Independent consultants CDM Smith have:

- developed a conceptual hydrogeological model of the Douglas mine site and surrounds;
- developed a numerical groundwater flow model and calibrated that model against groundwater monitoring results; and
- used the calibrated model to predict flow paths of liquid seeping from Pit 23, changes in groundwater levels and mass balance.

Hydrogeological model

Key features of the conceptual hydrogeological model include:

- regionally groundwater flows to the north, northeast and northwest – groundwater flow from Pit 23 is to the northwest;
- groundwater from the regional water table discharges to the surface via a series of saline lakes;
- the Glenelg River receives groundwater discharge from the basement aquifer; and
- the groundwater level at Pit 23 is at or slightly above the base of the pit excavation.

Numerical groundwater flow model

The numerical groundwater flow model is:

- capable of simulating water table response to recharge; and
- fit for purpose.

The model predicts:

- water particles leaving Pit 23 will migrate to the northwest and discharge at McGlashins Swamp or a surface drainage line;
- no water particles from Pit 23 will reach existing stock and domestic bores, Lake Kanagulk or the Glenelg River;
- the fate of water particles leaving Pit 23 would be unchanged by the proposed continuation of by-product disposal; and
- there would be no residual effects on groundwater levels or flow direction.