

Derrimut chemical fire: environmental sampling and findings

Science report

September 2024

epa.vic.gov.au

Environment Protection Authority Victoria GPO BOX 4395 Melbourne VIC 3001 1300 372 84

EPA acknowledges Victoria's First Nations peoples as the Traditional Owners of the land and water on which we live and work. We pay our respect to their Elders past and present. EPA prides itself on promoting and celebrating diversity and inclusion in our workplace. We want our organisation to be a reflection of the community we serve. We encourage all of our people to bring their whole selves to work and are committed to ensuring our workplaces are safe for them to do so.

This content is for general information only. Obtain professional advice if you have any specific concern. EPA Victoria has made reasonable effort to ensure accuracy at the time of publication. Except where noted at epa.vic.gov.au/copyright, all content in this work is licensed under the Creative Commons Attribution 4.0 Licence. To view a copy of this licence, visit creativecommons.org.

Contents

Summary	3
Findings	3
Air quality	3
Water quality	3
Sediment	3
Air quality	4
Response	4
Assessment approach	5
Results	5
Water quality	8
Response	8
Assessment approach	9
Results	10
Creek flow conditions	15
Sediment	15
References	16
Glossary terms	17
Appendices	18

Summary

On 10 July 2024, a large fire occurred at a chemical factory at 118 Swann Drive, Derrimut. The fire burned for approximately 6 hours before being controlled by firefighters. The factory stored solvents, which resulted in volatile organic compound (VOC) emissions being produced during the fire and contaminating firewater that flowed from the site.

This report provides an overview of the air and water quality monitoring during and after the fire. It assesses any human health risks associated with air and water quality, as well as risks to the aquatic environment.

Findings

Both air and water quality testing results found little or no risk of harm to nearby residents.

Any localised impacts to the environment were short-lived.

Air quality

Air quality during the fire posed a low risk to nearby residents. This is due to the high temperature of the fire pushing the smoke plume to a high altitude, and wind conditions to disperse and dilute the smoke.

EPA understands Fire Rescue Victoria (FRV) also conducted atmospheric modeling and monitoring at the fire site to identify hazards and quantify the risks so that FRV could respond appropriately. This showed levels dropped significantly in the days after the fire and informed security and safety zones used during the response.

Water quality

While we initially advised the community to avoid contact with affected waterways, testing showed there was a low risk to human health through accidental ingestion, inhalation or skin contact.

Aquatic ecosystems in Laverton Creek were exposed to high levels of chemicals for less than 8 days. Dissolved oxygen levels were low for the first few days after the fire. While both of these can cause harm to aquatic life, they quickly resolved and there were no reports or evidence of fish or wildlife deaths.

The absence of persistent chemical contaminants in firewater — such as heavy metals or PFAS — resulted in minimal ongoing contamination in Laverton Creek.

Sediment

Only historical contamination of sediment was found, indicating a previous pollution event.

Air quality

Response

Before the fire was under control, the smoke plume quickly reached a high altitude due to the high temperature of the fire. Winds were generally low and from the west, pushing the smoke plume towards the east.

From 10 to 19 July 2024, EPA assessed the impacts on air quality using multiple methods:

- EPA's fixed Ambient Air Quality Stations (AAQS)
- mobile SmokeTrak devices
- handheld MiniRae gas and VOC detectors
- air canisters (deployed on 11 July) to collect samples over a 24-hour period
- radiello tubes (deployed for 7 days after the fire) to collect VOC samples over a longer period.

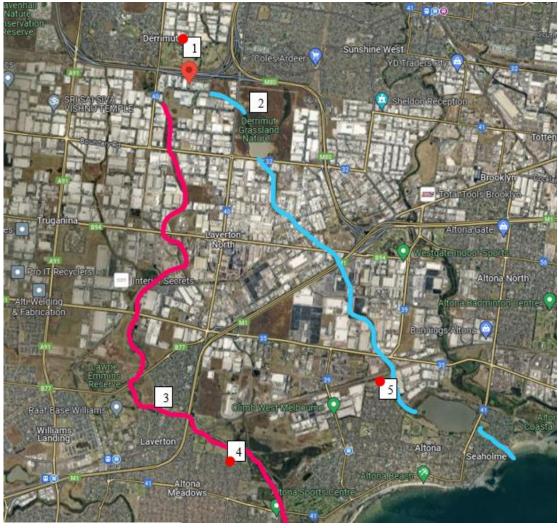


Figure 1. Map showing EPA air sampling locations (1-5).

Assessment approach

For air pollutants such as $PM_{2.5}$, EPA uses the Victorian Environmental Reference Standard (ERS) to assess impact. The ERS has standards for 24-hour concentrations of $PM_{2.5}$. EPA also has 1-hour average criteria, which were used in this response due to the duration of the fire.

Particulate matter (PM₁₀ and PM₂₅), carbon monoxide, nitrogen dioxide, ozone and sulfur dioxide are considered 'criteria pollutants'. Air pollutants other than criteria air pollutants are considered 'air toxics'.

For air toxics, we use Air Pollution Assessment Criteria (APAC) guideline values to check if air pollution levels are harmful to human health. These values help establish if the amount of a specific pollutant in the air is safe or poses a risk. By comparing actual pollution levels to APAC values, we can determine if the air is safe to breathe, or if steps need to be taken to reduce pollution and protect community health.

Results

EPA's fixed Ambient Air Quality Stations (AAQS) did not detect elevated levels of PM_{2.5} or other pollutants associated with the fire.

Results for PM_{2.5} mobile SmokeTrak measurements are shown in Figure 2. Some locations did show lower air quality, though these are likely to have been associated with traffic at major intersections in these locations.

Additional VOC sampling was also carried out at a range of locations near the fire and at further away locations, near waterways (Figure 1). However they were below levels of concern (see Table 1 and 2 comparisons to APAC).

Observations by EPA Incident Response Officers, coupled with discussions with the Bureau of Meteorology, indicated that the plume was elevated and reached mixing height. These factors increased smoke dispersion and reduced impacts at ground level. Smoke above the mixing height is unlikely to reach ground level at significant concentrations.

Figure 2. Route driven by EPA Incident Response Officers from 2 pm to 7 pm on 10 July 2024 to assess local air quality near the fire. Green denotes 'good' air quality. Red pin shows location of fire.

The results from the deployed air canisters detected the aromatic hydrocarbon, toluene, at a concentration of 3.6 μ g/m³ at the Mt Derrimut Golf Club (Figure 1 site 1), north of the fire. Toluene has a range of industrial uses and was stored at the site of the fire. Other airborne contaminants were below the limit of detection (Tables 1 and 2).

The air pollution levels measured were averaged over a week. The guidelines for some of the pollutants are for shorter time periods, such as 1 hour or 24 hours. Since the pollution levels were much lower than what would be a concern in those shorter time frames, it is acceptable to compare weekly average to these shorter guidelines.

Location in Figure 1.	Location	Sampling technique	Chemical Results (24 hours)	APAC
1	Mt. Derrimut Golf Club	Canister sample x 2	Toluene 3.6 μg/m³	15,000 µg/m³ (1 hour) 260 µg/m³ (7 days)
2	Derrimut Grassland Nature Conservation Reserve at Cherry Creek outfall	Canister sample	Below instrument limits of detection	
3	Residential location in Laverton near Kayes Drain, Laverton Creek confluence	Canister sample	Below instrument limits of detection	
4	Residential location in Altona Meadows adjacent to Laverton Creek	Canister sample	Below instrument limits of detection	
5	Residential location in Altona adjacent to Cherry Creek	Canister sample	Below instrument limits of detection	

Table 1. Ambient air VOC sampling results 11 to 12 July 2024.*

Results from all monitoring conducted during and after the event indicated the measured concentrations of air pollutants were below the APAC and ERS parameters established for the protection of human health.

Even for residents who could have been exposed to low levels of fine $PM_{2.5}$ and VOCs associated with the fire, the risk of potential adverse health effects was low. This includes those living near the Derrimut site, Laverton Creek and Cherry Creek, as well as those susceptible to potential health impacts like children, the elderly, pregnant women and individuals with existing respiratory conditions.

Fire Rescue Victoria routinely undertakes atmospheric monitoring at large fires and hazardous materials incidents. Data from monitoring are used to identify hazards and measure/manage exposure to firefighters and the community. EPA understands FRV Hazmat Technicians and Scientific Advisors performed atmospheric modelling and detection early in the incident. Monitoring was conducted in the staging and operational areas immediately surrounding the fire using gas chromatography/mass spectrometry, electrochemical and photoionisation detectors. Area monitors, used to continuously measure the concentration of toxic gases, were placed around the fireground, particularly in areas where firefighters were working. Results from atmospheric monitoring were broadly consistent with those of EPA.

^{*} Freon gas was detected in each sample above the limit of detection. This is a commonly detected refrigerant in ambient samples and not related to the fire.

Location in Figure 1.	Location	Sampling Technique	Chemical Results (7 days)	APAC
1	Mt. Derrimut Golf Club	Radiello tube	Benzene 0.2 μg/m³	29 μg/m³ (24 hours)
			Ethylbenzene 0.06 μg/m³	21,712 μg/m³ (24 hours)
			Tetrachloroethene 0.020 µg/m³	6,800 μg/m³ (1 hour)
			Toluene 1.1 μg/m³	260 μg/m³ (7 days)
			Trichloroethene 0.21 μg/m³	2 μg/m³ (365 days)
			o-Xylene 0.050 μg/m³	8,685 μg/m³ (24 hours)
			m&p-Xylenes 0.12 μg/m³	8,685 μg/m³ (24 hours)
4	Residential location in Altona Meadows adjacent to Laverton Creek	Radiello tube	Benzene 0.12 μg/m³	29 μg/m³ (24 hours)
			Ethylbenzene 0.05 μg/m³	21,712 μg/m³ (24 hours)
			Toluene 0.3 μg/m³	260 μg/m³ (7 days)
			1,2,4-Trimethylbenzene 0.03 µg/m³	60 μg/m³ (365 days)
			o-Xylene 0.050 μg/m³	8,685 μg/m³ (24 hours)
			m&p-Xylenes 0.15 μg/m³	8,685 μg/m³ (24 hours)
5	Residential location in Altona	Radiello tube	Benzene 0.41 μg/m³	29 μg/m³ (24 hours)
			Ethylbenzene 0.2 μg/m³	21,712 μg/m³ (24 hours)
			Styrene 0.070 μg/m³	260 μg/m³ (7 days)
			Toluene 1.2 μg/m³	260 μg/m³ (7 days)
			Trichloroethene 0.02 μg/m³	2 μg/m³ (365 days)
			1,2,4-Trimethylbenzene 0.11 µg/m³	60 μg/m³ (365 days)
			o-Xylene 0.21 μg/m³	8,685 μg/m3 (24 hours)
			m&p-Xylenes 0.58 μg/m³	8,685 μg/m³ (24 hours)

Table 2. Ambient air VOC sampling results 11 to 18 July 2024.

Water quality

Response

A large volume of water was required to extinguish the fire, resulting in firewater runoff breaking containment and entering the stormwater system. Firewater runoff flowed mainly via the stormwater system into Kayes Drain to the west, and to a lesser extent to Cherry Creek to the east. Kayes Drain flows directly into Laverton Creek to the south. It was unclear how much firewater entered each creek system as it is difficult to trace in underground stormwater drains.

In the days following the fire, EPA and Melbourne Water monitored firewater-affected waterways to assess risks to the aquatic environment and human health (Figures 3 and 4).

Figure 3. Location of EPA and Melbourne Water monitoring sites along the Kayes Drain, Laverton Creek and Cherry Creek waterways. Refer to Appendix A1 for list of sites and map codes. Red pin shows location of fire.

Testing for chemical contaminants and *E. coli* was conducted in Kayes Drain and Laverton Creek on 11 and 13 July, and in Cherry Creek and Cherry Lake on 12 and 13 July. In addition to chemical testing, EPA deployed 2 multiparameter water quality loggers in Laverton Creek at Dohertys Road (Figure 3 site L1), upstream of the Kayes Drain intersection, and further downstream at Merton Street (Figure 4 site L3). These provided continuous information on dissolved oxygen, salinity, turbidity and pH conditions at each site.

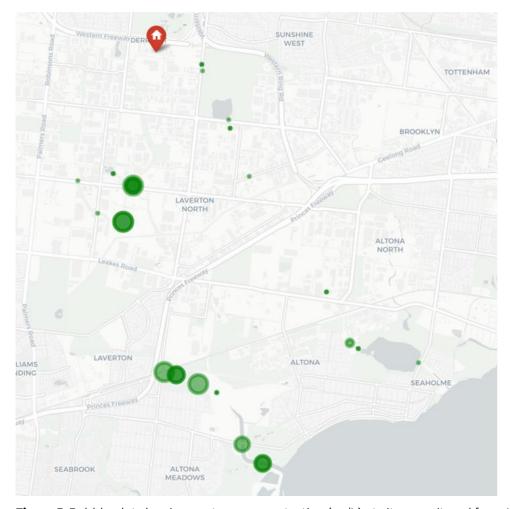
Affected waterways were re-sampled a week after the fire to assess the level of recovery, as well as the level of ongoing risks to the environment and community. In this later sampling round, EPA collected both water and sediment samples. Sediment samples can provide a measure of the persistent impacts of sediment contamination associated with the Derrimut fire.

Figure 4. Location of downstream EPA and Melbourne Water monitoring sites on Laverton Creek (left) and Cherry Creek (right).

Assessment approach

We used both the ERS and the Australian and New Zealand Guidelines for Fresh and Marine Waters (ANZG 2018) to assess risks to aquatic ecosystems in affected waterways. The ANZG provide sediment and water quality guidelines to help ensure that chemical and physical stressors do not exceed harmful concentrations. The 'level of protection' for these guideline values is the degree of protection given to the waterway based on the condition of the aquatic ecosystem. Urban waterways in Melbourne are highly modified and accordingly receive the lowest level of species protection (90%) under the Victorian ERS.

Risk to human health from waterways was evaluated using recreational water quality guidelines provided by the World Health Organization (WHO) and the National Health and Medical Research Council (NHMRC) in Australia. These guidelines set safe limits for primary contact with water pollutants to ensure that those undertaking water-based activities such as swimming, will not experience health-related harm. The 'level of protection' in these guidelines refers to the concentration of pollutants that can be in the water without posing any danger to people undertaking these activities.


Results

While water quality testing covered a wide range of chemicals (seen at Appendix A2), testing showed the key risks to aquatic ecosystem health was from:

- acetone
- methyl ethyl ketone (MEK)
- methyl isobutyl ketone (MIBK)
- isophorone
- teric N9 industrial detergent (nonylphenol ethoxylate, or NPE)
- ethanol
- isopropyl alcohol
- hydrocarbons.

The greatest firewater impacts were largely restricted to Laverton Creek.

Acetone was a major contaminant in firewater entering local waterways from the Derrimut chemical factory fire (Tables 3 and 4). Acetone was recorded at 7 sites from Kayes Drain to the Laverton Creek outlet, with concentrations ranging from 780-11,000 μ g/L (Figure 5). By comparison, acetone was only found at a single site in Cherry Creek (Figure 4, site C6), at the inlet to Cherry Lake (31 μ g/L). A similar spatial pattern of contamination predominantly in Kayes Drain and Laverton Creek was evident for other chemicals measured (Tables 3 and 4).

Figure 5. Bubble plot showing acetone concentration (μ g/L) at sites monitored from 11 to 13 July 2024. The smallest bubble shown indicates where acetone was measured, but not detected. The highest concentration was 11,000 μ g/L. Red pin shows location of fire.

Between 11 July and 13 July 2024, maximum concentrations of toluene, xylenes (m, p & o-xylene), ethanol, isopropyl alcohol and isophorone in Kayes Drain and Laverton Creek exceeded the ANZG (2018) aquatic 90% protection level guidelines for aquatic life (Tables 3 and 4).

There were also elevated levels of acetone, methyl ethyl ketone (MEK), 4-methyl-2-pentanone (MBIK) and nonylphenol ethoxylate (NPE). The absence of these chemicals in surface water sampled upstream of the firewater flow confirmed the presence of these chemicals was associated with the contaminated firewater that entered affected waterways. A detailed summary of chemical results at each monitoring site can be viewed in Appendix A3.

Follow-up sampling on 17 and 18 July 2024 found that all these chemicals had declined to levels below the laboratory detection limit, indicating significantly lower risk to aquatic ecosystems in Kayes Drain. These declines are attributed to the high volatility of these chemicals (due to loss via evaporation), as well as dilution and flushing by higher stream flows on 17 July 2024 (see Figure 7).

Testing of *E. coli* was not conducted on the 17 and 18 July 2024, as results from the previous sampling round did not indicate a sewer overflow had occurred.

Chemical	Unit	ANZG 90% ecosystem guideline	Recreational water quality guideline	Kayes Drain upstream (SW20)	Kayes Drain Downstream (SW02, SW19, KA1)		
				13 July	11 July	13 July	18 July
Acetone	μg/L			<50	6,050	7,430	<10
MEK	μg/L			<50	730	830	<10
MIBK	μg/L			<50	560	750	<10
Benzene	μg/L	1,300	200	<1	3	6	<1
Toluene	μg/L	230*	14,000	<2	351	638	<1
Ethylbenzene	μg/L	110*	6,000	<2	36	59	<1
Xylenes	μg/L	100 (m-xylene)	10,000	<2	279	448	<2
Ethanol	μg/L	2,400		<50	35,800	59,600	-
Isopropyl alcohol	μg/L	4,200*		<50	5,590	9,170	-
Isophorone	μg/L	130*		<2	182	419	<20
NPE	μg/L			<10	640	180	<5

Table 3. Maximum chemical concentrations measured in surface water from Kayes Drain on 11, 13 and 18 July 2024.

Exceedances of the ANZG 90% ecosystem guideline are **bolded**. No exceedances of recreational water quality guideline levels were recorded.

^{*}Guideline values with low reliability.

Analyte	Unit	ANZG 90% sp. Prot	Rec Water Qual	Laverton Creek Upstream (L1, SW21)		Laverton Creek Downstream (L2-6 & SW08, SW11, SW12)				Altona Beach (L7)
				11 July	18 July	11 July	12 July	13 July	18 July	18 July
Acetone	μg/L			<10	<10	11,000	2,380	1,730	15	<10
MEK	μg/L			<10	<10	1,300	240	50	<10	<10
MIBK	μg/L			<10	<10	340	<50	<50	<10	<10
Benzene	μg/L	1,300	200	<1	<1	1.4	<1	<1	<1	<1
Toluene	μg/L	230*	14,000	<1	<1	90	<2	<2	<1	<1
Ethylbenzene	μg/L	110*	6,000	<1	<1	9.6	<2	<2	<1	<1
Xylenes	μg/L	100 (m-)	10,000	<2	<2	87	<2	<2	<2	<2
Ethanol	μg/L	2,400*		_	-	-	32,800	10,800	-	_
Isopropyl alcohol	μg/L	4,200*		-	-	-	6,230	1,930	-	-
Isophorone	μg/L	130*		<20	<20	410	43	22	<20	<20
NPE	μg/L			<5	6	380	40	<10	8	<5

Table 4. Maximum chemical concentrations measured in surface water from Laverton Creek on 11 to 13 and 18 July 2024.

Exceedances of the ANZG 90% guideline values are **bolded** and recreational water quality guideline levels are <u>underlined</u>.

No chemicals were recorded above the ANZG guidelines for the protection of aquatic life in Cherry Creek (Table 5). Furthermore, few chemicals were recorded above the lab detection limit. Acetone and nonylphenol ethoxylate were recorded at the inlet to Cherry Lake (Figure 4, site C6). There was only one detection of ethanol (346 μ g/L) at Boundary Road in Brooklyn (Figure 3, site SW15), where the stormwater drain flows into Cherry Creek. This pattern supports the conclusion that much less contaminated firewater entered Cherry Creek.

EPA investigations identified the industrial detergent Teric N9 (NPE) as a contaminant of potential concern in the firewater. At high concentrations, NPE is toxic to aquatic life, and there are no current water or sediment quality standards for NPE in Australia. The concentration of NPE in surface water was compared to the acute toxicity value to aquatic life of 6,400 μ g/L for Teric N9 (Teric N9 Safety Data Sheets); no surface water concentrations exceeded this value (Tables 3, 4 and 5).

Concentrations of the chemical contaminants in water were found to be below the recreational water quality criteria for primary contact. Primary contact refers to activities that include direct contact with water, such as swimming. Therefore, the risks to humans through accidental ingestion, inhalation or skin contact were assessed as low (see Appendix A3).

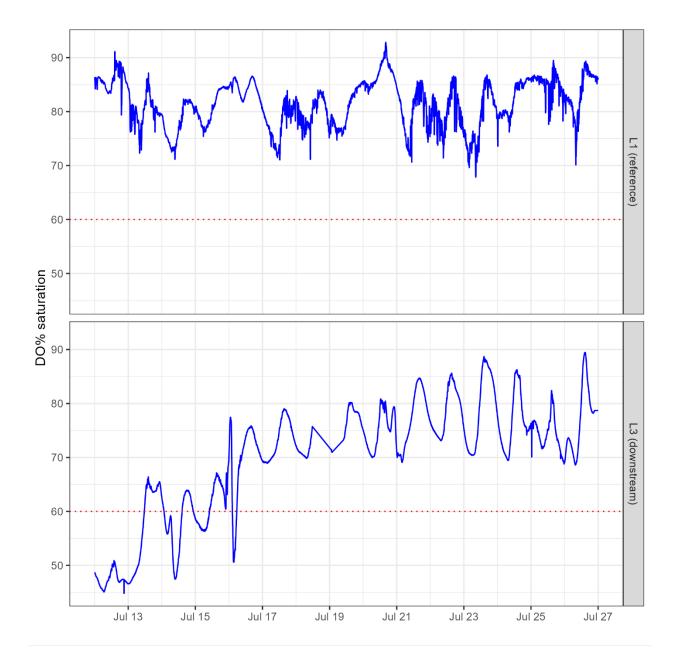
^{*}Guideline values with low reliability.

Analyte	Unit	ANZG 90% sp. Prot	Rec Water Qual	Cherry C Upstrea (C1)			Cherry Creek Downstream (C2-7 & SW07, 14, 15, 18)			
				11/07	12/07	17/07	12/07	13/07	17/07	
Acetone	μg/L			<10	<10	<10	31	<50	<10	
MEK	μg/L			<10	<10	<10	<50	<50	<10	
MIBK	μg/L			<10	<10	<10	<50	<50	<10	
Benzene	μg/L	1300	200	<1	<1	<1	<1	<1	<1	
Toluene	μg/L	230*	14000	<1	<1	<1	<2	<2	<1	
Ethylbenzene	μg/L	110*	6000	<1	<1	<1	<2	<2	<1	
Xylenes	μg/L	100 (m- xylene)	10000	<2	<2	<2	<2	<2	<2	
Ethanol	μg/L	2400*		-	-	-	346	<50	-	
Isopropyl alcohol	μg/L	4200*		-	-	-	<50	<50	-	
Isophorone	μg/L	130*		<20	<20	<20	<2	<2	<20	
NPE	μg/L			<5	<5	<5	8	<10	<5	

Table 5. Maximum chemical concentrations measured in surface water from Cherry Creek and Cherry Lake on 11, 12 and 13 July

No exceedances of the ANZG 90% guideline values or recreational water quality guideline levels were measured.

Dissolved oxygen is a key indicator of water quality. Fish and other aquatic life need oxygen dissolved in the water to breathe, and high concentrations of chemicals in the water use up dissolved oxygen as they degrade. Measuring dissolved oxygen is therefore a key indicator of the impact of firewater pollution. The ERS for dissolved oxygen in urban streams is at least 60%.


Figure 7 displays dissolved oxygen levels in Laverton Creek upstream of the Kayes Drain intersection at Dohertys Road (L1), and downstream at Merton Street (L3). Dissolved oxygen levels on 12 July 2024 were below 50% saturation at Merton Street (L3), below the ERS level of 60% for this waterway.

Lower dissolved oxygen levels at Merton Street (L3) were associated with a high chemical oxygen demand in water samples (530 mg/L compared to background 45 mg/L) and the presence of a range of firewater chemicals. Over the next 5 to 7 days, these returned to levels similar to the reference site at Dohertys Road (L1), between 70 to 90% dissolved oxygen saturation.

Dissolved oxygen at Merton Street (L3) had returned to levels above 60% saturation by 16 July 2024, and remained at this level until 27 July 2024 when monitoring ceased.

^{*}Guideline values with low reliability.

Figure 6. Dissolved oxygen (DO%) levels in Laverton Creek shown recorded by Multiparameter Water Quality loggers deployed upstream at site L1 (reference site) and downstream at L3 between 11-26 July 2024

Dashed line at 60% represents Environmental Reference Standard (ERS) for dissolved oxygen.

Creek flow conditions

Local creeks were flushed by rainfall-driven higher flow events on 16 and 20 July 2024 (Figure 7). The Bureau of Meteorology weather station at Laverton recorded 13.4 mm of rain on 16 July. The rainfall runoff diluted firewater contaminants, reducing their overall concentrations on 18 July, and aiding in flushing contaminants from affected areas.

No daily flow measurements are available for Laverton or Cherry Creeks due to the absence of flow gauges on these creeks. Therefore, flow data from adjacent Kororoit Creek was used to represent local flow conditions in the area. Kororoit Creek, Laverton Creek and Cherry Creek share physical similarities.

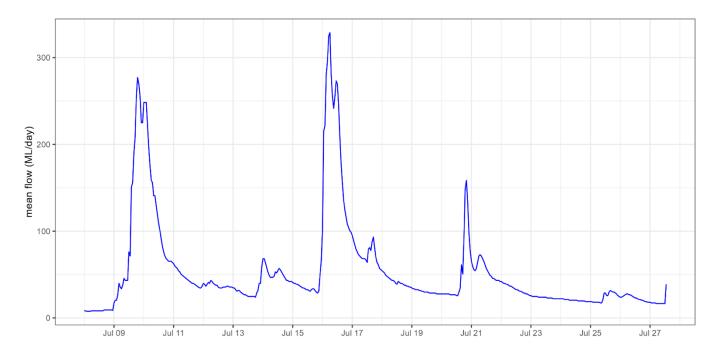


Figure 7. Kororoit Creek mean daily flows (ML/day) at Federation Trail, Brooklyn.

Sediment

Sediments in waterways can become contaminated by the discharge of industrial chemicals.

Sediment monitoring did not show contamination of creek sediments from the fire. The highest sediment hydrocarbons results were in Kayes Drain, upstream of the firewater impacts, suggesting pre-existing contamination of the creek (see Appendix A4).

References

ANZG (2018). Australian and New Zealand Government Guidelines for fresh and marine waters. https://www.waterquality.gov.au/anz-guidelines

EPA (2022). EPA Publication 1961 – Guideline For Assessing and Minimising Air Pollution. https://www.epa.vic.gov.au/about-epa/publications/1961

NHMRC (2008). Guideline for Managing Risks in Recreational Water. https://www.nhmrc.gov.au/about-us/publications/guidelines-managing-risks-recreational-water#block-views-block-file-attachments-content-block-1

WHO (2021). Guidelines on recreational water quality. https://www.who.int/publications/i/item/9789240031302

Glossary terms

ANZG Australian and New Zealand Government Guidelines

APAC Air Pollution Assessment Criteria

BOD Biochemical Oxygen Demand

COD Chemical Oxygen Demand

DO Dissolved Oxygen

EC50 Half Maximal Effective Concentration. The concentration of a toxicant

required to obtain 50% of the effect over a given time.

ERS Environment Reference Standard

LC50 Lethal Concentration 50. Concentration of a toxicant required to cause

death of 50% of an experimental test population.

m-, o-, p-xylene Three xylene isomers. Chemicals that share the same formula but vary

slightly in structure (the arrangement of atoms)

MAH Monocyclic aromatic hydrocarbons

MIBK Methyl isobutyl ketone, 4-methylpentan-2-one

MEK Methyl ethyl ketone, 2-butanone

NP Nonylphenol - main degradation product of NPE

NPE Nonylphenol ethoxylate - main active ingredient in Teric N9

OCP Organochlorine pesticides

OPP Organophosphorus pesticides

PAH Polynuclear aromatic hydrocarbons
PFAS Per- and polyfluoroalkyl substances

PFOS Perfluorooctane sulfonic acid

PFOA Perfluorooctanoic acid

PFHxS Perfluorohexane sulfonic acid

PM_{2.5} Particulate Matter (2.5 micrometres or smaller in diameter)

PM₁₀ Particulate Matter (10 micrometres or smaller in diameter)

Primary contact Activities where the whole body or the face is immersed in water.

Examples of primary contact activities include swimming and surfing.

TRH Total Recoverable Hydrocarbons

VOC Volatile Organic Compound

Appendices

Table A1 – Water Quality monitoring locations shown on map Figures 3 and 4. MW denotes sites sampled by Melbourne Water

Location	Code	Waterway	Agency	Latitude	Longitude
Kayes Drain, Dohertys Rd	SW02	Laverton Creek	MW	-37.8265	144.772
Laverton Ck, Doug Grant Reserve	SW08	Laverton Creek	MW	-37.8796	144.80335
Laverton Ck, Valente St	SW11	Laverton Creek	MW	-37.8661	144.7922
Laverton Ck, AB Shaw Reserve	SW12	Laverton Creek	MW	-37.8627	144.7825
Kayes Drain	SW19	Laverton Creek	MW	-37.8334	144.769602
Kayes Drain (upstream reference)	SW20	Laverton Creek	MW	-37.8242	144.7672
Laverton Ck, Foundation Rd	SW21	Laverton Creek	MW	-37.8318	144.763452
(upstream reference)	1.4	l C l-	ED A	07.0055	1447500
Laverton Ck, Doherty Rd (reference)	L1	Laverton Creek	EPA	-37.8255	144.7586
Laverton Ck, Leakes Rd	L2	Laverton Creek	EPA	-37.8407	144.7659
Laverton Ck, Merton St	L3	Laverton Creek	EPA	-37.8621	144.7796
Laverton Ck, Victoria St	L4	Laverton Creek	EPA	-37.8644	144.7878
Laverton Ck, Queen St	L5	Laverton Creek	EPA	-37.8759	144.7984
Laverton Creek outlet	L6	Laverton Creek	EPA	-37.8803	144.8088
Altona Beach, Maidstone St	L7	Laverton Creek	EPA	-37.8753	144.8152
Kayes Drain, Doherty Rd	KA1	Laverton Creek	EPA	-37.8248	144.77269
Cherry Lake inlet (boom)	SW07	Cherry Creek	MW	-37.8577	144.8265
Cherry Ck, Kororoit Ck Rd	SW14	Cherry Creek	MW	-37.8468	144.818886
Cherry Ck, Andersons Swamp outlet	SW15	Cherry Creek	MW	-37.8155	144.79553
Cherry Ck, Fitzgerald Rd	SW18	Cherry Creek	MW	-37.8033	144.788688
Cherry Ck, Mt Derrimut Golf Club	C1	Cherry Creek	EPA	-37.7961	144.7846
Cherry Ck, Fitzgerald Rd	C2	Cherry Creek	EPA	-37.8045	144.7889
Andersons Swamp outlet	C4	Cherry Creek	EPA	-37.8138	144.7952
Cherry Ck, Pipe Rd	C5	Cherry Creek	EPA	-37.8247	144.8002
Cherry Lake inlet (boom)	C6	Cherry Creek	EPA	-37.8566	144.8246
Cherry Lake outlet	C7	Cherry Creek	EPA	-37.8604	144.8412

Table A2 – Summary of contaminant sampling conducted by EPA and Melbourne Water

Date:	11/07	11/07	12/07	12/07	13/07	17/07	18/07
Site Code:	SW02	L1, 3, 4, 5,	SW07,	C1, 2, 4, 5,	SW02, 07,	C1, 2,	KA1 & L1,
		& C1	08, 11, 12,	6, 7	08, 11, 12,	4, 5, 6,	2, 3, 5, 6,
			14, 15		14, 15, 18,	7	7
					19, 20, 21		
Analyte:							
Trae Metals	•	•	•	•	•	•	•
Chemical oxygen demand	•	•	•	•	•	•	•
Biochemical oxygen	•		•		•		
demand							
Monocyclic Aromatic	•	•	•	•	•	•	•
Hydrocarbons (MAH) Oxygenated compounds	•	•	_	_	_		_
Sulfonated compounds	•	_	•	-	•	-	-
Fumigants	•	_	•	_	•	_	_
Halogenated Aliphatic	•	•	•	•	•	•	•
Compounds			•				
Halogenated Aromatic	•	•	•	•	•	•	•
Compounds							
Trihalomethanes	•	•	•	•	•	•	•
Phenolic compounds	•	•	•	•	•	•	•
Polynuclear aromatic	•	•	•	•	•	•	•
hydrocarbons (PAH)							
Phthalate esters	•	•	•	•	•	•	•
Nitrosamines	•	•	•	•	•	•	•
Nitroaromatics and	•	•	•	•	•	•	•
Ketones							
Haloethers	•	•	•	•	•	•	•
Chlorinated hydrocarbons	•	•	•	•	•	•	•
Anilines and benzidines	•	•	•	•	•	•	•
Organochlorine pesticides	•	•	•	•	•	•	•
Organophosphorus	•	•	•	•	•	•	•
pesticides							
Total Recoverable	•	•	•	•	•	•	•
Hydrocarbons (TRH) BTEXN	•	•	•	•	•	•	•
Alcohols	•	•	•	•	•	•	
Nonylphenol ethoxylates	•	•	•	•	•	•	•
Poly- and perfluoroalkyl	•	•	•	•	•	•	•
substances (PFAS)		<u>-</u>	<u>-</u>		-		
Alcohols and solvents	•	_	•	_	•	_	_
Alkanes	•	_	•	_	•	_	_
E. coli	_	•	_	•	_	_	_

Table A3 – Chemical monitoring results for Kayes Drain and Laverton Creek

			Industrial so	olvents		Alcohols					
Location	Sample date	COD	Acetone	MEK	MIBK	Ethanol	Isopropyl alcohol	n-Propanol	Isobutanol	n-Butanol	
CAS			67-64-1	78-93-3	108-10-1	64-17-5	67-63-0	71-23-8	78-83-1	71-36-3	
Units			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
ANZG 90% sp. FW						2,400	4,200				
EC50/LC50			>5,500,000	>100,000	>179,000	1,350,000	4,200,000				
Human Health (re	ecreational wate	er quality)									
Kayes Drain											
SW20	13/07/2024	71	<50	<50	<50	<50	<50	<50	<50	<50	
SW02	11/07/2024	334	6,050	730	560	35,800	5,590	1,140	1,240	3,510	
	13/07/2024	86	1,360	190	<50	18,000	3,080	496	<125	553	
SW19	13/07/2024	478	7,430	830	750	59,600	9,170	2,000	2,130	6,330	
KA1	18/07/2024	35	<10	<10	<10	-	_	-	-	_	
Laverton Creek											
L1	11/07/2024	45	<10	<10	<10	-	-	-	-	-	
	18/07/2024	36	<10	<10	<10	-	_	-	-	-	
SW21	13/07/2024	13	<50	<50	<50	<50	<50	<50	<50	<50	
L2	18/07/2024	48	<10	<10	<10	-	_	-	-	-	
L3	11/07/2024	530	8,600	760	340	-	_	-	-	_	
	18/07/2024	53	<10	<10	<10	-	_	-	-	-	
SW12	12/07/2024	70	1,980	60	<50	6,780	1,860	263	366	742	
	13/07/2024	31	1,730	<50	<50	169	205	<50	<50	<50	
L4	11/07/2024	620	11,000	1,300	300	-	-	-	-	-	
SW11	12/07/2024	21	<50	<50	<50	<50	<50	<50	<50	<50	
	13/07/2024	37	<50	<50	<50	<50	<50	<50	<50	<50	
L5	11/07/2024	250	780	90	<10	-	_	-	-	-	
	18/07/2024	160	15	<10	<10	-	-	-	-	-	
SW08	12/07/2024	195	2,380	240	<50	32,800	6,230	874	896	2,490	
	13/07/2024	820	800	50	<50	10,800	1,930	312	326	774	
L6	18/07/2024	620	12	<10	<10	-	_	-	-	-	
L7	18/07/2024	950	<10	<10	<10	-	-	-	-	-	

Bolded values exceed guidelines

Table A3 cont. – Chemical monitoring results for Kayes Drain and Laverton Creek

		Benzene,	Toluene, Ethy	lbenzene, Xylene (Total Recoverab	Total Recoverable Hydrocarbons (TRH)		
Location	Sample date	Benzene	Toluene	Ethylbenzene	Xylenes	Sum BTEX	TRH C6-C10 - BTEX	TRH C10-C40
CAS		71-43-2	108-88-3	100-41-4				
Units		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
ANZG 90% sp. FW		1,300	230	110	100 (m-)			
EC50/LC50								
Human Health (recrea	tional water quality)	200	14,000	6,000	10,000			
Kayes Drain								
SW20	13/07/2024	<1	<2	<2	<2	<1	<20	130
SW02	11/07/2024	3	351	36	279	669	1,030	5,010
	13/07/2024	<1	14	<2	12	26	50	<100
SW19	13/07/2024	6	638	59	448	1,150	1,230	9,050
KA1	18/07/2024	<1	<1	<1	<2	<2	<25	<100
Laverton Creek								
L1	11/07/2024	<1	<1	<1	<2	<2	<25	<100
	18/07/2024	<1	<1	<1	<2	<2	<25	<100
SW21	13/07/2024	<1	<2	<2	<2	<1	<20	190
L2	18/07/2024	<1	<1	<1	<2	<2	<25	<100
L3	11/07/2024	1.4	87	9.6	87	183.6	590	6171
	18/07/2024	<1	<1	<1	<2	<2	<25	<100
SW12	12/07/2024	<1	5	<1	7	12	50	1,030
	13/07/2024	<1	<2	<2	<2	<1	<20	<100
L4	11/07/2024	1.4	90	7	72	169	430	6,310
SW11	12/07/2024	<1	<2	<2	<2	<1	<20	<100
	13/07/2024	<1	<2	<2	<2	<1	<20	<100
L5	11/07/2024	<1	1.6	<1	<2	1.6	<25	1,760
	18/07/2024	<1	<1	<1	<2	<2	<25	<100
SW08	12/07/2024	<1	5	<2	<2	5	80	850
	13/07/2024	<1	<2	<2	<2	<1	20	280
L6	18/07/2024	<1	<1	<1	<2	<2	<25	<100
L7	18/07/2024	<1	<1	<1	<2	<2	<25	<100

Bolded values exceed guidelines

Derrimut chemical fire: environmental sampling and findings

Page 21

Table A3 cont. – Chemical monitoring results for Kayes Drain and Laverton Creek

		Monocyclic Aromatic Hydroca	rbons (MAH)	Ketones	Nonylphenol ethoxylates
Location	Sample date	Cumene (isopropylbenzene)	1,2,4-Trimethylbenzene	Isophorone	NPE
CAS		98-82-8	95-63-6	78-59-1	9016-45-9
Units		μg/L	μg/L	μg/L	μg/L
ANZG 90% sp. FW		40		130* marine	
EC50/LC50					6,400
Human Health (recre	eational water qu	ality)			
Kayes Drain					
SW20	13/07/2024	<5	<5	<2	<10
SW02	11/07/2024	<5	187	182	640
	13/07/2024	<5	16	14	<10
SW19	13/07/2024	7	252	419	180
KA1	18/07/2024	<1	<1	<20	<10
Laverton Creek					
L1	11/07/2024	<1	<1		<5
	18/07/2024	<1	<1	<20	6
SW21	13/07/2024	<5	<5	<2	<10
L2	18/07/2024	<1	<1	<20	6
L3	11/07/2024	2.3	70	410	375
	18/07/2024	<1	<1	<20	8
SW12	12/07/2024	<5	11	43	40
	13/07/2024	<5	<5	13	<10
L4	11/07/2024	1.9	100	410	251
SW11	12/07/2024	<5	<5	<2	<10
	13/07/2024	<5	<5	<2	<10
L5	11/07/2024	<1	<1	<20	380
	18/07/2024	<1	<1	<20	6
SW08	12/07/2024	<5	<5	41	<10
	13/07/2024	<5	<5	22	<10
L6	18/07/2024	<1	<1	<20	<5
L7	18/07/2024	<1	<1	<20	<5

Bolded values exceed guidelines

Derrimut chemical fire: environmental sampling and findings

Page 22

Table A4 – Chemical monitoring results for sediments in Kayes Drain and Laverton Creek.

Analyte	Units	DGV*	GV- high**	ISQC ***	L1	KA1	L3	C5
Nonylphenol ethoxylate	mg/kg			1.4	0.06	0.12	0.19	0.08
Total Petroleum Hydrocarbons	mg/kg	280	550		480	2410	<100	370

Bolded values exceed guidelines.

^{*}ANZ default guideline value for sediments

^{**}ANZ GV indicator of high-level toxicity

^{***} Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Nonylphenol and its ethoxylates 2002

Accessibility

Contact us if you need this information in an accessible format such as large print or audio. Please telephone 1300 372 842 or email contact@epa.vic.gov.au

Interpreter assistance

If you need interpreter assistance or want this document translated, please call 131 450 and advise your preferred language. If you are deaf, or have a hearing or speech impairment, contact us through the **National Relay Service**.

epa.vic.gov.au **Environment Protection Authority Victoria** GPO BOX 4395 Melbourne VIC 3001 1300 372 842

