECUTIVE SUMMARY

1.1 Background

D&R Henderson Pty Ltd, trading as Monsbent, operate a particle board manufacturing plant located at 42 Benalla-Yarrawonga Road, Benalla, Victoria. This plant is operated subject to EPA Licence 9379. The current emissions from the Jet Dryer exhaust stack (DP4) and from the Drum Dryer exhaust stack (DP17) are proposed to be ducted through a new single discharge point via Wet Electro-Static Precipitator (WESP) system. The WESP will abate the current emissions of formaldehyde, particulate, and of odorous volatile organic compounds (VOCs) from the combined process gas streams. Ektimo was engaged by Monsbent to conduct an air quality assessment of these abated emissions to inform an application to amend the current EPA licence. Two WESP designs are currently being considered by Monsbent and therefore the estimated emissions from both are assessed here.

1.2 *Project Overview*

The substances from the proposed WESP stack to be discharged to atmosphere comprise:

- Oxides of nitrogen (NOX) assessed as nitrogen dioxide (NO₂).
- Carbon monoxide (CO).
- Particulate matter assessed as the subset components that are Total Suspended Particulate (TSP) at smaller than 50 micron, and particulate matter smaller than 10 or 2.5 micron (PM10 or PM2.5). This is also emitted from the existing Pressline 3 cyclone (DP21). No fugitive emissions from the site are included in this assessment. Fugitive particulate emissions from the site are to be abated using an Environment Improvement Program which is documented separately to this assessment.
- Formaldehyde, with other notable emissions from the roof vents over Presslines 1, 2 and 3 (DPs 14 and 18); with lesser emissions from the Resin Plant.
- Volatile Organic Compounds which predominantly comprise pinenes and limonene from the timber resin, which are assessed for their equivalent potential for odour dis-amenity.

The flash dryer exhaust stack (DP16) is no longer operable.

Ektimo conducted annual emission testing of the various licensed emissions to air in 2021. These tested emission rates have been used to inform this assessment, with the summated emissions of NO_2 and CO from DP17 and DP21 discharged from the single WESP stack. The emissions of particulate matter and of formaldehyde were assessed at the maximum in-stack discharge concentrations as per vendor guarantees for each of the two WESP designs. The common emissions from the three sets of main press vents, from the Pressline 3 Cyclone and from the resin plant were also included.

All substances were assessed as being emitted continuously from the site, i.e., 24 hours per day, 365 days per year. The approved AERMOD dispersion model was used in accordance with EPA guidance, in conjunction with 5 years of hourly meteorological data including three years available from an on-site surface weather station and two from a prognostic meteorological model, to predict peak ground level concentrations. These peak predictions for each criteria pollutant were assessed for compliance against applicable Environment Reference Standards, toxic substances were assessed against both design ground level concentration, as detailed in State Environment Protection Policy for Air Quality Management (which has been superseded), and air quality assessment criteria in new EPA guidance expected to be released by the end of 2021.

Section 2 details the assessment methodology inclusive of relevant regulatory policy, the derived emission inventory for all significant pollutants, the receiving environment, baseline air quality, meteorological data and modelling. The peak predicted ground level concentrations are compared with their corresponding design criteria with the results detailed in **Section 3**. A risk treatment plan is detailed in **Section 4**.

1.3 Outcome and Concluding Comments

Peak predicted ground level concentrations of formaldehyde at the nearest relevant sensitive receivers from all sources combined did not exceed either the old SEPP-AQM design ground level concentration criteria or the proposed air quality assessment criteria inclusive of either WESP design at maximum instack concentrations. The peak predictions at relevant sensitive receiver locations as the result of the elevated emission plume from either WESP system in isolation represented less than one-third of those peak predictions with all sources contributing. The wake effected emission plumes from the existing pressline roof vents disperse downwind near to ground level and are the predominant contributor to peak formaldehyde concentrations at and beyond the site boundary.

Compliance with the design criterion for TSP, PM10, PM2.5, CO and for NO₂ was readily predicted inclusive of representative background levels at and beyond the site boundary or at the nearest rural residences.

Peak predicted ground level odour from the equivalent odour emissions resulting from the maximum instack VOC concentration guaranteed by the vendor are well below a perceptible intensity at and beyond the site boundary. Thus, the Environment Reference Standard requiring *an air environment that is free from offensive odours from commercial, industrial, trade and domestic activities* is predicted to be satisfied with regard to the incremental emissions from the WESP.

Ongoing compliance with the air quality assessment criteria in the receiving environment is based on a range of management measures as per **Table 18**, vendor design guarantees, the recent emission testing of those emission substances not abated by the WESP and of other sources at the site, as well as the proposed ongoing performance measurements detailed in **Section 4.4**. *The risk treatment specific to the operation of the WESP is to be supplemented by a site-wide Environmental Improvement Plan (documented separately) detailing the management of the other process point source emissions as well as the fugitive wood-fibre and dust emissions.* Based on these controls being effectively and consistently implemented the residual risk of the air quality assessment criteria being exceeded for any assessed substance at and beyond the site boundary or at the nearest receivers was determined to be **Low**.

This report has been prepared for Monsbent and should be read in conjunction with the scope and limitations as detailed in **Section 5**.

2 ASSESSMENT METHOD

The assessment of the various emissions to air requires the following key steps:

- 1. Air Quality Assessment Criteria (AQAC).
- 2. Emissions inventory.
- 3. Receiving Environment.
- 4. Background air quality.
- 5. Meteorological data.
- 6. Model selection and configuration.
- 7. Assessment with AQAC's.

These are each addressed sequentially in the sections below.

2.1 Air Quality Assessment Criteria (AQAC)

The Environment Protection Amendment Act of 2017 has come into effect as of 1st July 2021, although subordinate guidelines and policy for all the substances discharged to air have not yet been finalised and are currently in draft form at the date if this assessment.

The air quality assessment criteria (AQAC) for the airshed pollutants NO₂, CO, PM10 and PM2.5 have been defined as Environment Reference Standards within the Environment Protection Amendment Act.

However, there is no finalised guidance for some toxic substances (e.g., formaldehyde). In the absence of this finalised guidance, the former *State Environment Protection Policy for Air Quality Management, 2001* (SEPP-AQM) has been considered in this assessment, although this has been superseded. Schedule A of the SEPP-AQM defines design ground level concentrations (now referred to as AQACs) for classified indicator pollutants that must not be exceeded inclusive of representative existing background concentrations. The SEPP-AQM design criteria for toxic substances are to be replaced by the AQAC as detailed within the <u>draft EPA Guideline for assessing and minimising air pollution in Victoria, EPA Pub 1961, May 2021</u> which is expected to be introduced by the end of 2021.

AQAC for peak predicted ground level concentrations are specified to protect public health and amenity, or other environmental factors if they are more sensitive than human health, such as certain types of vegetation. The adopted ground level concentration criteria for the pollutants emitted from the plant are summarised in **Table 1** below. Peak model predictions, at the 99.9th percentile, are compared with the AQAC for substances with assessment averaging periods of 1 hour or less. For those substances with assessment averaging periods of 1 hour, the maximum predictions are adopted. Using 5 years of hourly meteorological data separately, the highest predictions for all 5 years are adopted for the comparison with the AQAC. The locations at which the peak predictions are determined is based on the receiving environment, and this is discussed in **Section 2.3**.

The odour potential of the predominant volatile organic compounds are also considered, with an equivalent odour emission conservatively assessed to the perception threshold concentration of 1 Odour Unit expressed as a 3-minute average.

Substance	Classification	Criteria	Averaging Period	Policy
	Class 2	40 μg/m³	3 minute	Former SEPP-AQM design criterion
Formaldabuda	Llighty Llagordous	100 μg/m ³	30 minute	Drepend Air Quality Assessment
Formaldenyde		49 μg/m³	24 hour	Criteria
	Pollutant	9.8 μg/m³	annual	Citteria
Nitragon Diovido		226 µg/m ³	1 hour	
Nitrogen Dioxide		56 μg/m³	Annual	
Carbon Monoxide		10.4 mg/m ³	8 hour	Environment Protection
DN 41.0	Criteria Pollutant	50 μg/m ³	24 hour	Amendment Act, Environmental
PIVIIU		20 µg/m³	annual	Reference Standard
		25 μg/m³	24 hour	
PIVIZ.5		8 μg/m³	annual	
Total Suspended	Unclassified,	330 µg/m ³	3 minutes	Former SEPP-AOM design criterion
Particulate	amenity impact	F.O/		
		An air environm	nent that is free	Environment Protection
Odour	Amenity impact	from offensive	e odours from	Amendment Act, Environmental
	, , , , , , , , , , , , , , , , , , , ,	commercial, indu domestic	ustrial, trade and activities	Reference Standard

Table 1: Air Quality Assessment Criteria

Note: Gas volume at $25^{\circ}C$.

2.2 Emissions Inventory

For this assessment, the plant has been assumed to operate continuously for 24 hours per day, 365 days per year. Building wake effects have been included for the assessment of the emissions from the various stacks, based on plans as provided by Monsbent. See **Figure 2**.

Two emission scenarios are considered, that with the Supplier 1 WESP design or that with the Supplier 2 WESP design. Note that NO_2 and CO from the drum dryer and jet dryer are not abated and the WESP emissions are the sum of those tested from the Drum Dryer (DP17) and the Jet Dryer (DP4). These combustion gases are added to by the emissions from a gas-fired heat plant attached to the WESP which will inject hot air into the flue gas stream so as to maintain the temperature above the moisture saturation temperature and avoid condensate forming on the electrostatic precipitator plates. The VOC, particulate and formaldehyde emissions are based on each vendor guarantee maximum in-stack concentrations multiplied by the combined flow rate as tested from DPs 17 and 4, corrected for discharge temperature and moisture.

2.2.1 Supplier 1 WESP

The geometry and discharge conditions of the Supplier 1 WESP are detailed in **Table 3**. The estimated substance emission rates for the Supplier 1 WESP are detailed in **Table 4**. These include the addition of combustion gas emissions from the attached heat plant.

Table 3: Geometry and discharge conditions of proposed Supplier 1 WESP including the contributionfrom the heat plant.

Source	Coordinates (metres, UTM Zone 55H)		Stack Height	Internal Diameter at exit	Discharge Temp.	Moisture Content	Oxygen Content	Volumetric Flow Rate	Volumetric Flow Rate	Volumetric Flow Rate	Discharge Velocity
	Eastings Northing		metres	metres	(°C)	(%)	(%)	(m3/min) Dry, STP	(m3/min) Dry, 25°C	(m3/min) Actual	(m/sec)
WESP						21%	20%	2,250	2,456	3,370	7.9
Heat Plant Contribution	414249	5957481	45	3.00	65	-	-	100	-	124	0.3
Total								2,350		3,494	≥8

Notes:

Flows based on sum of Jet Dryer and Drum Dryer flows as detailed in Ektimo test Report R011053 for 2021 Annual Emission Testing

Flows corrected to dry STP, added, then adjusted for moisture and temperature based on vendor data.

Heat plant contribution to maintain flow temperature above moisture saturation temperature to avoid condensation on the ESP plates.

Table 4: In-stack concentrations and mass emission rates for each substance discharged from the proposed Supplier 1 WESP including the contribution from the heat plant.

	Tota	al VOC	Formal	Formaldehyde		Nonoxide	Nitroger	n Oxides	Total Par	ticulate	Derived from				n PSA					
Source	Average Conc.	Average Mass Rate	Average Conc.	Average Mass Rate	Average Conc.	Average Mass Rate	Average Conc.	Average Mass Rate	Average Conc.	Average Mass Rate	TSP (<50 um)		TSP (<50 um)		TSP (<50 um)		PM	110	PM	2.5
	mg/Nm³ dry 25°C	g/min	mg/Nm³ dry 25°C	g/min	mg/Nm ³ dry STP	g/min	mg/Nm ³ dry STP	g/min	mg∕Nm³ dry 25℃	g/min	%ТРМ	g/min	%трм	g/min	%ТРМ	g/min				
WESP	120	295	5	12	0.36	49	1.9	259	15	37	69%	25	24%	8.8	5%	1.8				
Heat Plant Contribution	-	-	-	-	1849	185	300	30	-	-	-	-	-	-	-	-				
Total						234		289												

Notes:

Mass rates for NO2 and for CO are based on the sum of Jet Dryer and Drum Dryer mass rates as detailed in Ektimo test Report R011053 for 2021 Annual Emission Testing Mass rates for total VOC, formaldehyde and for total particulate matter based on vendor provided maximum in-stack concentration at exit at NTP.

2.2.2 Supplier 2 WESP

The geometry and discharge conditions of the Supplier 2 WESP are detailed in **Table 5**. The estimated substance emission rates for the Supplier 1 WESP are detailed in **Table 6**. These include the addition of combustion gas emissions from the attached heat plant.

Table 5: Geometry and discharge conditions of proposed Supplier 2 WESP including the contribution from the heat plant.

Source	Coordinates (metres, UTM Zone 55H)		Stack Height	Internal Diameter at exit		Moisture Content	Oxygen Content	Volumetric Flow Rate	Volumetric Flow Rate	Volumetric Flow Rate	Discharge Velocity	
	Eastings	Northing	metres	metres	(°C)	(%)	(%)	(m3/min) Dry, STP	(m3/min) Dry, 25°C	(m3/min) Actual	(m/sec)	
WESP						21%	20%	2,250	2,456	3,370	17.9	
Heat Plant Contribution	414249	5957481	40	2.00	65	-	-	100	-	124	0.7	
Total								2.350		3.494	~18	

Notes:

Flows based on sum of Jet Dryer and Drum Dryer flows as detailed in Ektimo test Report R011053 for 2021 Annual Emission Testing Flows corrected to dry STP, added, then adjusted for moisture and temperature based on vendor data.

Heat plant contribution to maintain flow temperature above moisture saturation temperature to avoid condensation on the ESP plates.

Table 6: In-stack concentrations and mass emission rates for each substance discharged from the proposed Supplier 2 WESP including the contribution from the heat plant.

	Tota	IVOC	Formaldehyde		Carbon M	Monoxide	Nitrogen Oxides		Total Particulate			De	erived from PSA			
Source	Average Conc. mg/Nm ³ dry 25°C	Average Mass Rate g/min	Average Conc. mg/Nm ³ dry 25°C	Average Mass Rate g/min	Average Conc. mg/Nm ³ dry STP	Average Mass Rate g/min	Average Conc. mg/Nm ³ dry STP	Average Mass Rate g/min	Average Conc. mg/Nm ³ dry 25°C	Average Mass Rate g/min	ТS (<50 %трм	SP um) g/min	PⅣ %TPM	110 g/min	РМ %ТРМ	2.5 g/min
WESP	100	246	15	37	0.36	49	1.9	259	30	74	69%	51	24%	17.7	5%	3.7
Heat Plant Contribution	-	-	-	-	1,849	185	300	30	-	-	-	-	-	-	-	-
Total						234		289								

Notes:

Mass rates for NO2 and for CO are based on the sum of Jet Dryer and Drum Dryer mass rates as detailed in Ektimo test Report R011053 for 2021 Annual Emission Testing Mass rates for total VOC, formaldehyde and for total particulate matter based on vendor provided maximum in-stack concentration at exit at NTP.

2.2.3 Comparison with previous emissions

The current emissions from the Jet Dryer (DP4) and from the Drum Dryer (DP17), which are to be ducted to the WESP are detailed in **Table 7** based on the annual testing over the previous 3 years.

Based on guaranteed maximum in-stack concentrations, for the Supplier 1 WESP there is an estimated reduction in maximum tested formaldehyde and TPM over previous 3 years by up to 88% and 95%, respectively. For the Supplier 2 WESP there is an estimated reduction by up to 62% and 91%, respectively.

The maximum in-stack concentration of VOC of 100 mg/Nm3 for the Supplier 1 and 120 mg/Nm3 (each at 25°C) based on the respective vendor guarantee indicates a higher mass rate of total VOC at design flow rate than that tested over the previous 3 years. Hence, there is potentially no reduction in maximum tested VOC mass emission rates levels, although the discharge height and resultant plume rise will be notably higher and less wake-effected by surrounding structures compared to the current separate sources, resulting in greater separation from ground and better dilution.

Table 7: Current emission rates as tested from the Jet Dryer and Drum Dryer as tested in 2021.

		Total VOC						Formaldehyde						Total Particulate Matter				
Source	2019		2020		2021		2019		2020		2021		2019		2020		2021	
	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min	mg/Nm3	g/min
DP4 Jet Dryer	110	84	140	100	44	44	39	29	41	29	0.82	0.82	290	220	750	540	560	560
DP17 Drum Dryer	51	43	94	96	0.55	0.67	83	69	25	26	3.4	4.2	310	260	250	250	140	170
Total	-	127	-	196	-	45	-	98	-	55	-	5	-	480	-	790	-	730

Note:

Ektimo Report R007112 for 2019 Annual Emission Testing Ektimo Report R008993ra2 for 2020 Annual Emission Testing

Ektimo Report R011053 for 2021 Annual Emission Testing

2.2.4 Equivalent odour emissions

Based on the maximum in-stack concentration of VOCs for each WESP design and assuming that 100% of these are the detected chemical species (i.e., either 100% pinenes, limonene, acetone, etc), the maximum in-stack concentration of odour was estimated as 900 OU for the Supplier 2 WESP, or as 1100 OU for the Supplier 1 WESP. With reference to **Table 8**, this was conservatively based on the most odorous detected constituent, alpha-pinene, being at 100% of the VOC emissions. The dilution to ground level for the 40 or 45 metre stack height options would be >1000 for any meteorological conditions; however, the derived maximum odour emission rate will be subject to assessment for peak predicted odours at the nearest sensitive receiver rural dwellings.

Table 8: Odour thresholds and maximum potential in-stack odour concentration for detected volatile organic compound substances with low odour thresholds.

				Supp	lier 2 WESP	Supplier 1 WESP			
Tested Substance	Odour Threshold Concentration (ppm, v/v)	MWT (g/mol)	Odour Threshold Concentration (mg/Nm3), 0°C, 1atm	Chemical Odour at 100 mg/Nm3 (OU)	Maximum Odour Emission Rate at assessed normal flow rate (OUV/min)	Chemical Odour at 120 mg/Nm3 (OU)	Maximum Odour Emission Rate at assessed normal flow rate (OUV/min)		
alpha-pinene	0.018	136	0.10	1000	2400000	1200	2900000		
beta-pinene	0.033	136	0.18	540		650			
D-Limonene	0.038	136	0.21	470		570			
Acetone	42	58	100	1		1			

Nagata, Y. 2003 Measurement of odour threshold by triangle odor bag method. International Odor Conference, Tokyo, organised by Japanese Ministry of Environment, 30 October 2003. Available at http://www.env.go.jp/en/air/odor_measure/index.html. As cited in: Review of odour character and thresholds Science Report: SC030170/SR2, Environment Agency, UK, 2007

Figure 2: Aerial image of the location of the site licenced discharge points with assessed emissions and the plan as detailed in EPA Licence 9379.

2.2.5 Other emission sources

Other vent stack sources at the site discharging substances common to that also discharged from the proposed WESP stack are the: three sets of pressline vents (comprising DPs 14 and 18); the resin plant; and the Pressline 3 Cyclone (DP21). **Table 9** summarizes the geometries and discharge conditions from each of these sources. **Table 10** summarises the tested emission rates for each relevant substance. These emissions have all been assumed to discharge continuously, 24 hours per day, 365 days per year for this assessment.

Source	Coord metres, U 5	linates JTM Zone 5H	Stack Height	Internal Diameter at exit	Discharge Velocity	Discharge Temp.	Volumetric Flow Rate	Moisture Content	Volumetric Flow Rate
	Eastings	Northing	metres	metres	m/sec	°C	m3/min Dry, STP	%	m3/min Actual
DP14 - Pressline 1 (Middle)	414189	5957404	16	0.79	19	23	490	1.7	490
DP14 - Pressline 1 (East)	414193	5957407	16	0.79	17	23	440	1.7	490
DP14 - Pressline 1 (West)	414185	5957402	16	0.79	18	21	480	1.9	530
DP14 - Pressline 2 (Middle)	414196	5957394	16	0.79	1.5	17	42	0.76	45
DP14 - Pressline 2 (East)	414200	5957397	16	0.79	16	24	420	1.7	470
DP14 - Pressline 2 (West)	414190	5957391	16	0.79	12	20	320	1.4	350
DP18 - Pressline 3 (Middle)	414316	5957378	16	1.07	17	20	860	1	940
DP18 - Pressline 3 (North)	414310	5957388	16	1.07	19	24	940	0.77	1,000
DP18 - Pressline 3 (South)	414320	5957364	16	1.07	15	22	730	0.9	800
Resin Plant	414417	5957372	8	0.165	1	17	<2	1.3	<2
DP21 - Pressline 3 Cyclone	414307	5957430	9.8	0.7	14	23	290	2.1	320

Table 9: Geometries and tested discharge conditions for vent stacks discharging substances common to that also discharged from the proposed WESP.

Table 10:	Tested emissions from other vent stacks for substances common to that also discharged
	from the proposed WESP.

	Formal	dehyde	Total Pai Mat	rticulate tter		De	erived f	rom PS	A	
Source	Average Conc.	Average Mass Rate	Average Conc.	Average Mass Rate	TSP (<5	0 um)	PIV	110	PM	2.5
	3 mg/Nm dry STP	g/min	mg/Nm ³ dry STP	g/min	%TPM	g/min	%ТРМ	g/min	%ТРМ	g/min
DP14 - Pressline 1 (Middle)	5.0	2.4	-	-	-	-	-	-	-	-
DP14 - Pressline 1 (East)	4.9	2.2	-	-	-	-	-	-	-	-
DP14 - Pressline 1 (West)	6.7	3.2	-	-	-	-	-	-	-	-
DP14 - Pressline 2 (Middle)	4.3	0.18	-	-	-	-	-	-	-	-
DP14 - Pressline 2 (East)	8	3.3	-	-	-	-	-	-	-	-
DP14 - Pressline 2 (West)	2.6	0.84	-	-	-	-	-	-	-	-
DP18 - Pressline 3 (Middle)	3.7	3.2	-	-	-	-	-	-	-	-
DP18 - Pressline 3 (North)	3.3	3.1	-	-	-	-	-	-	-	-
DP18 - Pressline 3 (South)	1.8	1.3	-	-	-	-	-	-	-	-
Resin Plant	69	<0.1	-	-	-	-	-	-	-	-
DP21 - Pressline 3 Cyclone	-	-	260	76	54%	41	9.3%	7.1	2.1%	1.60

Notes:

DP14, DP18 and DP21 emissions from Ektimo Report R011053 for 2021 Annual Emission Testing Resin Plant Emissions from Ektimo Report R007112-1 , 2019

2.3 Receiving Environment

The plant is located within a broad acre agricultural region, 4 km east of Benalla, illustrated in Figure 1.

The site is surrounded by isolated rural dwelling on farm lots which represent the nearest sensitive receivers for toxic substance with air quality assessment criteria with an assessment averaging time of >1 hour. These are number in **Figure 1**. The potential for odour dis-amenity is also assessed at these locations.

The site has public access roadways beyond the northern, western and southern boundaries. The nearest industry is a newly developed pre-caste concrete manufacturing facility beyond the western boundary, and an industrial estate on the eastern fringe of Benalla. These would represent sensitive receiver locations for toxic substance with air quality assessment criteria with an assessment averaging time of 1 hour or less. Any such substances are effectively assessed at and beyond the site boundary indicated in **Figure 1**.

The terrain in the area is predominantly flat and the elevated WESP stack emission plume will be visible to the surrounding receivers. Visible dust dis-amenity may be assessed as totally suspended particulate (TSP) at and beyond the site boundary.

2.4 Background Air Quality

No formal ambient air monitoring has been conducted in Benalla for an extended period. Where no sitespecific data is available then Schedule C, Part B of the SEPP-AQM requires that the 70th percentile of representative ambient air concentrations monitored in the region be adopted as a fixed background concentration.

As a representative regional city, Ektimo note that EPA Victoria conducted air monitoring in Ballarat from August 2005 to August 2006 (see EPA Publication 1111) and in Shepparton from December 2003 to December 2004 (see EPA Publication 992). The following determination for a representative fixed background concentration for relevant pollutant species are made:

- For PM10, an average of 18 μg/m³ was recorded as a 24-hour average in Shepparton, and a maximum value of 55 μg/m³. A 70th percentile concentration of 36 μg/m³ has been conservatively adopted for use as a constant background for this assessment, viz. a 24-hour average assessment criteria of 50 μg/m³. The fixed background for TSP has been estimated at twice that of PM10¹ for comparison with the 3-minute average design criterion of 330 μg/m³. The fixed background for PM2.5 has been conservatively estimated at one-half of PM10 for comparison with the 24-hour average design criterion of 25 μg/m³.
- For NO₂, an average recording of 5 ppm and a maximum of 1-hour 47 ppm was recorded in Ballarat. A 70th percentile 1-hour concentration of 25 ppm (51 μg/m³) has been adopted for use as a constant background for this assessment, viz. an air quality assessment criteria of 246 μg/m³. An annual average of 10 μg/m³ has been adopted viz. an air quality assessment criteria of 56 μg/m³).
- For CO, a maximum recorded 8-hour average of 3 ppm (3.75 mg/m³) was recorded in Ballarat, viz an air quality assessment criterion of 10.4 mg/m³.

No background concentration has been assumed for formaldehyde.

¹ Gupta, Partha Kumar, *Relationship between total suspended particulates and particulate matter of 10 microns*, Master of Engineering (Hons.) thesis, Department of Civil and Mining Engineering, University of Wollongong, 1996. http://ro.uow.edu.au/theses/2433

2.5 Meteorological data

Annual datasets of hourly varying meteorological data for five recent years were synthesised based on (i) three calendar years of hourly average data from an onsite weather station; and (ii) two years if synoptic weather data recorded in the region by the Bureau of Meteorology and adjusted to the site location using the approved TAPM prognostic meteorological model developed by CSIRO. The data synthesis was conducted by pDs Consulting in accordance with EPA guidance². Note **Appendix Section 6** for a summary report on the compilation of this data.

A wind rose illustrating the average of the five annual wind distribution is illustrated in **Figure 3**. Wind directions are predominantly from the west or north-east, with lower frequency winds from the north and from the south. Breezes are more common from the north-east and west during spring and summer. As autumn turns to winter, the proportion from the north-east and east decreases and that from the west increases. As spring turns to summer the proportion of winds from the west decreases and that from the north-east increases. Light winds are common with an average wind speed of 2.4 m/sec or 9 km/hour.

Figure 3: Distribution of wind speed and direction as determine for the site, 2016-2020.

² Construction of Input Meteorological Data Files for EPA Victoria's Regulatory Air Pollution Model AERMOD, EPA draft Guideline, June 2014.

2.6 Model selection and configuration.

AERMOD is currently the EPA approved dispersion model for air quality assessments subject to limitations around geophysical location and source geometry³. AERMOD is a steady state plume model that incorporates the latest science and is maintained by the USEPA.

For the emissions from the tall predominantly wake-free WESP stack and the emissions from the other shorter wake-affected stacks over flat regional terrain the peak predicted ground level concentrations will occur within and in the local area surrounding the site. These conditions are within the capability of steady state plume models and so the AERMOD model is appropriate for this assessment in combination with the available site-specific meteorological data.

AERMOD has been configured in accordance with the EPA Guidance as appropriate for this assessment. Key points are as follows:

- The terrain in the region of the site is predominantly flat and therefore the influences of terrain in the model have been assumed to be insignificant.
- The PRIME building wake model has been adopted to characterise the initial dispersion of the emission plumes, informed by the Building Profile Input Procedure characterisation of the geometry of the local built forms. The latter were determined from site plans provided by Monsbent, site inspection, recent aerial imagery of the site and measurements provided by Monsbent.
- Pre-processed site representative hourly meteorological data configured specifically to the
 geophysical conditions at the site for the individual years 2016-2020. This was based on three years
 surface meteorological data as recorded onsite and provided by Monsbent, and two years derived
 from the application of the TAPM prognostic meteorological model, noting that the nearest BoM
 weather stations were too distant to be representative of the Monsbent location. Note Section 2.5.
- Rural dispersion was adopted in accordance with EPA guidance.
- A receptor grid resolution of 50 m was adopted with a 4 km extent.
- Representative 70th percentile background concentrations of relevant pollutants were added to peak predicted ground level concentrations after the modelling (see **Section 2.4**).
- The modelling for particulate emissions assumed no mass depletion of the dispersed plume.
- 3-minute average concentrations were obtained from the predicted 1-hour averages by multiplying the predicted hourly values by 1.8, i.e., C_{3min} = C_{60min} x (60/3)^{0.2}, as per guidance. 30-minute average concentrations were calculated using this method.
- Contours over an aerial map of the local region of the highest predicted ground level concentrations for each substance for each year were used to assess compliance with the AQAC.
- Peak predicted and annual average concentrations for all substances were tabled at each sensitive receiver to assess compliance with relevant air quality assessment criteria.

Further information on the AERMOD configuration is provided in the attached example input file in **Appendix Section 7**. All files can be provided in electronic form upon request for peer review.

³ Draft EPA Guidance notes for using the regulatory air pollution model AERMOD in Victoria, publication 1551, July 201

3 ASSESSMENT RESULTS

3.1 Formaldehyde

3.1.1 Supplier 1 WESP emissions

Table 11 summarises the peak predictions of formaldehyde from the facility with the Supplier 1 WESP design implemented. The peak predictions for the combined emissions from the plant were all predicted to be compliant with the adopted air quality assessment criteria. The incremental impact from the WESP stack emissions in isolation represented at most 3% of any assessment criteria. The emissions from the existing main press vents represented the bulk of the predicted impact at and beyond the site boundary. **Table 12** details the peak predictions at the nearest rural dwellings with that from all emissions being 23% of any assessment criterion, with up to 3% of this from the WESP. At and beyond the site boundary the peak predictions represented up to 85% of any criterion. Hence the cumulative impact of the abated emissions from the WESP and the tested emissions from the other sources are compliant with the AQAC.

Averaging	Air Quality Assessment	Assessment	Highest Predic from 5 separate ye	ctions (μg/m³) ears of meteorology	Compliant?
nine	Criterion		Supplier 1 WESP only	All sources	
3 minute	40	At and beyond site boundary at the 99.9 th percentile	1	34	Yes
30 minute	100	At and beyond site boundary at the 99.9 th percentile	1	21	Yes
24 hour	49	Highest prediction at the nearest rural residences	<1	3	Yes
Annual	9.8	Nearest rural residences	<0.1	0.6	Yes

Table 11: Peak Predictions of formaldehyde with Supplier 1 WESP emissions.

Table 12: Peak Predictions of formaldehyde (μg/m³) with Supplier 1 WESP emissions at the site boundary and at the nearest rural dwelling sensitive receivers.

																				Form	alde	hyd	e emi V	ssior VESP	ns wi	th Su	pplie	er 1																				
												All so	urces											1										٧	VESP	emiss	sions o	only	_			_	_	_	_			
sensitive	3 mi	in aver	age, S	19.9th	percer	ntile	30 mi	n aver	age, 9	19.9th	perce	ntile	N	laxim	um 24	hour	avera	ge		A	Innual	lavera	age		3 mi	in aver	age, 9	9.9th	percer	ntile	30 m	in ave	rage, 9	9.9th p	ercen	tile	M	laxim	um 24	houra	iverag	e		A	Innual	averag	ge -	
Receiver	201	5 2017	2018	3 2019	2020	Max.	2016	5 2017	2018	2019	2020	Max	2016	2017	2018	2019	2020	Max	201	5 201	7 2018	8 201	9 2020	Max	201	6 201	7 2018	2019	2020	Ma	2016	5 201	7 2018	2019	2020	Ma	2016	2017	2018	2019	2020	Ma	2016	2017	2018	2019	202	Max
1	2	2	2	2	2	2	1	1	1	1	1	1	1	1	0	0	1	1	0.1	0.1	0.1	0.1	0.1	0.1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	2	2	2	2	2	2	2	1	1	1	2	1	1	0	0	1	1	0.1	0.1	0.1	0.1	0.1	0.1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	7	7	6	7	7	4	4	4	4	4	4	2	2	1	1	2	2	0.3	0.3	0.4	0.3	0.3	0.4	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
4	9	9	9	7	9	9	6	6	6	5	6	6	3	3	2	2	3	3	0.3	0.4	0.6	0.5	0.5	0.6	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
5	4	5	5	4	5	5	3	3	3	2	3	3	1	1	1	1	2	2	0.2	0.2	0.3	0.2	0.2	0.3	1	1	1	1	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
6	4	4	4	4	4	4	3	3	3	2	3	3	1	1	1	1	2	2	0.2	0.2	0.3	0.2	0.2	0.3	1	1	1	1	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
7	3	3	4	3	3	4	2	2	2	2	2	2	1	1	1	1	1	1	0.1	0.1	0.2	0.2	0.1	0.2	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
8	5	5	5	5	5	5	3	3	3	3	3	3	2	2	1	1	1	2	0.2	0.2	0.4	0.3	0.3	0.4	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
9	6	6	6	6	6	6	4	4	4	4	4	4	1	1	1	1	2	2	0.2	0.1	0.4	0.3	0.3	0.4	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
10	5	5	6	5	6	6	3	3	4	3	4	4	1	1	1	1	1	1	0.2	0.1	0.4	0.3	0.3	0.4	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
11	4	4	5	4	5	5	3	3	3	3	3	3	1	1	1	1	1	1	0.1	0.1	0.4	0.3	0.2	0.4	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
12	3	3	3	3	3	3	2	2	2	2	2	2	1	1	1	1	1	1	0.1	0.1	0.2	0.2	0.1	0.2	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
13	2	2	3	2	2	3	1	1	2	2	2	2	1	0	0	1	1	1	0.1	0.1	0.1	0.2	0.1	0.2	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
14	2	2	3	2	2	3	1	2	2	2	1	2	1	1	0	0	1	1	0.1	0.1	0.1	0.1	0.1	0.1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
15	3	3	3	3	3	3	2	2	2	2	2	2	1	1	1	1	1	1	0.1	0.1	0.2	0.2	0.1	0.2	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
Site Bdy	23	23	34	30	30	34	14	15	21	20	19	21	7,	. 7	7	7	7	7	1.1	1.2	2.0	2.1	1.7	2.1	1	1	. 1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0

Figures 3, 4, 5 and 6 illustrate contours of peak predicted ground level concentrations of formaldehyde for the combined emissions from the plant for assessment averaging periods of 3 minute, 30 minutes, 24 hours and annual average, respectively. Note that the peak impact from the WESP emission plume for averaging periods of 1 hour or less is distant from the stack as the plume travels above ground before dispersing to ground level, i.e, the predictions increase with distance and then decrease from about 10 stack heights from the source under light to moderate winds speeds.

Figure 3

Supplier 1 WESP with other sources of formaldehyde 99.9th pecentile 3-minute average far each assessed year. Design criter tan = 40 ug/m3. Contours 5 ug/m3 (white), 10 ug/m3 (green), 20 ug/m3 (yell ow), and 6 ug/m3 (red).

Figure 4

Supplier 1 WESP with other sources of formaldehyde 99.9th pecentile 30-minute average for each assessed year. Design criterion = 100 ucy m3. Contours 5 ug/m3 (white}. 10 ug/m3 (green), 25 ug/m3 (yellow), and 100 ug/m3 (red)

Figure 5 Supplier 1 WESP with other sources of formaldehyde Maximum predicted 24 hour average for each assessed year. Design criterion - 49 ug/m3. Contours 1 ug/m3 (white), 5 ug/m3 (green), and 10 ug/m3 (yellow).

Figure 6 Supplier 1 WESP with other sources of formaldehyde Annual average for each assessed year. Design criterion = 9.8 ug/m3. Contours 1 ug/m3 (white) and 2 ug/m3 (green)

412500 413500 415000 415500 413000 414000 414500 Eastings (metres.UTM)

3.1.2 Supplier 2 WESP emissions

Table 13 summarises the peak predictions of formaldehyde from the facility with the Supplier 2 WESP design implemented. The peak predictions for the combined emissions from the plant were all predicted to be compliant with the adopted air quality assessment criteria. The incremental impact from the WESP stack emissions in isolation represented at most 10% of any assessment criteria. The emissions from the existing main press vents represented the bulk of the predicted impact at and beyond the site boundary. **Table 14** details the peak predictions at the nearest rural dwellings with the peak prediction at the nearest rural dwelling for all emissions being 23% of any assessment criterion, with up to 8% of this from the WESP. At and beyond the site boundary the peak predictions represented up to 90% of any criterion. Hence the cumulative impact of the abated emissions from the WESP and the tested emissions from the other sources are compliant with the AQAC.

Averaging	Air Quality	Accorment	Highest Predic from 5 separate ye	ctions (μg/m³) ars of meteorology	Compliant2
Time	Criterion	Assessment	Supplier 2 WESP only	All sources	Compliant:
3 minute	40	At and beyond site boundary at the 99.9 th percentile	4	36	Yes
30 minute	100	At and beyond site boundary at the 99.9 th percentile	3	23	Yes
24 hour	49	Highest prediction at the nearest rural residences	1	3	Yes
Annual	9.8	Nearest rural residences	0.1	0.7	Yes

Table 13: Peak Predictions of formaldehyde with Supplier 2 WESP emissions

Table 14: Peak Predictions of formaldehyde (µg/m³) for with Supplier 2 WESP emissions at the site boundary and at the nearest rural dwelling sensitive receivers.

																			F	orm	alde	hyde	emi	ssior	ıs wi	th Su	pplie	er 2																				
	-											All so	urces										- v	VESP											WESP	emiss	sions o	nlv										
sensitive	3 mi	n aver	age, 9	9.9th 1	percen	tile	30 mir	n aver	age, 9	9.9th	percer	ntile	M	aximu	ım 24	hour	avera	ze		А	nnual	avera	ge		3 mi	n avera	ge, 9	9.9th i	percer	ıtile	30 m	in ave	rage, 9	9.9th (percen	tile	M	aximu	m 24	hour a	verae	e		A	nnual a	verage	e	
Receiver	2016	2017	2018	2019	2020	Max.	2016	2017	2018	2019	2020	Max.	2016	2017	2018	2019	2020	Max	2016	5 2017	2018	2019	2020	Max.	201	6 2017	2018	2019	2020	Max.	2016	201	7 2018	2019	2020	Max.	2016	2017	2018	2019	2020	Max.	2016	2017	2018 2	2019 2	- 1020 N	lax.
1	3	3	3	3	3	3	2	2	2	2	2	2	1	1	0	1	1	1	0.1	0.1	0.1	0.1	0.1	0.1	2	2	2	2	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	D.O
2	3	3	3	3	3	3	2	2	2	2	2	2	1	1	0	0	1	1	0.1	0.1	0.1	0.1	0.1	0.1	2	2	2	2	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	7	7	7	7	7	4	4	4	4	4	4	2	3	1	1	2	3	0.3	0.4	0.4	0.4	0.3	0.4	3	3	3	3	3	3	2	2	2	2	2	2	1	1	1	1	1	1	0.1	0.1	0.1	0.0	0.0	0.1
4	9	9	9	7	9	9	6	6	6	5	6	6	3	3	3	2	3	3	0.4	0.4	0.7	0.5	0.6	0.7	2	3	2	3	3	3	2	2	2	2	2	2	1	1	0	0	1	1	0.1	0.1	0.1	0.1	0.1	0.1
5	5	5	5	4	5	5	3	3	3	3	3	3	1	1	1	1	2	2	0.2	0.2	0.4	0.3	0.3	0.4	2	2	2	3	2	3	1	1	1	2	2	2	1	0	0	0	0	1	0.0	0.0	0.1	0.1	0.1	0.1
6	5	5	5	4	5	5	3	3	3	3	3	3	1	1	1	1	2	2	0.2	0.2	0.4	0.3	0.3	0.4	2	2	2	2	2	2	1	1	1	2	1	2	0	0	0	0	1	1	0.0	0.0	0.1	0.1 (0.1	0.1
7	4	4	4	4	4	4	2	2	3	2	3	3	1	1	1	1	1	1	0.1	0.1	0.3	0.2	0.2	0.3	2	2	2	2	2	2	1	1	1	1	1	1	0	0	0	0	1	1	0.0	0.0	0.1	0.1 (0.1	0.1
8	6	5	6	5	6	6	4	3	4	3	4	4	2	2	1	1	2	2	0.2	0.2	0.4	0.4	0.3	0.4	2	2	2	2	2	2	1	1	1	1	1	1	1	1	0	0	1	1	0.0	0.0	0.1	0.1	0.1	0.1
9	6	6	6	6	6	6	4	4	4	4	4	4	1	2	1	1	2	2	0.2	0.2	0.4	0.4	0.3	0.4	2	2	2	2	2	2	1	1	1	1	1	1	0	1	0	0	0	1	0.0	0.0	0.0	0.0	0.0	0.0
10	6	6	6	6	6	6	4	4	4	4	4	4	1	2	2	1	2	2	0.2	0.2	0.5	0.4	0.3	0.5	2	2	2	1	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.0	0.1	0.0	0.0	0.1
11	5	5	5	5	5	5	3	3	3	3	3	3	1	1	1	1	2	2	0.2	0.1	0.4	0.3	0.3	0.4	2	2	2	1	2	2	2	1	1	1	1	2	0	0	0	0	1	1	0.0	0.0	0.1	0.0	0.1	0.1
12	4	4	4	4	4	4	2	2	3	2	2	3	1	1	1	1	1	1	0.1	0.1	0.3	0.2	0.2	0.3	2	2	2	2	2	2	1	1	1	1	1	1	0	0	0	0	1	1	0.0	0.0	0.1	0.1	0.1	0.1
13	3	3	4	3	3	4	2	2	3	2	2	3	1	1	1	1	1	1	0.1	0.1	0.2	0.2	0.2	0.2	2	2	2	2	2	2	1	1	2	1	1	2	0	0	0	0	0	0	0.0	0.0	0.1	0.1	0.1	0.1
14	3	3	4	3	3	4	2	2	2	2	2	2	1	1	1	1	1	1	0.1	0.2	0.2	0.2	0.1	0.2	2	2	2	2	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0.0	0.1	0.0	0.1	0.0	0.1
15	4	4	4	4	3	4	2	2	3	2	2	3	1	1	1	1	1	1	0.1	0.1	0.2	0.2	0.1	0.2	2	2	2	2	2	2	1	1	1	1	1	1	1	0	0	0	0	1	0.0	0.0	0.0	0.0	0.0	0.0
Site Bdy	23	23	36	32	30	36	14	15	23	20	19	23	7	. 8	7	8	8	8	1.1	1.3	2.0	2.3	1.7	2.3	4	4	4	4	4	4	3	3	3	3 .	2	3	110	1	1	1	1	1	0.1	0.1	0.1	0.1	0.1	0.1

Figures 7, 8, 9 and 10 illustrate contours of peak predicted ground level concentrations of formaldehyde for the combined emissions from the plant for assessment averaging periods of 3 minute, 30 minutes, 24 hours and annual average, respectively. Note that the peak impact from the WESP emission plume for averaging periods of 1 hour or less is distant from the stack as the plume travels above ground before dispersing to ground level, i.e, the predictions increase with distance and then decrease from about 10 stack heights from the source under light to moderate winds speeds.

Figure 8 Supplier 2 WESP with other sources of formaldehyde 99.9th pecentile 30-minute average for each assessed year. Design criterion = 100 ug/m3. Contours 5 ug/m3 (white), 10 ug/m3 (green), 25 ug/m3 (yellow), and 100 ug/m3 (red).

Figure 9 Supplier 2 WESP with other sources of formaldehyde Maximum predicted 24 hour average for each assessed year. Design criterion = 49 ug/m3. Contours 1 ug/m3 (white), 5 ug/m3 (green), and 10 ug/m3 (yellow).

Figure 10 Supplier 2 WESP with other sources of formaldehyde Annual average for each assessed year. Design criterion = 9.8 ug/m3. Contours 1 ug/m3 (white) and 2 ug/m3 (green)

3.2 Oxides of Nitrogen as 100% Nitrogen Dioxide

A screening assessment was conducted based on 100% of the discharged NO_X emissions being NO_2 equivalent. From **Section 2.4**, the 70th percentile 1-hour average background concentration adopted for this assessment is 51 µg/m³ and the annual average is 10 µg/m³. Note that the peak impact from the WESP emission plume for averaging periods of 1 hour or less is distant from the stack as the plume travels above ground before dispersing to ground level, i.e, the predictions increase with distance and then decrease from about 10 stack heights from the source under light to moderate winds speeds

3.2.1 Supplier 1 WESP emissions

Table 15 details the peak hourly average concentrations of NO₂ with the Supplier 1 WESP at the site boundary and beyond to the nearest rural dwellings. The peak hourly average prediction was 18 μ g/m³ at the site boundary, or 69 μ g/m³ with background, which is *readily compliant* with the air quality assessment criteria of 226 μ g/m³. The peak increment represents only 8% of the criteria. Figure 11 illustrates contours of peak hourly predicted ground level concentrations of NO₂, excluding background, around the site. The highest annual average increment at the nearest rural dwellings was 0.6 μ g/m³ with respect to the assessment criterion of 56 μ g/m³.

3.2.2 Supplier 2 WESP emissions

Table 15 also details the peak hourly average concentrations of NO₂ with the Supplier 2 WESP at the site boundary and beyond to the nearest rural dwellings. The peak hourly average prediction was 19 μ g/m³ at the site boundary, or 70 μ g/m³ with background, which is *readily compliant* with the air quality assessment criteria of 226 μ g/m³. The peak increment represents only 8% of the criteria. **Figure 12** illustrates contours of peak hourly predicted ground level concentrations of NO₂, excluding background, around the site. The highest annual average increment at the nearest rural dwellings was 0.6 μ g/m³ with respect to the assessment criterion of 56 μ g/m³.

Sensitive Receiver	99.9t	h perce (Criteric	ntile, 1 k (µg/m3) on = 226	nour av μg/m3	erage	An	nual Av Criteric	verage on = 56	(μg/m μg/m	3) 3	Sensitive Receiver	99.9tl	n perce Criterio	ntile, 1 (µg/m3 on = 226	hour av) δμg/m3	verage	Ar	nnual A Criteri	verage on = 56	(μg/m μg/m	3) 3
	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020		2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
		S	upplier	1 WESF	plus c	other so	urces						9	Supplie	r 2 WES	P plus	other so	ources			
1	8	7	7	8	8	0.3	0.3	0.2	0.3	0.2	1	8	7	8	8	8	0.3	0.3	0.2	0.3	0.3
2	9	7	8	6	8	0.3	0.3	0.2	0.2	0.2	2	9	7	8	7	8	0.3	0.3	0.2	0.2	0.2
3	11	11	12	11	11	0.5	0.5	0.4	0.3	0.3	3	11	12	12	11	11	0.5	0.5	0.5	0.3	0.3
4	11	11	11	11	11	0.5	0.5	0.6	0.5	0.6	4	11	11	11	11	11	0.5	0.5	0.6	0.5	0.6
5	9	8	10	11	10	0.4	0.3	0.5	0.4	0.5	5	10	8	10	11	10	0.4	0.3	0.6	0.5	0.5
6	10	9	9	11	9	0.4	0.3	0.5	0.4	0.5	6	10	9	9	11	10	0.4	0.3	0.6	0.5	0.5
7	9	9	8	8	10	0.3	0.3	0.5	0.5	0.4	7	9	9	9	8	10	0.3	0.3	0.6	0.5	0.5
8	8	8	7	7	9	0.4	0.3	0.4	0.4	0.4	8	9	8	7	7	9	0.4	0.3	0.5	0.5	0.5
9	9	8	7	6	9	0.3	0.2	0.3	0.2	0.3	9	9	8	7	7	9	0.3	0.2	0.3	0.3	0.3
10	10	7	8	6	7	0.4	0.3	0.5	0.3	0.3	10	10	7	8	6	7	0.4	0.3	0.6	0.3	0.4
11	10	9	9	6	9	0.4	0.3	0.5	0.3	0.4	11	10	8	9	6	9	0.4	0.3	0.6	0.3	0.4
12	9	8	8	8	9	0.3	0.2	0.5	0.4	0.4	12	10	8	10	8	9	0.3	0.3	0.6	0.5	0.4
13	8	7	8	7	8	0.3	0.3	0.5	0.5	0.5	13	8	7	11	8	8	0.3	0.3	0.6	0.6	0.5
14	8	8	8	7	7	0.4	0.4	0.3	0.4	0.2	14	8	8	10	8	8	0.4	0.4	0.4	0.5	0.3
15	8	7	9	7	8	0.3	0.2	0.3	0.3	0.2	15	9	7	10	7	8	0.3	0.3	0.4	0.4	0.2
Site Bdy	17	18	18	18	17	0.7	0.9	0.8	0.9	0.8	Site Bdy	18	18	18	19	18	0.8	1.0	0.9	0.9	0.9
Maximum	17	18	18	18	17	0.7	0.9	0.8	0.9	0.8	Maximum	18	18	18	19	18	0.8	1.0	0.9	0.9	0.9

Table 15: Peak predicted and annual average incremental NO2 concentrations at the site boundary and at each nearby rural dwelling sensitive receiver, excluding background concentration.

Figure 12

Supplier 2 WESP with other sources of NOX as 100% NO2 99.9th pecentile 1-hour average for each assessed year, excluding background Design criterion = 226 ug/m3 Contours: 9 ug/m3 (yellow) and 16 ug'm3 (black)

3.3 Carbon Monoxide

From Section 2.4, the 8-hour average background concentration adopted for this assessment is 3.75 mg/m^3 .

3.3.1 Supplier 1 WESP emissions

Table 15 details the peak 8-hour average concentrations of CO with the Supplier 1 WESP at the nearest rural dwellings. The peak prediction was 0.008 mg/m³ which is not notably different to the adopted background and insignificant compared to the AQAC of 10.4 mg/m³.

3.3.2 Supplier 2 WESP emissions

Table 15 details the peak 8-hour average concentrations of CO with the Supplier 2 WESP at the nearest rural dwellings, which were not different to those with the Supplier 1 WESP. The peak prediction was 0.008 mg/m³ which is not notably different to the adopted background and insignificant compared to the AQAC of 10.4 mg/m³.

Table 15:	Peak predicted incremental CO concentrations at each nearby rural dwelling sensitive
	receiver, excluding background concentration, with each WESP design.

Sensitive	Maximu	m predict Criteri	ed 8 hour on = 10.4	average (mg/m3	mg/m3)	Sensitive	Maximu	ım predict Criteri	ed 8 hour on = 10.4	average (r mg/m3	mg/m3)
Receiver	2016	2017	2018	2019	2020	Receiver	2016	2017	2018	2019	2020
	Supplie	r 1 WESP	plus othe	r sources			Supplie	r 2 WESP	plus other	sources	
1	0.005	0.004	0.001	0.004	0.004	1	0.005	0.004	0.002	0.004	0.004
2	0.006	0.003	0.003	0.002	0.003	2	0.006	0.003	0.003	0.003	0.003
3	0.008	0.007	0.008	0.006	0.008	3	0.008	0.007	0.008	0.007	0.008
4	0.007	0.008	0.006	0.006	0.008	4	0.008	0.008	0.006	0.006	0.008
5	0.005	0.005	0.005	0.004	0.005	5	0.005	0.005	0.005	0.005	0.006
6	0.005	0.005	0.004	0.004	0.006	6	0.005	0.006	0.004	0.005	0.006
7	0.005	0.005	0.003	0.004	0.007	7	0.005	0.005	0.004	0.004	0.006
8	0.006	0.005	0.004	0.005	0.006	8	0.006	0.005	0.004	0.005	0.006
9	0.004	0.006	0.003	0.002	0.006	9	0.004	0.005	0.004	0.002	0.006
10	0.006	0.004	0.004	0.003	0.004	10	0.006	0.004	0.004	0.003	0.004
11	0.007	0.006	0.003	0.003	0.005	11	0.007	0.006	0.003	0.003	0.005
12	0.006	0.005	0.003	0.003	0.006	12	0.006	0.005	0.004	0.003	0.006
13	0.005	0.005	0.003	0.004	0.006	13	0.005	0.005	0.004	0.004	0.006
14	0.005	0.005	0.003	0.003	0.005	14	0.005	0.005	0.004	0.004	0.005
15	0.005	0.004	0.003	0.002	0.004	15	0.005	0.004	0.003	0.003	0.004
Maximum	0.008	0.008	0.008	0.006	0.008	Maximum	0.008	0.008	0.008	0.007	0.008

3.4 Particles smaller than 2.5 micron aerodynamic equivalent (PM2.5)

From **Section 2.4**, the 70th percentile 24-hour average background concentration adopted for this assessment is $18 \,\mu\text{g/m}^3$.

3.4.1 Supplier 1 WESP emissions

Table 16 details the maximum predicted daily average ground level concentrations of PM2.5 at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. The highest predicted increment was 0.4 μ g/m³, or less than 2% of the assessment criterion. The highest annual average increment at these rural dwellings for all assessment years was 0.1 μ g/m³, or <1% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

3.4.2 Supplier 2 WESP emissions

Table 16 also details the maximum predicted daily average ground level concentrations of PM2.5 at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. This was not notably different to that predicted for the Supplier 1 WESP design. The highest predicted increment was 0.4 μ g/m³, or less than 2% of the assessment criterion. The highest annual average increment at these rural dwellings for all assessment years was 0.1 μ g/m³, or <1% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

Table 16: Highest predicted 24-hour average and annual average PM2.5 ground level concentrations at each nearby sensitive receiver, excluding background concentration.

Sensitive	Maxim	um predict Crite	ed 24 hou	r average (g/m3	µg/m3)		Annua	average (µg/m3) 7/m3	
Receiver	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
				Supplier	1 WESP pl	us other				
					sources					
1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
3	0.2	0.2	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
4	0.4	0.4	0.3	0.2	0.4	0.0	0.0	0.1	0.1	0.1
5	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
6	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
7	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
8	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
9	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
10	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
11	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
12	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Maximum	0.4	0.4	0.3	0.2	0.4	0.0	0.0	0.1	0.1	0.1
				Supplier	2 WESP pl	us other				
					sources					
1	0.1	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
2	0.1	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
3	0.2	0.2	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
4	0.4	0.4	0.3	0.2	0.4	0.0	0.1	0.1	0.1	0.1
5	0.1	0.1	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
6	0.1	0.1	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
7	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
8	0.1	0.2	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
9	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
10	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
11	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
12	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
13	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
14	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
15	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Maximum	0.4	0.4	0.3	0.2	0.4	0.0	0.1	0.1	0.1	0.1

3.5 Particles smaller than 10 micron aerodynamic equivalent (PM10)

From **Section 2.4**, the 70th percentile 24-hour average background concentration adopted for this assessment is $36 \ \mu g/m^3$.

3.5.1 Supplier 1 WESP emissions

Table 17 details the maximum predicted daily average ground level concentrations of PM2.5 at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. The highest predicted increment was 1.6 μ g/m³, or 3% of the assessment criterion. The highest annual average increment at these rural dwellings for all assessment years was 0.4 μ g/m³, or <2% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

3.5.2 Supplier 2 WESP emissions

Table 17 also details the maximum predicted daily average ground level concentrations of PM2.5 at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. This was not notably different to that predicted for the Supplier 1 WESP design. The highest predicted increment was 1.7 μ g/m³, or 3% of the assessment criterion. The highest annual average increment at these rural dwellings for all assessment years was 0.4 μ g/m³, or <2% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

Table 17:Highest predicted 24-hour average and annual average PM10 ground level concentrations
at each nearby sensitive receiver, excluding background concentration.

Sensitive	Maxim	um predict Crite	:ed 24 houi rion = 50 ເ	average (1g/m3	μg/m3)		Annual Crite	average (µ rion = 20 µ	ւց/m3) ւց/m3	
Receiver	2016	2017	2018	2019	2020	2016	2017	2018	2019	2020
				Supplier	1 WESP plu sources	us other				
1	0.2	0.2	0.1	0.2	0.2	0.0	0.0	0.0	0.0	0.0
2	0.3	0.2	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0
3	0.9	1.0	0.5	0.5	0.8	0.1	0.2	0.2	0.2	0.2
4	1.6	1.6	1.5	0.9	1.6	0.2	0.2	0.4	0.3	0.3
5	0.5	0.5	0.4	0.4	0.6	0.1	0.1	0.1	0.1	0.1
6	0.5	0.5	0.3	0.4	0.6	0.1	0.1	0.1	0.1	0.1
7	0.3	0.4	0.2	0.3	0.3	0.0	0.0	0.1	0.1	0.1
8	0.6	0.7	0.4	0.5	0.6	0.1	0.1	0.2	0.1	0.1
9	0.6	0.6	0.4	0.4	0.6	0.1	0.1	0.2	0.1	0.1
10	0.4	0.5	0.5	0.3	0.5	0.1	0.1	0.2	0.1	0.1
11	0.3	0.4	0.4	0.4	0.5	0.1	0.0	0.1	0.1	0.1
12	0.2	0.2	0.2	0.3	0.3	0.0	0.0	0.1	0.1	0.1
13	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0.1	0.1	0.0
14	0.2	0.2	0.2	0.1	0.2	0.0	0.0	0.0	0.0	0.0
15	0.3	0.3	0.2	0.2	0.2	0.0	0.0	0.1	0.1	0.0
Maximum	1.6	1.6	1.5	0.9	1.6	0.2	0.2	0.4	0.3	0.3
				Supplier	2 WESP plu	is other				
1	0.2	0.2	0.2	0.2	sources	0.0	0.0	0.0	0.1	0.0
1 2	0.5	0.3	0.2	0.2	0.5	0.0	0.0	0.0	0.1	0.0
2	1.0	0.3	0.2	0.1	0.5	0.0	0.0	0.1	0.0	0.0
3	1.0	1.1	1.5	1.0	1.7	0.2	0.2	0.2	0.2	0.2
4 5	1.0	1.0	0.4	1.0	0.7	0.2	0.2	0.4	0.3	0.5
5	0.0	0.0	0.4	0.4	0.7	0.1	0.1	0.2	0.1	0.1
7	0.0	0.0	0.4	0.5	0.7	0.1	0.1	0.1	0.1	0.1
8	0.4	0.5	0.5	0.4	0.5	0.1	0.1	0.1	0.1	0.1
9	0.7	0.7	0.0	0.0	0.6	0.1	0.1	0.2	0.2	0.1
10	0.7	0.0	0.4	0.4	0.0	0.1	0.1	0.2	0.1	0.1
10	0.4	0.5	0.4	0.4	0.6	0.1	0.1	0.2	0.1	0.1
12	0.3	0.3	0.3	0.3	0.4	0.0	0.0	0.1	0.1	0.1
13	0.3	0.3	0.3	0.3	0.3	0.0	0.0	0.1	0.1	0.1
13	0.3	0.3	0.3	0.2	0.3	0.0	0.1	0.1	0.1	0.0
15	0.4	0.4	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.1
Maximum	1.6	1.6	1.5	1.0	1.7	0.2	0.2	0.4	0.3	0.3

3.6 Total Suspended Particulate (PM50)

From **Section 2.4**, the 70th percentile 24-hour average background concentration adopted for this assessment is $72 \ \mu g/m^3$.

3.6.1 Supplier 1 WESP emissions

Table 17 details the peak predicted 3-minute average ground level concentrations of TSP at the site boundary as well as at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. The highest predicted increment was 140 μ g/m³ for a total of 212 μ g/m³ compared to the assessment criterion of 330 μ g/m³. The highest predicted increment at any rural dwelling was 15% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

3.6.2 Supplier 2 WESP emissions

Table 17 details the peak predicted 3-minute average ground level concentrations of TSP at the site boundary as well as at the nearest sensitive receiver rural dwellings indicated in **Figure 1**, excluding background. This was not notably different to that for the Supplier 1 WESP design. The highest predicted increment was 130 μ g/m³ for a total of 202 μ g/m³ compared to the assessment criterion of 330 μ g/m³. The highest predicted increment at any rural dwelling was 15% of the assessment criterion. Hence the emissions are *readily compliant* with the AQAC.

Table 17:Highest predicted 3-minute average TSP ground level concentrations at the site boundary
and at each nearby sensitive receiver, excluding background concentration, for each
WESP design.

Sensitive	99.9th p	ercentile Criter	3-minute ion = 330	average (µg/m3	μg/m3)	Sensitive	99.9th percentile 3-minute average (μg/m3) Criterion = 330 μg/m3					
Receiver	2016	2017	2018	2019	2020	Receiver	2016	2017	2018	2019	2020	
	Supplic	er 1 WESP	plus othe	r sources			Supplie	r 2 WESP	plus other	sources		
1	4	4	4	4	4	1	5	5	5	5	5	
2	5	5	4	4	5	2	6	6	5	5	6	
3	19	21	19	17	17	3	19	21	19	17	17	
4	29	30	48	40	35	4	29	30	48	40	35	
5	9	10	12	7	10	5	10	10	12	8	10	
6	9	9	11	8	10	6	9	9	12	8	10	
7	6	6	10	8	6	7	7	7	10	9	7	
8	13	12	13	11	12	8	13	12	13	11	13	
9	15	14	12	10	13	9	15	15	12	10	13	
10	11	11	13	10	13	10	12	11	13	11	13	
11	8	8	9	8	9	11	9	8	10	8	10	
12	5	5	8	6	5	12	6	6	8	6	6	
13	4	4	8	6	5	13	5	5	9	6	5	
14	4	5	5	4	5	14	5	6	6	5	5	
15	5	6	5	5	5	15	6	6	6	6	6	
Site Bdy	70	70	140	120	120	Site Bdy	70	70	130	120	120	
Maximum	70	70	140	120	120	Maximum	70	70	130	120	120	

3.7 Odour

3.7.1 Supplier 1 WESP emissions

Table 17 details the peak predicted 3-minute average ground level odour concentrations at the site boundary as well as at the nearest sensitive receiver rural dwellings indicated in **Figure 1** as the result of the equivalent odour emissions from the Supplier 1 WESP design, which were based on the maximum instack VOC and the odour threshold concentration of the most odorous substance detected during testing, alpha-pinene. The highest predicted odour concentration was 0.4 OU compared to the assessment criterion of 10U, typically applied in residential areas. This indicates that the environment reference standard requiring an *air environment that is free from offensive odours from commercial, industrial, trade and domestic activities* will be met for the odorous VOC emissions from this stack, abated by the WESP design.

3.7.2 Supplier 2 WESP emissions

Table 17 also details the peak predicted 3-minute average ground level odour concentrations as the result of the equivalent odour emissions from the Supplier 2 WESP design. The highest predicted odour concentration was 0.3 OU, which again indicates that the environment reference standard will be met for the odorous VOC emissions from this stack, abated by the WESP design.

	00.044		-2				00.0+h		- 2 minu		
Sensitive	99.9th	percentin	e 3-minut terion – 1	e average	e (UU)	Sensitive	99.9th	percentin Crit	e 3-minu erion – 1	ce averag	e (00)
Receiver	2016	2017	2019	2010	2020	Receiver	2016	2017	2019	2010	2020
	2016	2017	2018	2019	2020		2016	2017	2018	2019	2020
		Suppl WE	ier 1 SP					Suppli WE	ier 2 SP		
1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1
2	0.2	0.1	0.1	0.1	0.1	2	0.1	0.1	0.1	0.1	0.1
3	0.2	0.2	0.2	0.2	0.2	3	0.2	0.2	0.2	0.2	0.2
4	0.2	0.2	0.2	0.2	0.2	4	0.2	0.2	0.2	0.2	0.2
5	0.2	0.1	0.2	0.2	0.2	5	0.1	0.1	0.1	0.2	0.2
6	0.2	0.2	0.2	0.2	0.2	6	0.1	0.1	0.1	0.2	0.1
7	0.2	0.2	0.1	0.1	0.2	7	0.1	0.1	0.1	0.1	0.1
8	0.1	0.1	0.1	0.1	0.2	8	0.1	0.1	0.1	0.1	0.1
9	0.2	0.1	0.1	0.1	0.2	9	0.1	0.1	0.1	0.1	0.1
10	0.2	0.1	0.1	0.1	0.1	10	0.1	0.1	0.1	0.1	0.1
11	0.2	0.2	0.2	0.1	0.2	11	0.2	0.1	0.1	0.1	0.1
12	0.2	0.1	0.1	0.1	0.2	12	0.1	0.1	0.1	0.1	0.1
13	0.1	0.1	0.2	0.1	0.1	13	0.1	0.1	0.2	0.1	0.1
14	0.1	0.1	0.1	0.1	0.1	14	0.1	0.1	0.2	0.1	0.1
15	0.1	0.1	0.2	0.1	0.1	15	0.1	0.1	0.1	0.1	0.1
Site Bdy	0.3	0.4	0.4	0.4	0.3	Site Bdy	0.3	0.3	0.3	0.3	0.3
Maximum	0.3	0.4	0.4	0.4	0.3	Maximum	0.3	0.3	0.3	0.3	0.3

Table 16:Highest predicted 3-minute average ground level odour concentrations at the site
boundary and at each nearby sensitive receiver for the equivalent odour emissions from
each WESP design.

4 RISK TREATMENT PLAN

With the promulgation of the Environmental Protection Amendment Act from July 1st Monsbent will have a General Environment Duty to minimise the risk of causing harm to either human health or amenity, or to the environment, due to activities within their site so far as is reasonably practicable. The emissions of the various assessed substances from the proposed WESP stack (as an increment over the impact of the other common sources at the site) represents a risk of causing harm to sensitive receivers and locations beyond the site boundary, and therefore will require active management to reduce these emissions to the design levels.

The risk treatment plan for the operations of the WESP has been based upon the requirements of the EPA guidance *Assessing and controlling risk - a guide for business* (Pub. 1695.1) where applicable.

This risk treatment specific to the operation of the WESP is to be supplemented by the site-wide Environmental Improvement Plan (documented separately) detailing the management of the other process point source emissions as well as the fugitive wood-fibre and dust emissions.

4.1 Key Sensitive Receptors

Note the description of the receiving environment in Section 2.3, and Figure 1.

4.2 Risk Events

The consequence and likelihood of each risk event and the determined risk rating has been derived using the risk metric detailed within Figure 2 of EPA Pub. 1695.1. This is reproduced in **Figure 13** below.

Table 17 details the derived risk register for the WESP emissions detailing risk events and the assessed **inherent** risk to nearest sensitive receivers for each before the application of effective and consistently adopted emission controls. This was informed by previous annual and adhoc testing of the emissions from the Jet Dryer (DP) and the Drum Dryer (DP) which are to be ducted to the WESP system for abatement and the expected duration of the occurrence of a risk event (e.g. voltage drop across the electrostatic precipitator plates or inadequate wet scrubbing) before the process was halted. The highest determined **inherent** risk was **Medium** which is acceptable if controls are in place.

4.3 Controls to Address Hazards

Based on the estimated emissions for each substance, inclusive of the emission abatement controls within the WESP, compliance was readily predicted with the assessment criteria. **Table 18** details the individual emissions management controls for the WESP that are to be consistently and effectively implemented for each activity to reduce the highest determine **inherent** risk to the nearest sensitive receivers of **Medium** to a maximum determined **residual** risk of **Low** as detailed in **Table 17**.

Permanent or long-term serious environmental harm / life threatening or long-term harm to health and wellbeing.		Severe	Medium	High	High	Extreme	Extreme	
Serious environment harm / high-level harm to health and wellbeing.	ousedneuce	ousedneuce	Major	Medium	Medium	High	High	Extreme
Medium level of harm to health and wellbeing or the environment over an extended period of time.			ousedneuo	Consequence	Moderate	Low	Medium	Medium
Low environmental Impact / low potential for health and wellbeing impacts.	Ŭ	Minor	Low	Low	Medium	Medium	High	
No or minimal environmental Impact, or no health and wellbeing impacts.		Low	Low	Low	Low	Medium	Medium	
			Rare	Unlikely	Possible	Likely	Certain	
					Likelihood			
			Could happen but probably never will	Not likely to happen in normal circumst- ances	May happen at some time	Expected to happen at some time	Expected to happen regularly under normal circumst- ances	

Description of risk ratings

Risk level	Description
Extreme	Totally unacceptable level of risk. Stop work and/or take action immediately.
High	Unacceptable level of risk. Controls must be put in place to reduce to lower levels.
Medium	Can be acceptable if controls are in place. Attempt to reduce to low.
Low	Acceptable level or risk. Attempt to eliminate risk but higher risk levels take priority.

Table 17: Risk Register

л	Datails of Bick Event	Risk befo risk proje	assessn re inclu contro ect inhe risk	nent ding Is – rent	Risk assessment after including risk controls – project residual risk			
#	Details of Kisk Event	Likelihood	Consequence	Risk Rating	Likelihood	Consequence	Risk Rating	
1	Failure of electrostatic precipitator with prolonged increase in particulate emissions before process shutdown leading to exceedance of air quality criteria.	Unlikely	Moderate	Medium	Rare	Moderate	Low	
2	Failure of wet scrubbing with prolonged increase in VOC and formaldehyde emissions before process shutdown leading to exceedance of air quality criteria or odour dis-amenity.	Unlikely	Moderate	Medium	Rare	Moderate	Low	
3	Flow rates increasing or decreasing out of specification range leading to prolonged increase in emissions leading to exceedance of air quality criteria or odour dis-amenity.	Possible	Minor	Medium	Unlikely	Minor	Low	
4	Upstream concentrations of pollutant substances increasing beyond WESP abatement specifications leading to prolonged increase in emissions before process shutdown and therefore an exceedance of air quality criteria or odour dis- amenity.	Possible	Minor	Medium	Unlikely	Minor	Low	

Table 18: Controls to be adopted to manage risk events

#	Details of controls being used	Risk Events
1	Daily turnover of scrubber liquor with fresh water at a turnover volume depending on the desired formaldehyde levels to be determined during the commissioning process.	2
2	Continuously monitor Drum Dryer, Jet Dryer and WESP flue gas temperature with alarm thresholds for review and process shutdown based on vendor advice.	1,2
3	Continuously monitor scrubbing water flow rates with alarm thresholds for review and process shutdown based on vendor advice.	2
4	Continuously monitor voltage and current of electrostatic plates with alarm thresholds for review and process shutdown based on vendor advice.	1
5	Continuously monitor recirculation water with alarm thresholds for review and process shutdown based on vendor advice and commissioning outcomes, e.g. water pH, temperature, total dissolved solids, etc.	2
6	Continuously monitor gas temperatures and flow rates with alarm thresholds for review and process shutdown based on vendor advice.	3
7	The WESP will be programmed with an automatic daily cleaning cycle.	1,2
8	The Jet Dryer and Drum Dryer operation will be interlocked to the WESP to prevent the dryers running without emission control (except for commissioning, trouble-shooting and emergency situations).	4
9	The Jet and Drum Dryer exhausts have in-line dust probes which are monitored by the Pressline operators. These will indicate abnormal levels of particulates exiting the dryers, which will trigger adjustments or shutdown, as appropriate to keep the inlet concentration of particulates to the WESP to within specification.	4
10	Annual maintenance shut scheduled in conjunction with manufacturer's recommendations. No maintenance on emission control equipment to be carried out during production.	1,2,3

4.4 *Performance Measurement*

Monsbent propose the following ongoing performance measurement of the WESP system management practices at the site:

- The assessed emission substances from the WESP stack will be tested to current EPA sampling guidelines at the commission stage to validate that these are not notably more than that assessed for compliance with relevant air quality assessment criteria.
- Routinely scheduled review meetings to minimise unplanned maintenance hours.
- Annual emission testing of the discharged assessed substances from the WESP stack to current EPA sampling guidelines post commission to validate management practices and monitoring controls.
- Annual auditing for compliance, processing, capital upgrade and management systems.
- Other measures as detailed within the site-wide Environmental Improvement Plan (documented separately) detailing the management of the other process point source emissions as well as the fugitive wood-fibre and dust emissions

5 LIMITATIONS

This report represents the results of an air dispersion modelling impact assessment for the purposes of this commission. The data and assessment outcomes provided herein relate only to the project and structures described herein and must be reviewed by a competent engineer/scientist before being used for any other purpose. Ektimo accept no responsibility for other use of the data and assessment outcomes.

Where monitoring results, physical measurements and tests, data collection and similar work have been performed and recorded by others the data is included and used in the form provided by others. The responsibility for the accuracy of such data remains with the issuing authority, not with Ektimo.

An understanding of a site's air quality impact depends on the integration of many pieces of information, some regional, some site specific, some structure specific and some experienced based. Hence this report should not be altered, amended, or abbreviated, issued in part, or issued incomplete in any way without prior checking and approval by Ektimo. Ektimo accepts no responsibility for any circumstances which arise from the issue of the report which has been modified in any way as outlined above.

AERMOD

ready Meteorological data files for

Benalla - VIC

This file was exclusively compiled for **EKTIMO** By pDs Consultancy.

All rights reserved @2021

pDs Consultancy @1999-2021

Page **2** of **19**

INTRODUCTION

New generation regulatory model AERMOD requires hourly averaged meteorological data from a single site that is preferably within the model domain ('on-site' or site-specific data). However, data from the nearest 'offsite' meteorological station can be used when on-site data are not available, and the off-site data are representative of the area of concern (i.e. the meteorological parameters as well as surface characteristics characterise the transport and dispersion conditions of the location in question).

It is also preferable that:

• The compilation of the input meteorological data file is done in accordance with 'best practice', with procedures and algorithms recommended or set by environment regulators/US & VIC EPA.

pDs Consultancy has been engaged by **EKTIMO** to compile an 'AERMOD-ready' meteorological files for an application site in **Benalla** in Victoria.

This input meteorological data files have been compiled basically following the EPA, Victoria's draft guidelines: "Construction of input meteorological data files for EPA Victoria's regulatory air pollution model (AERMOD) (Publication No.1550)".

LOCATION OF THE APPLICATION SITE: BENALLA, VIC

Data Processing

Input Information

Data Used for the compilation

Meteorological Data

- 1. Mandatory Data (On-Site data)
 - i. 10m Wind Direction and Speed
 - ii. Ambient Temperature (Screen Level)

2. Supplementary data (On-Site Data)

- I. Surface Pressure
- II. Relative Humidity
- III. Rainfall Rate
- IV. Net Radiation from TAPM simulation
- 3. Upper air Data (TAPM Simulated)

DATA SOURCE

- Davis Vantage VUE weather station for 2 types of data
- Period: 1 Jan 2018 to 31 Dec 2020 (3 Years)
- TAPM simulated data: CSIRO
- Period :1 Jan 2016 to 31 Dec 2017 (2 Years)

QA/QC ON RAW DATA

- I. Hourly winds both direction and speed and temperature examined for gaps and wind stalls
 - Suspected wind stalls (both wind direction and speed) removed and filled appropriately preserving the temporal consistency.
- II. Small gaps filled with pervious or following hour records
- III. Days with big gaps removed. When it's affecting the data recovery, the big gaps filled with TAPM data for the year 2020 to maintain 90% data recovery.
- IV. Wind direction was recorded with 22.5-degree resolution. It was randomised around +/- 11.5 degrees.
- V. Parameters QA/QCed based on extreme values

TAPM was run in the following manner

- in 4 nested grids, inner most grid with 1 KM resolution.
- with high resolution topography (9 second DEM).
- Verifying vegetation and soil type match with interested area.

METSITE INFORMATION

Fi	le Input Files	Site Info (Output Files	Create		1 🗟 AU	SPLUME	QA/QC	Forma	t About	H 😡 🤇	2
	Surface Met Site	Met Sites' In	nfo.									
	Site IDs											
	UA ID:	0099					UA Stat	ion:	TAPM			
	SF ID:	0011					SF Stati	on:	Davis Van	tage VUE		
	OS ID:	0022					OS Stat	ion:	Davis Van	tage VUE		
	Ref Heights											
	Wind:					10 🗣	Temper	ature:			2	
	Auxilary Parameter	ers										
	PCode:			11 🔹	VPTG:			0.0	005 🗘 V	Vind Threshold:	0.44 🔹	
	Maximum CBL:		3	000	Minimum CE	Ŀ			50 🜩			
	Daylight Savings	it Savings Offset	t to S <mark>unset and</mark>	Sunrise			Beta opt	ions / u* Adjus	tment			
	Station Info											
	On-site met TAPM -NetRad ar	nd MixH										

DATA COVERAGE:

Season					
Year	2016	2017	2018	2019	2020
Summer	100	100	100	97	100
Autumn	100	100	100	97	100
Winter	100	100	100	98	100
Spring	100	100	93	100	100
Annual	100	100	98	98.6	100

Annual and Seasonal data coverage are meeting regulatory requirement (90% or better).

DETERMINATION OF SURFACE CHARACTERISTICS

All available surface maps including google maps examined to determine correct land use categories within 10 Km by 10 KM area centering the application site. The year 2016 found to be wet and 2019 found to be dry.

Albedo and Bowen ratio were determined using land use categories shown;

SURFACE ROUGHNESS

Sector dependent surface roughness was determined considering 07 sectors. Roughness of each sector was assigned carefully examining land use distribution in 250m arc segments.

The following parameters were determined/computed following EPA, VIC and US EPA guidelines.

Sensible Heat flux -Calculated based on cloud observations

- I. Friction Velocity (U*)
- II. Monin–Obukhov Length (L)
- III. Height of the Stable Boundary Layer(SBL)
- IV. Vertical Velocity Scale (W*)
- V. Height of the Convective Boundary Layer (CBL)

Mixing height (Convective)-CBL DEFINITION:

The convective mixing height, the depth of the surface mixed layer is the height of the atmosphere above the ground, which is well mixed due either to mechanical turbulence or convective turbulence. This height was taken from the TAPM simulation done for site in question.

DATA ANALYSIS

ANNUAL WINDROSES FOR BENALLA-2018

Annual Frequency of wind speed

all and a	File Wind Distrib	ution Locate Sit	e QC/QA	Statistics	About				
1	Available Dates: Analysis Period: Sectors:	Tuesday, 2 January All O Seasor 4 O 8 0	2018 to Mond	lay, 31 Decemi O Custom 2 🗌 Flow Ve	ber 2018 ector				
	Wind Roses W	ind Frequency Table	Wind Free	quency Graph					
	Dir/Speed Cat	t 0-2	2 -	4	4 - 6	6 - 8	8 - 10	10+	Total Dir Free
	348.75-11.25	N 3.2	0.	9	0.1	0.0	0.0	0.0	4.3
	11.25-33.75	NNE 3.8	3.	4	1.1	0.1	0.0	0.0	8.4
A Charles	33.75-56.25	NE 5.2	5.	0	1.5	0.1	0.0	0.0	11.8
	56.25-78.75	ENE 3.9	3.	1	0.4	0.1	0.0	0.0	7.5
	78.75-101.25	E 3.3	1.	4	0.2	0.0	0.0	0.0	4.9
	101.25-123.75	ESE 3.4	1.	9	0.1	0.0	0.0	0.0	5.5
	123.75-146.25	5E 3.4	2.	0	0.2	0.0	0.0	0.0	5.7
	146.25-168.75	SSE 1.5	1.	3	0.3	0.1	0.0	0.0	3.2
	168.75-191.25	s 0.7	0.	8	0.2	0.0	0.0	0.0	1.7
	191.25-213.75	55W 1.7	1.	9	0.2	0.0	0.0	0.0	3.8
	213.75-236.25	5W 1.9	2.	3	0.2	0.0	0.0	0.0	4.5
	236.25-258.75	WSW 2.8	2.	6	0.2	0.0	0.0	0.0	5.6
	258.75-281.25	W 6.4	2.	3	0.1	0.0	0.0	0.0	8.8
	281.25-303.75	WNW 7.3	1.	1	0.2	0.0	0.0	0.0	8.6
	303.75-326.25	NW 7.5	1.	5	0.1	0.0	0.0	0.0	9.1
-	326.25-348.75	NNW 5.4	1.	0	0.0	0.0	0.0	0.0	6.4
n/le	Total Speed Fre	a 61.6	32	.5	5.3	0.6	0.0	0.0	

Seasonal Wind Roses for 2018

Seasonal variations are clearly depicted.

ANNUAL WINDROSES FOR BENALLA FOR OTHER YEARS

Metfiles for the years 2016 and 2017 were done based only on TAPM simulated data. The years 2018, 2019 and 2020 done compositing measured data.

Appendix FLOW CHARTS - CONSTRUCTION PROCEDURE

Bibliography

Australian Standard 2923-1987: Standards Association of Australia

- Benkley, C.W,& Schulman L.L 1979 :Estimating Hourly Mixing Depths from Historical Meteorological Data :JI of Applied Meteorology Vol 1 page 772-780
- USEPA 2004, AERMOD :Description of Model Formulation, EPA-454/R-03-00. United States Environmental Protection Agency, Washington DC, USA.

USEPA 2012, User Guide for the AERMOD Meteorological Processor-AERMET; Addendum, United States Environmental Protection Agency, Washington DC, USA.

USEPA, 2000, Meteorological Monitoring Guidance for Regulatory Modelling Applications, EPA-450/R-99-005.United States Environmental Protection Agency, Washington DC, USA.

USEPA, Office of Air Quality Planning and Standards, AERSURFACE User's Guide, Research Triangle Park, North Carolina, EPA 454/B-08-001

USEPA, Office of Air Quality Planning and Standards, User's Guide for the AERMOD Meteorological Processor (AERMET) and Addendum, Research Triangle Park, North Carolina, EPA 454/B-03-002.

DISCLAIMER

Compilation of input meteorological data files for AERMOD was done under the supervision of qualified and experienced meteorologists. Although all due care has been taken, we cannot give any warranty, nor accept any liability (except that required by law) in relation to the information given, its completeness or its applicability to a particular problem. These data and other material are supplied on the condition that you agree to indemnify us and hold us harmless from and against all liability, losses, claims, proceedings, damages, costs and expenses, directly or indirectly relating to, or arising from the use of or reliance on the data and material which we have supplied.

COPYRIGHT

CSIRO holds the copyright for the TAPM data.

Copyright of the value-added data set: Input meteorological data files for AERMOD is held by **pDs Consultancy**. The purchaser shall not reproduce, modify or supply (by sale or otherwise) this data set.

7 APPENDIX – Example AERMOD Input Configuration File

All modelling files may be provided for peer review upon request.

CO	MODELOPT AVERTIME POLLUTID RUNORNOT ERRORFIL	Monsber FITLETWC CONC FI 1 24 PH formlac RUN ERRORS	n t - for D Flat t AT NOCH ERIOD Wehyde	maldehy cerrain. KD	rde, Su PRIM	upplie E buil	view upon er 1 WESP w Lding wake	ith othe: algorith	r sources m initial	based on 2021 dispersion	Annual
CO	FINISHED										
SO	STARTING ELEVUNIT LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION LOCATION	METERS WESP PL1M PL12 PL2M PL22 PL2W PL3M PL3S RESPLT DP21	POINT POINT POINT POINT POINT POINT POINT POINT POINT POINT	414249 414193 414193 414195 414196 414200 414190 414316 414310 414320 414427 414307	59574 59574 59574 59573 59573 59573 59573 59573 59573 59573 59573 59573 59573	81 0 04 0 07 0 02 0 94 0 97 0 91 0 78 0 64 0 72 0 30 0					
** **	Point Sou Parameter	irce	QS	HS	TS	VS	DS				
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	WESP PL1M PL1E PL1W PL2M PL2M PL2W PL3M PL3M PL3N PL3S RESPLT DP21	0.20 0.04 0.036 0.053 0.003 0.055 0.014 0.053 0.051 0.021 0.001 0.001	45. 16. 57 16. 33 16. 5 16. 4 16. 33 16. 17 16. 17 16. 17 8. 9.8	338 296 294 290 297 293 293 297 295 290 296	8 19 17 18 1.5 16 12 17 19 15 1 14	3.0 0.79 0.79 0.79 0.79 0.79 1.07 1.07 1.07 1.07 0.165 0.7				
SO SO	BUILDHGT BUILDHGT BUILDHGT BUILDHGT BUILDHGT BUILDWID BUILDWID BUILDWID BUILDWID BUILDWID BUILDEN BUILDLEN BUILDLEN BUILDLEN BUILDLEN BUILDLEN SUBADJ XBADJ XBADJ XBADJ YBADJ YBADJ YBADJ YBADJ YBADJ	WESP WESP WESP WESP WESP WESP WESP WESP	25. 25. 25. 25. 25. 25. 25. 9. 9. 10. 8. 10. 10. 10. 10. 10. 10. 10. 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 5.00 <t< th=""><th>25.00 25.00 25.00 25.00 25.00 25.00 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.00 8.00 10.00 8.00 10.00 -5.00 -4.00 -5.00 0.00</th><th>$\begin{array}{c} 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 10.50\\ 10.50\\ 10.00\\ 10.75\\ 8.50\\ 10.00\\ 10.75\\ 9.850\\ 10.00\\ 9.06\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 0.05\\ 0.00\\$</th><th>25.00 25.00 25.00 25.00 25.00 25.00 10.50 9.00 10.50 9.00 10.50 9.00 10.75 10.00 8.00 10.75 9.88 8.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.00 -4.00 -0.25 0.00 0.25 0.00</th><th>25.00 25.00 25.00 25.00 25.00 10.00 10.00 10.00 10.00 10.00 10.50 10.00 0.50 10.00 0</th><th></th><th></th></t<>	25.00 25.00 25.00 25.00 25.00 25.00 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.00 8.00 10.00 8.00 10.00 -5.00 -4.00 -5.00 0.00	$\begin{array}{c} 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 25.00\\ 10.50\\ 10.50\\ 10.00\\ 10.75\\ 8.50\\ 10.00\\ 10.75\\ 9.850\\ 10.00\\ 9.06\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 0.05\\ 0.00\\ $	25.00 25.00 25.00 25.00 25.00 25.00 10.50 9.00 10.50 9.00 10.50 9.00 10.75 10.00 8.00 10.75 9.88 8.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.50 -5.00 -4.00 -0.25 0.00 0.25 0.00	25.00 25.00 25.00 25.00 25.00 10.00 10.00 10.00 10.00 10.00 10.50 10.00 0.50 10.00 0		
SO	BUILDHGT	PL1M	9.	.50 9	9.50	9.50	9.50	9.50	9.50		

SO	BUILDHGT	PL1M	9.50	9.50	9.50	9.50	9.50	9.50
90	BUILDHCT	PT.1M	9 50	9 50	9 50	9 50	9 50	9 50
50	DUILDIIGI	DI LI LI LI LI	0.50	2.50	2.50	2.50	2.50	0.50
SO	ROITDHG.L	PLIM	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDHGT	PL1M	9.50	9.50	9.50	9.50	9.50	9.50
90	BUILDHCT	PT.1M	9 50	9 50	9 50	9 50	9 50	9 50
50	DOIDDHOI		011 01	1.00	170.00	1.50	2.50	2.50
SO	BOILDMID	PLIM	211.94	198.00	1/8.00	152.50	122.50	89.00
SO	BUILDWID	PL1M	113.00	41.00	55.00	67.00	77.50	85.00
50		DT 1M	01 00	02 00	225 50	222 75	220 20	210 50
50	BOILDWID	РЬІМ	91.00	93.00	225.50	223.75	220.30	219.30
SO	BUILDWID	PL1M	211.94	197.88	178.00	152.50	122.50	89.00
SO	BUILDWID	PT.1M	113.00	41.00	177.50	202.50	221.00	232.50
20	DUITIDWID	DT 1M	227 50	225 00	225 25	202.00	222.000	210 47
50	BOILDWID	РЬІМ	237.30	235.00	223.23	223.75	220.30	219.47
SO	BUILDLEN	PL1M	202.00	221.00	232.50	237.00	235.00	225.50
SO	BUILDLEN	PT-1M	223.50	91.25	87.31	80.75	71.75	60.50
20	DUITIDIDN	DT 1 M	47.05	22.00	00.00	112 00	147 50	177 50
50	BOILDTEN	РЦТМ	47.20	33.00	09.00	112.00	147.50	1//.50
SO	BUILDLEN	PL1M	202.50	220.50	232.50	237.50	234.75	225.50
SO	BUTLDLEN	PT-1M	223.50	91.25	219.47	211.94	198.00	178.00
20	DUTIDIEN	DT 1 M	1 5 2 5 0	100 50	00 00	112 00	147 50	177 60
50	BOILDTEN	РЬІМ	152.50	122.00	09.00	113.00	147.50	1//.50
SO	XBADJ	PL1M	-153.50	-167.00	-174.50	-177.00	-174.50	-166.25
SO	XBADJ	PT-1M	-164.00	-109.38	-109.53	-106.44	-100.12	-90.75
20	VDADT	DT 1 M	70 50	62 50	20 50	22 50	22 00	41 E O
50	XBADJ	РЦІМ	-78.50	-03.30	-20.50	-23.50	-33.00	-41.50
SO	XBADJ	PL1M	-48.00	-53.50	-58.00	-60.00	-60.75	-59.25
SO	XBADJ	PL1M	-59.50	18.12	-68.09	-73.88	-77.50	-78.75
20	VDADT	DT 1 M	77 50	74 00	60 50	00 50	114 50	126 50
50	VDADO		- / / . 50	/4.00	10.00	0.00	10 25	10.00
SO	YBADJ	PLIM	32.03	21.50	10.25	-1.25	-12.75	-24.00
SO	YBADJ	PL1M	-33.00	17.00	6.00	-5.50	-17.25	-28.00
SO	YBAD.T	PT.1M	-38 00	-46 75	-53 50	-52 12	- 19 91	-41 62
50	IDADU	T TTTT	50.00	-0.75	10.00	JZ.IZ	10 75	71.02
SO	YBADJ	РĹlM	-32.09	-21.44	-10.00	1.00	12.75	23.50
SO	YBADJ	PL1M	33.00	-17.00	47.25	52.75	56.50	58.25
50	VDADT	DT 1M	50 25	56 75	52 62	52 12	10 01	11 61
50	IDADO	гын	50.25	50.75	55.02	52.12	49.94	41.04
SO	BUILDHGT	PL1E	9.50	9.50	9.50	9.50	9.50	9.50
90		DT 1 🖬	9 50	9 50	9 50	9 50	9 50	9 50
50	DOILDIGI		9.50	9.50	9.50	9.50	9.50	9.50
SO	BOILDHGI	PLIE	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDHGT	PL1E	9.50	9.50	9.50	9.50	9.50	9.50
90		DT 1 🖬	9 50	9 50	9 50	9 50	9 50	9 50
50	DOIDDHOI		2.50	2.50	2.50	2.50	5.50	2.50
SO	ROITDHG.L	PLIE	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDWID	PL1E	211.94	198.00	178.00	152.50	122.50	89.00
SO	BUTTDWTD	PL1E	113.00	41.00	55.00	67.00	77.50	85.00
20	DUTIDNTD		01 00	225 00	225 50	222 75	220 20	210 50
50	BOILDWID	PLIE	91.00	235.00	225.50	223.75	220.30	219.50
SO	BUILDWID	PL1E	211.94	197.88	178.00	152.50	122.50	89.00
SO	BUILDWID	PL1E	113.00	147.50	177.50	202.50	221.00	232.50
90	BUILDWID	PL1F	237 50	235 00	225 25	223 75	220 38	219 47
50	DOIDDWID		237.30	200.00	223.23	223.75	220.00	210.47
SO	ROITDTEN	PLIE	202.00	221.00	232.50	237.00	235.00	225.50
SO	BUILDLEN	PL1E	223.50	91.25	87.31	80.75	71.75	60.50
SO	BUILDLEN	PL1E	47.25	122.50	89.00	113.00	147.50	177.50
20	DUITIDIEN		202 50	220 50	222 50	227 50	224 75	225 50
50	BOILDDEN	PLIE	202.50	220.50	232.30	237.30	234.75	223.30
SO	BUILDLEN	PL1E	223.50	220.38	219.47	211.94	198.00	178.00
SO	BUILDLEN	PL1E	152.50	122.50	89.00	113.00	147.50	177.50
50	XRAD.T	PI.1F	-157 50	-171 00	-179 00	-182 00	-179 50	-171 25
50	NDADO		100.75	112.00	110.00	102.00	100.00	1/1.25
SO	ABADJ	LTE	-108./5	-113.88	-113.53	-109.88	-105.88	-92./5
SO	XBADJ	PL1E	-79.50	-48.50	-20.00	-22.00	-31.00	-38.50
SO	XBADIT	PL1E	-44.50	-49.50	-53.50	-55.00	-55.75	-54.25
20	VDADT		_ = / 7 =	_55 00	-64.00	-70 50	_7/ 75	-76 75
SO	ABADJ	LTE	-54./5	-22.88	-04.09	-/0.50	-/4./5	-/0./5
SO	XBADJ	PL1E	-76.25	-74.00	-69.00	-90.50	-116.50	-139.50
SO	YBADJ	PL1E	35.47	24.25	12.25	-0.25	-12.25	-24.50
20	VDADT		_ 24 E0	1 = 0.0	2 00	_0 =0	_21 25	-33 50
50	IDAUJ	FLLE	-34.30	12.00	3.00	-9.50	-21.20	-32.30
SO	YBADJ	PL1E	-42.50	-62.00	-58.50	-56.88	-54.44	-45.62
SO	YBADJ	PL1E	-35.53	-24.19	-12.00	0.00	12.25	24.00
20	VEADT	DT 1 1	24 60	10 OF	50 25	56 05	60 50	62 25
50	IBADJ	PLIE	34.30	43.23	50.25	50.25	60.50	63.20
SO	YBADJ	PL1E	63.25	61.50	58.62	57.12	54.44	45.64
90	BUILDUCT	PT.1 M	0 50	9 50	9 50	9 50	9 50	9 50
50	DULLDUGI	T TT 1 14	2.00	9.00	9.00	9.00	2.50	2.50
SO	ROILDHGT	PT1M	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDHGT	PL1W	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDHGT	PL1W	9.50	9.50	9.50	9.50	9.50	9.50
20	BUILDUCE	DT 1 147	0 =0	0 50	0 50	0 50	0 50	9 50
50	POITDHGI.	гы±W	9.00	9.50	9.00	9.00	9.00	9.00
SO	BUILDHGT	PL1W	9.50	9.50	9.50	9.50	9.50	9.50
SO	BUILDWID	PL1W	211.94	198.00	178.00	152.50	122.50	89.00
SO	BUTT.DWTD	PT.1W	113 00	41 00	55 00	67 00	77.50	85.00
~~~	DULL DWITE		1 00	17.00	00.00	222 75	220 20	210 50
SO	A A A A A A A A A A A A A A A A A A A	гттМ	AT.00	93.00	92.15	223.15	220.38	∠⊥9.50
SO	ROITDMID					1 - 0 - 0	100 50	
50	BUILDWID	PL1W	211.94	197.88	178.00	152.50	122.50	89.00
SO	BUILDWID BUILDWID BUILDWID	PL1W PL1W	211.94 113.00	197.88 41.00	178.00	202.50	221.00	89.00 232.50
SO	BUILDWID BUILDWID BUILDWID	PL1W PL1W PL1W	211.94 113.00 237.50	197.88 41.00 235.00	178.00 55.00 225.25	202.50 223 75	221.00 220 38	89.00 232.50 219 47
SO SO	BUILDWID BUILDWID BUILDWID BUILDWID	PL1W PL1W PL1W	211.94 113.00 237.50	197.88 41.00 235.00	178.00 55.00 225.25	152.50 202.50 223.75	122.50 221.00 220.38	89.00 232.50 219.47
SO SO SO	BUILDWID BUILDWID BUILDWID BUILDLEN	PL1W PL1W PL1W PL1W	211.94 113.00 237.50 202.00	197.88 41.00 235.00 221.00	178.00 55.00 225.25 232.50	152.50 202.50 223.75 237.00	122.50 221.00 220.38 235.00	89.00 232.50 219.47 225.50



SO BUTTOTE	T DT 1 M	17 25	33 00	17 50	113 00	147 50	177 50
SO BUILDLE	N ELLIN	47.23	33.00	17.50	113.00	147.50	177.50
SO BUILDLE	N PLIW	202.50	220.50	232.50	237.50	234.75	225.50
SO BUILDLE	N PL1W	223.50	91.25	87.31	211.94	198.00	178.00
SO BUILDLE	N PL1W	152.50	122.50	89.00	113.00	147.50	177.50
SO XBADJ	PL1W	-151.00	-164.00	-171.00	-173.00	-170.25	-161.75
SO XBADJ	PL1W	-159.50	-105.12	-105.53	-102.88	-97.12	-88.25
SO XBADJ	PL1W	-76.75	-62.50	-47.50	-24.00	-34.50	-43.50
SO XBADJ	PL1W	-51.00	-57.00	-62.00	-64.00	-65.00	-63.75
SO XBADJ	PT.1W	-64 00	13 75	18 22	-77 50	-80.62	-81 25
SO VEADT	DT 1 M	-79.25	-75 00	-68 50	-89 00	_113 00	-134 50
SO XBADU		20 /1	10 50	7 75	-3.00	-12 75	-24.00
SO IBADU	FLLW DI 117	20.41	10.50	1.15	-3.00	-13.75	-24.00
SO IBADJ	PLIW DI 117	-32.50	18.50	8.00	-3.00	-13.75	-24.50
SO YBADJ	PLIW	-33.50	-42.50	-49.62	-4/.88	-45.69	-3/.62
SO YBADJ	PLIW	-28.4/	-18.44	-/./5	2.75	13./5	24.00
SO YBADJ	PL1W	32.50	-18.50	-8.00	50.25	53.00	54.75
SO YBADJ	PL1W	54.25	52.25	49.12	47.88	45.69	37.64
SO BUILDHG	r pl2M	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2m	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2m	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2m	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2m	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2m	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDWI	D PL2M	211.94	198.00	178.00	152.50	122.50	89.00
SO BUILDWI	D PL2M	113.00	147.50	55.00	67.00	77.50	85.00
SO BUILDWT	D PL2M	91.00	93.00	225.50	223.75	220.38	219.50
SO BUTTIOWT	D PJ.2M	211.94	197.88	178.00	152.50	122.50	89.00
SO BUILDWI	PT.2M	113 00	147 50	177 50	202 50	221 00	232 50
SO BUILDWI	D DT 2M	237 50	235 00	225 25	202.00	220.38	210 17
SO BUILDIE		202 00	221 00	223.23	223.75	235 00	225 50
CO DUILDLE		202.00	221.00	232.30	237.00	233.00	223.30
30 BUILDLE	N FLZM	223.30	220.30	07.31	112 00	147 50	177 50
SO BUILDLE	N PLZM	47.20	33.00	89.00	113.00	147.50	1//.50
SO BUILDLE	N PLZM	202.50	220.50	232.50	237.50	234.75	225.50
SO BUILDLE	N PL2M	223.50	220.38	219.47	211.94	198.00	1/8.00
SO BUILDLE	N PL2M	152.50	122.50	89.00	113.00	147.50	177.50
SO XBADJ	PL2M	-145.00	-160.00	-169.50	-174.00	-173.50	-167.25
SO XBADJ	PL2M	-167.00	-165.25	-116.53	-115.12	-110.12	-101.75
SO XBADJ	PL2M	-90.25	-76.00	-33.00	-35.50	-44.00	-51.50
SO XBADJ	PL2M	-57.00	-60.50	-63.50	-63.00	-61.75	-58.25
SO XBADJ	PL2M	-56.50	-55.12	-61.09	-65.25	-67.50	-67.75
SO XBADJ	PL2M	-65.75	-62.00	-56.00	-77.50	-103.50	-126.50
SO YBADJ	PL2M	40.66	31.50	21.50	10.50	-0.75	-11.50
SO YBADJ	PL2M	-21.00	-29.75	16.00	3.00	-10.25	-23.00
SO YBADJ	PL2M	-34.50	-45.75	-54.50	-55.38	-55.06	-48.62
SO YBADJ	PL2M	-40.72	-31.44	-21.25	-10.75	0.25	11.50
SO YBADJ	PL2M	21.00	29.75	37.25	44.25	49.50	53.25
SO YRAD.T	PT.2M	55 25	55 50	54 62	55 38	55 19	48 64
SO IDNDO	1 11211	33.23	00.00	01.02	00.00	00.10	10.01
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHG	r pl2e	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDWT	D PL2F	211.94	198.00	178.00	152.50	122.50	89.00
SO BUILDWI	D PL2E	113.00	147.50	55.00	67.00	77.50	85.00
SO BUILDWI	D PL2F	91 00	93 00	225 50	223 75	220 38	219 50
SO BUILDWI		211 94	197.88	178 00	152 50	122 50	89 00
SO BUILDWI		112 00	147 50	177 50	202 50	221 00	222 50
SO DUILDWI		113.UU	735 00	111.0U	202.00	221.00	232.30
SO BUILDWI	U PLZE	237.30	235.00	223.23	223.75	220.30	219.47
SO BUILDLE	N FLZE	202.00	221.00	232.50	231.00	233.00	223.50
SO RUILDLE	N PLZE	223.50	220.38	8/.31	80./5	/1./5	60.50
SU BUILDLE	N PLZE	47.25	33.00	89.00	113.00	14/.50	1//.50
SO BUILDLE	N PL2E	202.50	220.50	232.50	237.50	234.75	225.50
SO BUILDLE	N PL2E	223.50	220.38	219.47	211.94	198.00	178.00
SO BUILDLE	N PL2E	152.50	122.50	89.00	113.00	147.50	177.50
SO XBADJ	PL2E	-148.50	-164.00	-174.00	-178.50	-178.50	-172.25
SO XBADJ	PL2E	-171.75	-169.75	-120.53	-118.50	-112.88	-103.75
SO XBADJ	PL2E	-91.25	-76.00	-32.00	-34.00	-42.00	-48.50
SO XBADJ	PL2E	-53.00	-56.50	-58.50	-58.50	-56.75	-53.25
SO XBADJ	PL2E	-51.50	-50.62	-57.09	-61.81	-64.75	-65.75
SO XBADJ	PL2E	-64.50	-61.50	-57.00	-79.00	-105.50	-129.50
SO YBADJ	PL2E	44.09	34.25	23.25	11.50	-0.25	-12.50
SO YBADJ	PL2E	-22.50	-32.25	13.00	-0.50	-14.25	-27.50
SO YBADJ	PL2E	-39.50	-50.75	-59.50	-60.12	-59.56	-52.62

#### Reference: R011332 Date: 29/10/2021 Prepared for: D&R Henderson Pty Ltd (Monsbent) Page: 41 of 45



SO YBADJ SO YBADJ SO YBADJ	PL2E PL2E PL2E	-44.16 22.50 59.75	-34.19 32.25 60.50	-23.25 40.25 59.62	-11.75 47.75 60.12	0.25 53.50 59.56	12.00 57.75 52.64
SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDLEN SO BUILDLEN SO BUILDLEN SO BUILDLEN SO BUILDLEN SO BUILDLEN SO BUILDLEN SO BUILDLEN SO SUILDLEN SO XBADJ SO XBADJ	PL2W PL2W PL2W PL2W PL2W PL2W PL2W PL2W	$\begin{array}{c} 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 9.50\\ 211.94\\ 113.00\\ 211.94\\ 113.00\\ 237.50\\ 202.00\\ 223.50\\ 47.25\\ 202.50\\ 223.50\\ 152.50\\ 152.50\\ -141.00\\ -160.50\\ -87.50\\ -61.00\\ -68.25\\ 35.28\end{array}$	9.50 9.50 9.50 9.50 9.50 198.00 147.50 235.00 220.38 33.00 220.38 122.50 -155.00 -158.888 -74.50 -65.50 -61.62 -63.50 27.00	9.50 9.50 9.50 9.50 9.50 9.50 92.75 178.00 177.50 232.50 87.31 17.50 232.50 219.47 89.00 -164.00 -110.53 -59.50 -69.00 -69.00 17.75	9.50 9.50 9.50 9.50 9.50 9.50 152.50 223.75 152.50 202.50 237.75 237.00 80.75 113.00 237.50 211.94 113.00 -167.50 -109.69 -36.00 -69.50 -70.62 -76.50 7.75	9.50 9.50 9.50 9.50 9.50 122.50 77.50 220.38 122.50 221.00 220.38 235.00 71.75 147.50 234.75 198.00 147.50 -167.00 -105.50 -46.00 -68.25 -72.12 -101.50 -2.25	9.50 9.50 9.50 9.50 9.50 89.00 219.50 89.00 232.50 60.50 177.50 225.50 60.50 177.50 225.50 178.00 177.50 -160.75 -98.00 -54.50 -64.75 -71.50 -12.00
SO YBADJ SO YBADJ SO YBADJ SO YBADJ SO YBADJ	PL2W PL2W PL2W PL2W PL2W	-20.50 -28.50 -35.34 20.50 48.75	-28.25 -39.25 -26.81 28.25 49.00	19.00 -48.38 -17.50 34.25 47.88	7.00 -48.62 -8.00 40.25 48.62	-5.25 -48.69 1.75 44.50 48.69	-17.00 -42.62 12.00 47.75 42.64
SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT	PL3M PL3M PL3M PL3M	9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50
SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID	PL3M PL3M PL3M PL3M PL3M PL3M	9.50 9.50 151.88 209.00 113.00 151.81	9.50 9.50 168.88 207.00 80.25 174 12	9.50 9.50 169.25 199.50 45.50 191.25	9.50 9.50 164.75 186.00 60.50 202.50	9.50 9.50 154.50 166.00 94.12 207.50	9.50 9.50 140.50 141.50 124.88 206.00
SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDLEN SO BUILDLEN SO BUILDLEN	PL3M PL3M PL3M PL3M PL3M	208.50 112.50 185.50 60.50 202.50	207.50 80.25 114.00 94.12 207.50	199.50 45.75 103.00 124.88 206.50	185.50 60.50 105.00 151.88 208.50	166.00 94.12 104.75 174.12 207.50	141.50 124.91 101.00 191.25 199.50
SO BUILDLEN SO BUILDLEN SO BUILDLEN SO XBADJ SO XBADJ SO XBADJ	PL3M PL3M PL3M PL3M PL3M PL3M	185.50 60.75 202.50 -122.00 -33.00 -71.75	166.00 94.25 207.50 -147.00 -43.50 -71.00	141.50 124.91 206.00 -140.00 -52.81 -68.50	113.00 151.88 209.00 -145.50 -60.50 -69.50	80.25 174.25 207.50 -147.25 -66.25 -70.00	45.50 191.25 199.50 -144.25 -70.25 -67.50
SO XBADJ SO XBADJ SO XBADJ SO YBADJ SO YBADJ	PL3M PL3M PL3M PL3M PL3M	-63.00 -27.50 -130.75 -15.56 -35.00	-56.50 -50.62 -136.50 10.19 -34.00	-49.00 -72.06 -138.00 -10.12 -32.25	-40.00 -91.44 -139.50 -30.12 -29.50	-29.50 -108.00 -137.50 -49.25 -26.50	-17.75 -121.25 -132.50 -67.25 -21.75
SO YBADJ SO YBADJ SO YBADJ SO YBADJ	PL3M PL3M PL3M PL3M	-16.50 15.47 34.75 16.25	20.94 34.25 10.88	-5.00 25.88 32.25 5.12	-2.75 29.50 29.75 2.75	3.44 32.75 26.00 -3.44	9.62 34.50 21.25 -9.61
SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT	PL3N PL3N PL3N PL3N PL3N PL3N PL3N	9.50 9.50 9.50 9.50 9.50 9.50 151.88	9.50 9.50 9.50 22.50 9.50 168.88	9.50 9.50 9.50 22.50 9.50 169.25	9.50 9.50 9.50 9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50 9.50 9.50 9.50	9.50 9.50 9.50 9.50 9.50 9.50 206.00
SO BUILDWID	PL3N	209.00	207.00	199.50	186.00	166.00	141.50





SO BUILDWID	PT.3N	113.00	80.25	45.50	60.50	94.12	124.88
00 00100110		110.00	100.20	10.00	00.00	007.50	221.00
SO ROILDWID	PL3N	121.81	1/4.12	191.25	202.50	207.50	206.00
SO BUILDWID	pl3N	208.50	16.50	19.00	185.50	166.00	141.50
	DT 3N	112 50	80 25	15 75	60 50	9/ 12	12/ 01
30 BOILDWID	FLON	112.30	00.25	43.75	00.50	94.IZ	124.91
SO BUILDLEN	PL3N	185.50	114.00	103.00	105.00	104.75	45.50
SO BUTTOTEN	DT 3M	60 50	Q/ 12	12/ 88	151 88	17/ 12	101 25
SO BOILDIEN	E LIJIN	00.00	94.12	124.00	101.00	1/4.12	191.25
SO BUILDLEN	PL3N	202.50	207.50	206.50	208.50	207.50	199.50
SO BUTTOTEN	DT 3M	185 50	166 00	1/1 50	113 00	80 25	45 50
SO BOILDIEN	E LIJIN	103.30	100.00	141.00	113.00	00.25	43.30
SO BUILDLEN	PL3N	60.75	21.88	22.12	151.88	174.25	191.25
SO BUILDLEN	PT.3N	202 50	207 50	206 00	209 00	207 50	199 50
Se UDIDELLI	DI DIV	101.00	154 50	146.00	140 50	140.05	100.00
SO XBADJ	PL3N	-131.00	-154.50	-146.00	-149.50	-149.25	-27.50
SO XBADJ	PL3N	-30.75	-39.38	-46.81	-52.81	-57.25	-60.00
CO VDADI	DT ON	CO 75	E0 E0	57.00	50.00	E0.00	53.50
SO XBADJ	PL3N	-60.75	-59.50	-57.00	-58.00	-59.00	-57.50
SO XBADJ	PL3N	-54.00	-49.50	-43.50	-36.00	-27.50	-18.00
CO VRADI	DT 2NT	-20 75	-114 00	_11/ 75	-00.06	_117 12	-121 50
50 ABADO	E LIJIN	29.15	114.00	114.75	55.00	11/.12	131.30
SO XBADJ	PL3N	-141.75	-148.00	-149.50	-151.00	-148.50	-142.50
SO YBAD.T	PT.3N	-23 19	1 19	-20 38	-41 12	-60 75	-46 50
CO VDADI	DT ON	46 50	45 00	40.00	20 50	22 50	27.05
SO YBADJ	PL3N	-46.50	-45.00	-42.25	-38.50	-33.50	-27.25
SO YBADJ	PL3N	-20.50	-12.88	-4.75	-0.50	7.69	15.62
CO VDADT	DT ON	22.00	20 04	25 00	10 50	11 25	16 00
SU IBADU	FLON	23.09	29.94	55.00	40.50	44.20	40.00
SO YBADJ	PL3N	46.25	12.75	-5.50	38.75	33.50	27.25
SO VRADI	DT 3M	20 25	12 62	1 88	0 50	-7 56	-15 61
SO IBADO	LTON	20.23	12.02	4.00	0.00	1.00	10.01
00 00000000	DT 20	o = -	0 50	0 50	0 50	0	0 = 0
SO BUILDHGT	PL3S	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHGT	PL3S	9.50	9.50	9.50	9.50	9.50	9.50
	DT 20	0 50	0 50	0 50	0 50	0 50	0 50
SO BUILDHGT	PL3S	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDHGT	PL3S	9.50	9.50	9.50	9.50	9.50	9.50
CO DIITI DUCT	DT 2C	0 50	0 50	0 50	0 50	0 50	0 50
SO BUILDHGI	FT22	9.00	9.00	9.00	9.00	9.00	9.00
SO BUILDHGT	PL3S	9.50	9.50	9.50	9.50	9.50	9.50
SO BUILDWID	PT.39	151 88	168 88	169 25	164 75	154 50	140 50
SO DOILDNID	1100	101.00	100.00	100.20	101.70	101.00	1 10.00
SO BUILDWID	PL3S	139.00	139.00	199.50	186.00	166.00	141.50
SO BUILDWID	PT.3S	113 00	80 25	45 50	60 50	94 12	124 88
CO DUILDWID	DI 20	1 - 1 0 1	174 10	101 05	202.50	207 50	200.00
SO ROILDWID	PL3S	121.81	1/4.12	191.25	202.50	207.50	206.00
SO BUILDWID	PL3S	208.50	138.50	199.50	185.50	166.00	141.50
CO DUITI DWITD	DT 2C	110 50	00 25	15 75	60 E0	04 10	104 01
SO BUILDWID	PLSS	112.00	00.20	45.75	60.00	94.12	124.91
SO BUILDLEN	PL3S	185.50	114.00	103.00	105.00	104.75	101.00
SO BUILDLEN	PT.39	118 25	137 62	124 88	151 88	174 12	191 25
SO BOILDIEN	г шоо	110.23	157.02	124.00	101.00	1/4.12	191.25
SO BUILDLEN	PL3S	202.50	207.50	206.50	208.50	207.50	199.50
SO BUILDLEN	PT.3S	185 50	166 00	141 50	113 00	80 25	45 50
SO DUILDIEN	DI DO	100.00	100.00	104 01	151 00	174.05	101.00
SO BUILDLEN	PL3S	60./5	137.62	124.91	151.88	1/4.25	191.25
SO BUTLDLEN	PL3S	202.50	207.50	206.00	209.00	207.50	199.50
	DT 20	100.00	105 50	1 2 0 0 0	107 50	141 05	140 75
SU XBADJ	PL3S	-109.00	-132.20	-130.00	-137.50	-141.25	-140./5
SO XBADJ	PL3S	-140.25	-137.12	-56.81	-66.88	-74.75	-80.75
SO VRADI	DT 3C	-83 75	-84 00	-82 50	-81 00	-84 50	-81 50
50 ABADO	г шоо	05.75	04.00	02.00	04.00	04.00	01.00
SO XBADJ	PL3S	-76.00	-68.50	-59.50	-48.00	-35.25	-21.25
SO XBADJ	PL3S	-28.50	-0.62	-68.06	-85.06	-99.50	-110.75
So WEADT	1 200 DI 20	110.75	100.02	100.00	105.00	100.00	110.50
SO XBADJ	PL3S	-118./5	-123.50	-123.50	-125.00	-123.00	-118.50
SO YBADJ	PL3S	-9.19	18.81	0.38	-18.12	-35.75	-52.75
CO VDADT	DT 20		_ 60 00	_10 05	_16 50	_14 50	_11 75
SO IBADJ	PL3S	-62.00	-69.00	-18.20	-10.50	-14.50	-11./5
SO YBADJ	PL3S	-8.50	-5.12	-1.25	-1.75	1.94	5.62
SO VENDT	PT.30	0 00	10 01	15 20	17 50	10 25	20 50
JU IDADU		9.09	12.31	10.00	11.00	19.20	20.00
SO YBADJ	PL3S	20.25	69.25	18.25	16.75	14.00	11.25
SO YRAD.T	PL39	8 25	4 99	1 62	1 75	-1 9/	-5 61
SO IBADO	E LLOO	0.20	4.00	1.02	1.75	1.94	0.01
SO BIITI DUCT	BECDIT	22 50	22 50	22 50	22 50	10 50	10 50
20 DOITDUGI	1/11/2 11	22.00	22.00	22.00	22.00	T0.00	10.00
SO BUILDHGT	RESPLT	10.50	10.50	10.50	22.50	22.50	22.50
SO BUILDHOW	RESPLT	22 50	22 50	22 50	22 50	22 50	22 50
SO BOILDINGI	КЕОГЦІ	22.30	22.30	22.30	22.00	22.00	22.50
SO BUILDHGT	RESPLT	22.50	22.50	22.50	22.50	10.50	10.50
SO BUTIDHAT	RESPLT	10.50	10.50	10.50	22.50	22.50	22.50
	DEODIE	20.00	20.00	20.00	22.00	22.00	22.00
20 ROITDHGL	KE2LT	22.50	22.50	22.50	22.50	22.50	22.50
SO BUILDWID	RESPLT	21.69	20.62	19.00	16.50	31.50	28.00
	BECDIM	30 00	31 00	36 50	21 50	22 50	23 50
OC DOTIDMID	пшогыі	50.00	54.00	50.50	21.00	22.00	23.00
SO BUILDWID	RESPLT	23.50	23.00	21.75	21.00	21.88	22.12
SO BUILDWID	RESPLT	21 60	20 62	18 75	16 75	31 50	28 00
20 DOITDMID	1/11/2	21.09	20.02	TO . 10	TO . 10	JT.JU	20.00
SO BUILDWID	RESPLT	30.00	34.00	36.50	21.00	22.50	23.50
SO BUTIDWID	RESPLT	23.50	22.75	21.75	21.00	21.88	22.12
CO DUTT DI CO	DEODIE	20.00		00 50		22.00	20.50
20 ROITDTEN	KE2LT	21.00	∠3.00	∠3.50	∠4.00	32.15	28.50
SO BUILDLEN	RESPLT	29.00	32.62	35.16	21.69	20.62	18.75
SO BUTTOTEN	BECDIT	16 75	13 50	11 00	13 00	16 50	10 00
NG DOTUDEN		TO.10	10.00	TT.00	10.00	T0.00	19.00
SO BUILDLEN	RESPLT	21.50	23.00	23.50	23.50	32.75	28.75
SO BUILDIFN	RESPLT	29 00	32 62	35 16	21 69	20 62	18 75
CO DUITESTEN	DEODIE	10 -00	10 50	11 00	10 50	10.02	10.70
20 ROITDTEN	KESPLT	16.50	13.50	TT.00	13.50	TP.20	TA.00
SO XBADJ	RESPLT	10.00	7.50	5.00	2.50	-10.25	-5.75
SO YEADT	BECDIM	_2 50	-3 0F	_2 0/	_17 0/	_21 00	-23 25
JU ABADJ	KE2LP.I.	-3.50	-3.25	-2.84	-1/.94	-21.00	-23.23
						-	



S0 S0 S0 S0 S0 S0 S0 S0	XBADJ XBADJ YBADJ YBADJ YBADJ YBADJ YBADJ YBADJ	RESPLT RESPLT RESPLT RESPLT RESPLT RESPLT RESPLT RESPLT	-31.00 -25.50 8.25 6.97 -12.00 14.25 -7.03 12.00 -14.75	-30.50 -29.50 12.00 10.56 -9.50 11.25 -10.56 9.50 -11.62	-29.00 -32.31 15.00 13.75 -7.25 8.12 -13.62 7.25 -8.12	-26.00 -3.81 14.50 16.50 20.25 4.25 -16.62 -20.50 -4.25	-22.50 0.25 13.50 -15.75 19.25 0.56 16.25 -18.75 -0.56	-23.00 4.25 11.50 -14.50 16.75 -3.31 14.50 -17.25 3.31
SO         SO           SO         SO	BUILDHGT BUILDHGT BUILDHGT BUILDHGT BUILDHGT BUILDWID BUILDWID BUILDWID BUILDWID BUILDWID BUILDLEN BUILDLEN BUILDLEN BUILDLEN BUILDLEN BUILDLEN SBADJ XBADJ XBADJ XBADJ YBADJ YBADJ YBADJ YBADJ	DP21 DP21 DP21 DP21 DP21 DP21 DP21 DP21	9.50 9.50 9.50 9.50 9.50 151.88 209.00 113.00 151.81 208.50 112.50 185.50 60.50 185.50 60.75 202.50 -172.00 -42.50 -13.00 -18.25 -13.00 -33.44 -87.00 -50.50 33.34 86.75	9.50 9.50 9.50 9.50 9.50 174.25 207.00 80.25 174.12 207.50 80.25 166.00 94.12 207.50 166.00 94.25 207.50 -155.00 -43.75 -25.00 -15.00 -50.50 -182.00 -47.12 -87.00 -37.62 47.19 87.25	9.50 9.50 9.50 9.50 191.25 199.50 45.50 191.25 199.50 45.75 141.50 124.88 206.50 141.50 124.81 -19.00 -43.81 -19.00 -8.50 -81.06 -187.50 -59.38 -84.25 -23.00 59.62 84.25	9.50 9.50 9.50 22.50 186.00 202.50 186.00 202.50 21.00 60.50 112.50 151.88 208.50 113.00 21.69 209.00 -106.50 -42.62 -17.50 -6.00 -122.19 -191.50 -70.00 79.50 -12.00 70.00	9.50 9.50 9.50 22.50 9.50 207.50 166.00 94.12 207.50 22.50 94.12 80.50 174.12 207.50 80.25 20.62 207.50 -77.75 -40.00 -17.00 -190.50 -78.25 -72.00 3.31 78.25 -1.75	9.50 9.50 9.50 22.50 9.50 206.00 141.50 124.88 206.00 23.50 124.91 45.50 191.25 199.50 -46.00 -36.50 0.50 -120.00 -184.50 -84.50 -84.50 -84.50 -22.25
SO SO SO	YBADJ SRCGROUP FINISHED	DP21 ALL	50.25	37.38	23.38	12.00	-3.31	-18.61
RE RE RE RE RE RE RE RE	STARTING GRIDCART DISCCART DISCCART DISCCART DISCCART DISCCART DISCCART	CAR1 ST XY CAR1 EN 413415 414426 414499 414892 415299 415334 415677	A (INC 412150) 5959025 5959000 5958053 5957547 5957567 5957513 5957248	81 50.	5955400.	81 50.		
RE RE RE RE RE RE RE	DISCCART DISCCART DISCCART DISCCART DISCCART DISCCART DISCCART FINISHED	415152 414220 413866 413704 413302 412772 412477 413066	5957179 5956546 5956576 5956487 5956139 5956296 5957744 5958220					
ME ME	STARTING SURFFILE PROFFILE SURFDATA UAIRDATA SITEDATA PROFBASE FINISHED	"benal "benal 00011 00099 00022 0 METE	la2016.sfc" la2016.pfl" 2016 Benal 2016 TAP 2016 Bena RS	la M alla				
OU	STARTING RECTABLE	ALLAVE	E 1ST 9TH					



	MAXTABLE	ALLAVE 200		
	PLOTFILE	1 ALL 9TH	2016-formladehyde-Supplier	1-1HR-9TH.PLT
	PLOTFILE	24 ALL 1ST	2016-formladehyde-Supplier	1-24HR-1ST.PLT
	PLOTFILE	PERIOD ALL	2016-formaldehyde-Supplier	1-annual.plt
	MAXIFILE	1 ALL 22.222	2016-formaldehyde-Supplier	1-3min-40-
	ugm3.LST			
	RANKFILE	1 200	2016-formaldehyde-Supplier	1-1hr.TXT
	RANKFILE	24 200	2016-formaldehyde-Supplier	1-
	24hr.TXT	SUMMFILE	2016-formaldehyde-Supplier	1.SUM
OU	FINISHED			



Address (Head Office) 26 Redland Drive Mitcham VIC 3132

Postal Address 52 Cooper Road Cockburn Central WA ó164

> Office Locations VIC NSW WA QLD

Freecall: 1300 364 005 www.ektimo.com.au ABN 86 600 381413