

Recycled water use in irrigated crops 2023-2025

Technical report

August 2025

Hung Tan, Kara Fry, Erinn Richmond, Phoebe Lewis, Minna Saaristo

epa.vic.gov.au

Environment Protection Authority Victoria GPO BOX 4395 Melbourne VIC 3001 1300 372 84

This content is for general information only. Obtain professional advice if you have any specific concern. EPA Victoria has made reasonable effort to ensure accuracy at the time of publication. Except where noted at epa.vic.gov.au/copyright, all content in this work* is licensed under the Creative Commons Attribution 4.0 Licence. To view a copy of this licence, visit creativecommons.org. EPA acknowledges Victoria's First Nations peoples as the Traditional Owners of the land and water on which we live and work. We pay our respect to their Elders past and present.

Contents

0.	Executive Summary	4
1.	Project Background	5
1.1	Aims	5
1.2	Intended audience	5
2.	Methods	6
2.1	2023 Sampling	6
2.2	2024 Sampling	7
2.3	High resolution mass spectrometry (HRMS) analysis	7
2.4	Targeted quantitative analysis of emerging contaminants	8
3.	Results	8
3.1	HRMS analysis results	8
3.2	Targeted quantitative analysis results	g
3.2.1	EDCs	g
3.2.2	PAHs	1
3.2.3	PFAS	13
3.2.4	PPCPs	17
3.2.5	Pesticides	20
3.2.6	Phthalates	2
4.	Conclusions and key findings	24
Referer	nces	25
Annend	dix A – Data summary tables	26

Executive Summary

EPA Victoria, in partnership with CSIRO, undertook a two-stage investigation into the use of recycled water (Class A and C) for crop irrigation and its potential to introduce emerging contaminants into agricultural systems. The study aimed to assess the occurrence, transport, and uptake of a broad suite of chemical and biological contaminants in water, soil, and crop tissues under real-world field conditions.

2023 Overview

The first stage, conducted in 2023, involved sampling at seven farms across Victoria, including five farms using recycled water and two reference farms using alternative irrigation sources. Crops studied included broccoli, lettuce, and pasture. Samples collected included irrigation water, adjacent soils, and plant tissues (roots, shoots, and edible portions). High-resolution mass spectrometry (HRMS) and targeted analytical techniques were used to screen for over 2,900 chemicals (with 666 targeted chemicals), including pharmaceuticals and personal care products (PPCPs), pesticides, endocrine disrupting chemicals (EDCs), phthalates, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), and a range of industrial chemicals such as semi-volatile organic compounds (SVOCs).

There were 70 chemicals detected in water samples, most frequently at sites using recycled water. There were 34 pesticides detected in water samples along with, 5 PAHs, 8 PFAS, 17 PPCPs, 5 phthalates, and 1 SVOCs. There were 140 chemicals were detected in soil, including 2 EDCs, 28 PAHs, 2 PFAS, 4 PPCPs, 46 pesticides, 9 phthalates and 49 SVOCs. In plant samples, there were 93 chemicals detected, which included 1 EDC, 16 PAHs, 7 PFAS, 4 PPCPs, 36 pesticides, 5 phthalates, and 24 SVOCs.

2024 Study Overview

Building on the 2023 findings, the second stage in 2024 focused on two crops—broccoli (Class A water) and pasture (Class C water)—across six farms, including two reference farms. Sample collection was expanded for robustness, with 10 replicate samples of water, soil, and plant tissue per farm, alongside surface water sampling from nearby rivers to evaluate potential off-site transport.

Targeted chemical analysis focused on PPCPs, PFAS, pesticides, and selected industrial chemicals. Physicochemical parameters (pH, EC, nutrients, trace elements) were also measured, and plant health was evaluated using biomass and pigment (chlorophyll, carotenoids) content.

A total of 79 chemicals were detected in water samples, which included 1 EDC, 11 PAHs, 7 PFAS, 33 PPCPs, 12 pesticides, 3 phthalates, and 12 SVOCs. Only PFAS was analysed for in soil samples, with PFDA and PFOS being detected. Plant samples were analysed for PFAS and PPCPs, with 7 chemicals detected in plant tissues (carbamazepine, DEET, tramadol, tebuconazole, PFBA, PFBS, PFHxS).

Key Findings (2023 & 2024)

- Recycled water consistently contained a greater number and concentration of chemicals than reference water.
- Studies found limited evidence of emerging contaminants transferring into edible plant tissues.
- No impact of recycled water on crop health was observed. Differences in plant pigments and biomass appeared linked to crop maturity, not to irrigation source.
- Some pesticides were found in edible parts of the plants from the reference farms not using recycled water for irrigation, indicating on-farm sources (e.g. direct pesticide application).
- The reference farm irrigation water for broccoli contained PPCPs, suggesting other potential sources (e.g. river water).
- Concentrations of PFAS found in edible crops do not present an adverse risk to human health.
- Based on this study, recycled water can be used for crop irrigation, if the quality of the water is regularly monitored, and use managed appropriately.

• Ongoing monitoring and the inclusion of more crop types and locations are recommended to refine risk assessments and management strategies.

Project Background

Emerging contaminants include pharmaceuticals and personal care products (PPCPs), phthalates, pesticides, endocrine disrupting chemicals (EDCs) and per- and polyfluoroalkyl substances (PFAS). Using treated wastewater can discharge these contaminants into the environment.

It is important that recycled water scheme proponents and users take reasonable steps to manage the risk posed to human and environmental health from emerging contaminants. However, little is known about the impact to crops and soil from these chemicals in Victoria, nor in Australia more broadly.

The purpose of this project was to measure emerging contaminants in irrigation water, soil and crops in farms that rely on Class A and C water as a resource. Results from the farms were compared to those not using recycled water, as well as local ambient concentrations in nearby rivers.

The results presented here will help us to:

- Establish baseline concentrations of emerging contaminants in the agro-ecosystem (soil, plants, water) in Victoria.
- Understand whether emerging contaminants accumulate into edible crops irrigated with recycled water and present an adverse risk to human health.
- Improve state of knowledge and support the recycled water industry in meeting their GED requirements.

1.1 Aims

Here we present results from a field study conducted over 2023-2025 to better understand how recycled water impacts the chemical load of crops. Specifically, the study aimed to:

- (1) Understand whether recycled water use on farms contains emerging contaminants that may end up in soil or crops used for human (broccoli, lettuce) and animal (ryegrass) consumption
- (2) Compare farms using recycled water to those using other water sources, to understand the difference in emerging contaminants that may be present in recycled water.
- (3) To help farmers, regulators and the public understand the potential for emerging contaminants in recycled water to accumulate in crops and pasture.

1.2 Intended audience

This report is intended for a broad audience. It provides valuable insights for water authorities, academics, industry stakeholders, recycled water users and members of the community who want to understand the potential impacts of recycled water on agricultural systems and the environment.

Methods

2.1 2023 Sampling

For the 2023 campaign, seven farms were included in the study. For broccoli and ryegrass, two farms using recycled water were compared to one reference farm that did not use recycled water. One farm that uses recycled water for lettuce was also included. Farms were selected primarily based on their recycled water class (A or C) and crop type.

Pasture farms growing ryegrass (*Lolium perenne*) for cattle and sheep grazing were in central-northern Victoria. In this region, flood (border check) irrigation is common due to the low topography and prevalence of sodic soils with poor water retention (Agriculture Victoria 2023). Border check irrigation is a type of irrigation that distributes water via open irrigation channels to irrigation bays that are enclosed by earthen banks.

Market garden farms growing broccoli (*Brassica oleracea var. italica*) and iceberg lettuce (*Lactuca sativa var. capitata*) were in south-western Victoria. Recycled water has been used for market garden crop irrigation in this region since 2005 (Barker et al. 2011). Fixed sprinkler irrigation is common, and recycled water is shandled with river water to reduce salinity, improving the suitability of recycled water for growing market garden crops. A summary of each farm sampled is provided in **Table 1**.

Table 1. Summary of the seven farms sampled in Victoria in 2023.

Site ID	Crop type	Recycled water class	Irrigation type	Notes
F01	Ryegrass pasture	Class C	Flood	Recycled water only; cattle and sheep grazing.
F02	Ryegrass pasture	Class C	Flood	Recycled water shandy with dairy runoff; dairy cattle grazing.
F03	Ryegrass pasture	-	Flood	River water only; dairy cattle grazing.
F04	Broccoli	Class A - diluted	Fixed sprinkler	Recycled water shandy with river water.
F05	Broccoli	Class A - diluted	Fixed sprinkler	Recycled water shandy with river water.
F06	Broccoli	-	Fixed sprinkler	River water only
F07	Lettuce	Class A - diluted	Fixed sprinkler	Recycled water shandy with river water.

In April 2023, the main sampling of crops, soil and water was undertaken. Timing coincided with a period where irrigation water was necessary for crop growth. Water samples (n = 6 per recycled water farm, n = 4 per reference farm) were collected, using a stainless-steel sampling pole for channels and lagoons, or by holding bottles directly under the fixed sprinkler. Irrigation systems were flushed for 5 minutes prior to sampling. Amber glass and HDPE bottles were used. Standard preservatives (H_2SO_4) were either preadded or added using a micropipette once the bottle was filled to reduce the sample to pH 3 for analyte preservation.

For crops sampling, at harvest, loose soil was removed from around the crop to ease extraction. Roots were gently shaken to remove bulk soil particles and crop height measured. For each broccoli and lettuce sample, two adjacent plants were collected, one for chemicals analysis and one for AMR analysis. Whole

crop samples were stored in large LDPE bags. For ryegrass pasture, all grass plants within a 30 cm \times 30 cm area were collected from two adjacent plots and stored in two large LDPE bags.

Soil samples were collected from the soil surrounding the excavated crop. Soil 0 – 10 cm deep was mixed thoroughly using a stainless-steel trowel and sampled to represent the depth that crop roots had most contact with. Samples were stored in amber glass or HDPE jars. All samples were immediately packed on ice in sealed boxes for overnight transport to CSIRO for analysis.

2.2 2024 Sampling

Following the 2023 campaign, sampling was undertaken again in 2024 to build on findings. The second stage focussed on two crops – broccoli (Class A water) and pasture (Class C water), utilising the same farm locations, as well as sampling the nearby rivers to assess background levels or offsite transport.

A summary of the farms and rivers sampled in 2024 is provided in Table 2.

Table 2. Farms and surface water locations sampled in 2024.

Site ID	Crop type	Recycled water class	Irrigation type	Notes
F01	Ryegrass pasture	Class C	Flood	Recycled water only; cattle and sheep grazing.
F02	Ryegrass pasture	Class C	Flood	Recycled water shandy with dairy runoff; dairy cattle grazing.
F03	Ryegrass pasture	-	Flood	River water only; dairy cattle grazing.
F04	Broccoli	Class A - diluted	Fixed sprinkler	Recycled water shandy with river water.
F05	Broccoli	Class A - diluted	Fixed sprinkler	Recycled water shandy with river water.
F06	Broccoli	-	Fixed sprinkler	River water only
Goulburn River	-	-	-	-
Werribee River	-	-	-	-

Sample collection involved the same methods as 2023, with expanded sample sizes. A total of 10 samples each of water, soil and plant tissue were collected per farm, allowed for improved replication and robustness in the data. Only surface water samples were collected from the river locations. Following the same procedures undertaken in 2023, all samples were immediately packed on ice in sealed boxes for overnight transport to CSIRO for analysis.

2.3 High resolution mass spectrometry (HRMS) analysis

High resolution mass spectrometry (HRMS) is a non-target analytical technique that is used to screen the molecular masses of compounds present in a sample, which can then be compared to a pre-existing database to identify the presence of chemicals. It is a useful initial screening tool, as a means of guiding targeted, quantitative analysis. Because HRMS is not able to measure the exact concentrations of specific chemicals that may be present in a sample, targeted analysis using certified standards is still

needed. Initial screens using tools like HRMS analyses can make further chemical analysis more efficient through identifying chemicals that are likely to be present for quantification.

In both sampling years, non-target HRMS was used as an initial screening step. See Appendix B for specific details on how HRMS was conducted in this study.

2.4 Targeted quantitative analysis of emerging contaminants

Targeted quantitative analysis is a highly sensitive means of measuring the concentrations of emerging contaminants that may be present in a sample, which is essential for characterising the risk of chemicals in the environment.

In both 2023 and 2024, broad suites of emerging contaminants were targeted. These included EDCs, PPCPs, polycyclic aromatic hydrocarbons (PAHs), PFAS, phthalates, a range of pesticides including herbicides, insecticides and fungicides, as well as a suite of semi-volatile organic compounds (SVOCs). A range of naturally occurring chemicals (associated with plant and soil processes) was also detected, these results are available in Appendix B.

- In 2023, a total of 666 emerging contaminants were targeted.
- In 2024, a total of 694 emerging contaminants were targeted.

Table 3 outlines the groups of emerging contaminants that were analysed for in each year.

T 1 1 0 F		1 10 .		1 1
Table 3. Emerging con	taminant arouns	analysed for in ea	ach vear r	ov sample type

Year	Sample type	Analyte groups								
reur	Sumple type	EDCs	PAHs	PFAS	PPCPs	Pesticides	Phthalates	SVOCs		
	Irrigation water	V			$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$			
2023	Soil	V	$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	$\overline{\checkmark}$			$\overline{\mathbf{V}}$		
	Plant	V	V	$\overline{\mathbf{A}}$	$\overline{\checkmark}$			V		
	Irrigation water	V	$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	$\overline{\checkmark}$			$\overline{\checkmark}$		
0004	River water	V	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$		
2024	Soil	×	×	$\overline{\mathbf{A}}$	×	×	×	×		
	Plant	×	×	$\overline{\mathbf{A}}$	$\overline{\checkmark}$	×	×	×		

Further explanation of methods for extraction and analysis are in the detailed CSIRO reports included in Appendix B.

Results

Results for each sampling year are summarised below, by emerging contaminant group. See Appendix A for overall summary statistics of emerging contaminant groups detected at each site in each sampling year. Summary results for SVOCs can be found in Appendix A.

3.1 HRMS analysis results

In 2023, the HRMS screen was only conducted on water samples, resulting in six chemicals found that were not detected using the targeted analysis. These were pesticides atrazine deisopropyl and haloxyfop, and PPCPs fexofenadine, gabapentin, ibuprofen, and tolazoline.

In 2024, HRMS analysis found 46 chemicals in pasture irrigation water, and 51 chemicals in broccoli irrigation water. These included 34 PPCPs, 26 pesticides and their metabolites, 12 SVOCs and 5

Recycled water use in irrigated crops 2023-2025

chemicals of natural origin. Of the emerging contaminants identified in recycled water that were not of a natural origin, 2 chemicals were identified in pasture shoots and 8 chemicals were identified in broccoli florets, with most of these chemicals being pesticides. Principal components analysis (PCA) found that there was a difference in the chemical composition of water between the recycled water sites and reference sites, indicating recycled water is a source of emerging contaminants.

For detailed HRMS analysis results, see CSIRO reports in Appendix B.

3.2 Targeted quantitative analysis results

3.2.1 EDCs

In 2023, EDCs were only detected in soil and broccoli samples, but not water samples. EDCs were detected in soil at all pasture sites and one broccoli site (Figure 1), and mean concentrations were highest at the pasture reference site F3 (mean \pm SD = 0.29 \pm 1.15 μ g/kg). Progesterone and tert-octyl-phenol were the only two EDCs that were detected in soil, with the highest concentration detected for tert-octyl-phenol (6 μ g/kg). For plant samples, EDCs were detected only at broccoli sites F4 and F5 (Figure 1), with the highest mean concentration detected in broccoli florets at site F4 (3.0 \pm 26.83 μ g/kg). tert-octyl-phenol was the only EDC detected in plant samples, with the highest concentration detected at 240 μ g/kg.

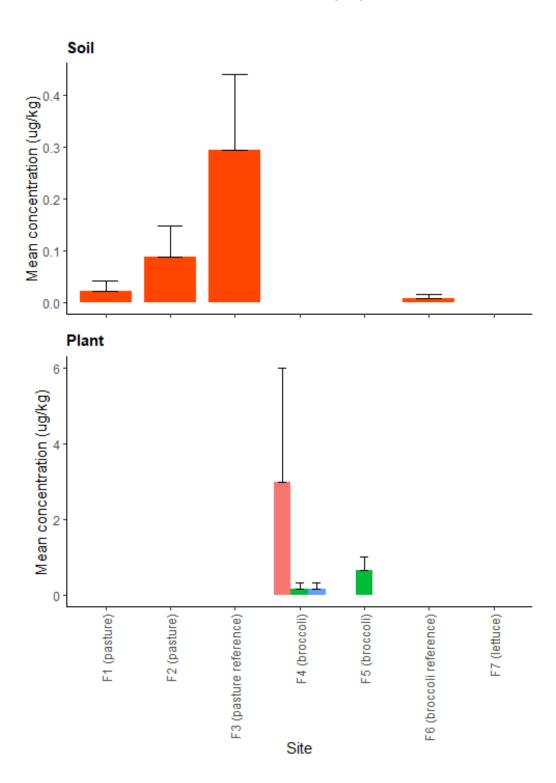


Figure 1. Mean concentrations of endocrine disrupting chemicals (EDCs) detected in soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates for sites F1, F2, F4, F5, F7, and 4 replicates for reference sites F3 and F6.

In 2024, EDCs were only analysed for in water and not soil or plant samples. In water samples, mean concentrations were highest in the Goulburn River samples (mean \pm SD = 0.0047 \pm 0.020 μ g/L), and at pasture reference site F3 (0.0044 \pm 0.018 μ g/L) (Figure 2). EDCs were not detected at any of the broccoli farm sites (Figure 2). The only EDC detected in all water samples was Bisphenol A with the highest concentration detected at 0.1 μ g/L.

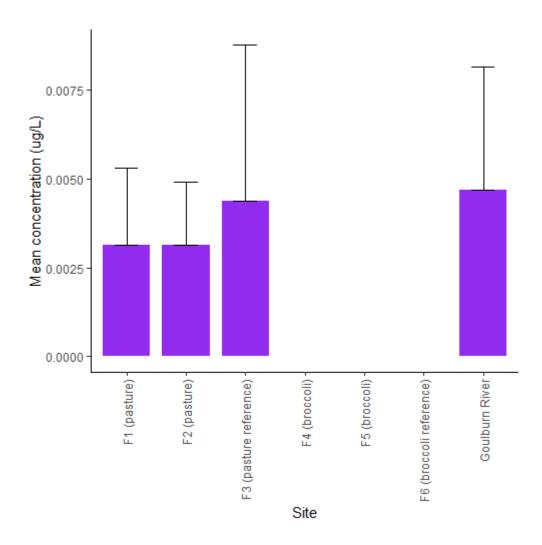


Figure 2. Mean concentrations of endocrine disrupting chemicals (EDCs) detected in irrigation and river water samples at each site in 2024, including standard error bars. n = 10 replicates for sites F1-F6 and 2 replicates for Goulburn River.

3.2.2 PAHs

In 2023, PAHs were detected in water, soil and broccoli samples. Mean PAH concentrations were highest at pasture site F1 (mean \pm SD = 0.0047 \pm 0.031 μ g/L) for water samples, at pasture reference site F3 for soil samples (8.83 \pm 16.73 μ g/kg), and in the shoots of broccoli plants at site F5 for plant samples (21.32 \pm 89.41 μ g/kg) (Figure 3). Furthermore, where detected in broccoli plants, mean PAH concentrations were consistently highest in the shoots, followed by the florets, then the roots. The highest PAH concentrations were for C2 alkyl napthalenes (0.36 μ g/L) in water, dibenz(a,h)anthracene (120 μ g/kg) followed by naphthalene (110 μ g/kg) in soil, and naphthalene (760 μ g/kg) in the shoots of broccoli plants at site F5.

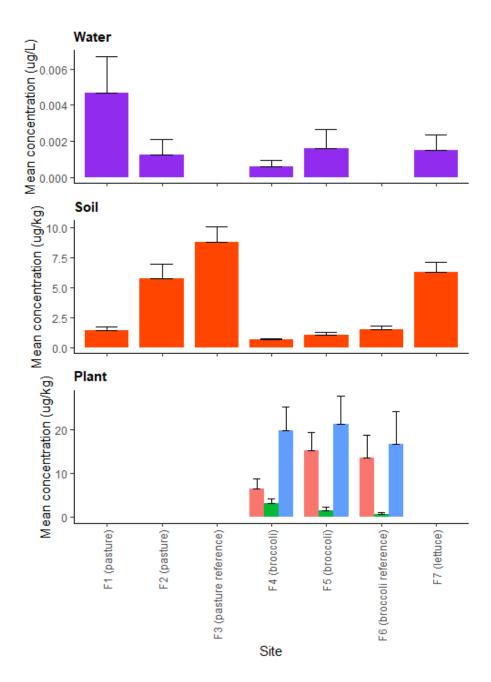


Figure 3. Mean concentrations of polycyclic aromatic hydrocarbons (PAHs) detected in irrigation water, soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates per sample type for sites F1, F2, F4, F5, F7, and 4 replicates per sample type for reference sites F3 and F6. For plant samples: red = florets, green = roots, and blue = shoots.

In 2024, PAHs were only analysed in water, and not soil or plant samples. In water samples, PAHs were detected at all sites (Figure 4), and mean concentrations were highest at pasture site F2 (mean \pm SD = 0.014 \pm 0.042 μ g/L). PAHs with the highest concentrations were C3- and C1 alkyl fluorenes (0.19 μ g/L) followed by C2 alkyl fluorenes (0.17 μ g/L).

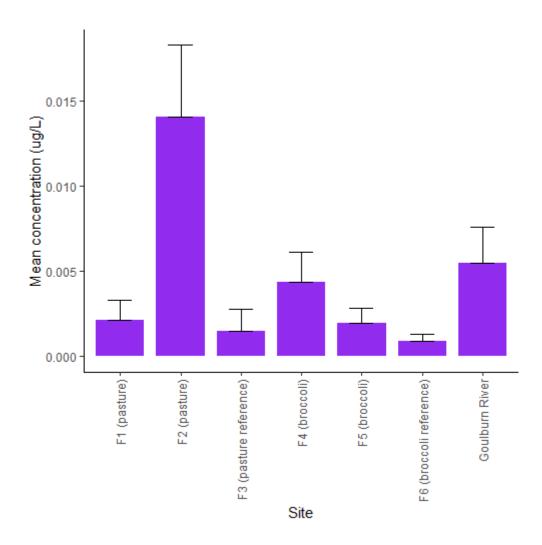


Figure 4. Mean concentrations of polycyclic aromatic hydrocarbons (PAHs) detected in irrigation and river water samples at each site in 2024, including standard error bars. n = 10 replicates for sites F1-F6 and 2 replicates for Goulburn River.

Interestingly, even though the highest PAH concentration detected in plants was in broccoli from site F5 in 2023, on average, PAH concentrations in broccoli were similar across all sites for that year, including the reference site. Additionally, although PAHs were detected in soil in 2023 at all pasture sites, no PAHs were detected in pasture plant samples. Overall, trends of PAHs in irrigation water did not appear to correlate with trends of PAHs in soil and plants.

3.2.3 PFAS

In 2023, PFAS were detected in water, soil, pasture, broccoli and lettuce samples. Mean PFAS concentrations were highest at pasture site F1 for water samples (mean \pm SD = 0.0053 \pm 0.011 μ g/L) and for soil samples (0.41 \pm 1.73 μ g/kg) (Figure 5). However, for plant samples, mean PFAS concentrations were highest at site F5, in the shoots of broccoli plants (2.96 \pm 16.74 μ g/kg) (Figure 5). The highest PFAS concentrations were for PFHxA (0.041 μ g/L) and PFOA (0.035 μ g/L) in water, PFOA (10.6 μ g/kg) and PFOS (8.46 μ g/kg) in soil, and PFBS in the shoots of broccoli, lettuce, and pasture samples (154, 64, 41 μ g/kg respectively).

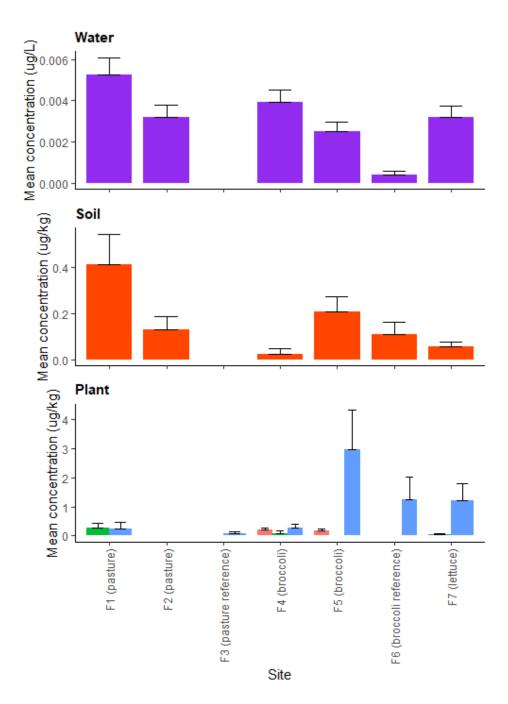


Figure 5. Mean concentrations of per- and polyfluoroalkyl substances (PFAS) detected in irrigation water, soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates per sample type for sites F1, F2, F4, F5, F7, and 4 replicates per sample type for reference sites F3 and F6. For plant samples: red = florets, green = roots, and blue = shoots.

In 2024, PFAS were detected in water, soil and plant samples. In water samples, PFAS were detected at all sites except for pasture reference site F3 (Figure 6), and mean concentrations were highest at pasture site F2 (mean \pm SD = 0.00086 \pm 0.0023 μ g/L). In soil samples, PFAS were also detected at all sites except for pasture reference site F3 (Figure 6), and mean concentrations were highest at pasture site F1 (0.28 \pm 1.43 μ g/kg). In plant samples, PFAS were detected at all sites except for pasture site F1 (Figure 6), and mean concentrations were highest in the root samples at pasture site F2 (0.25 \pm 3.10 μ g/kg).

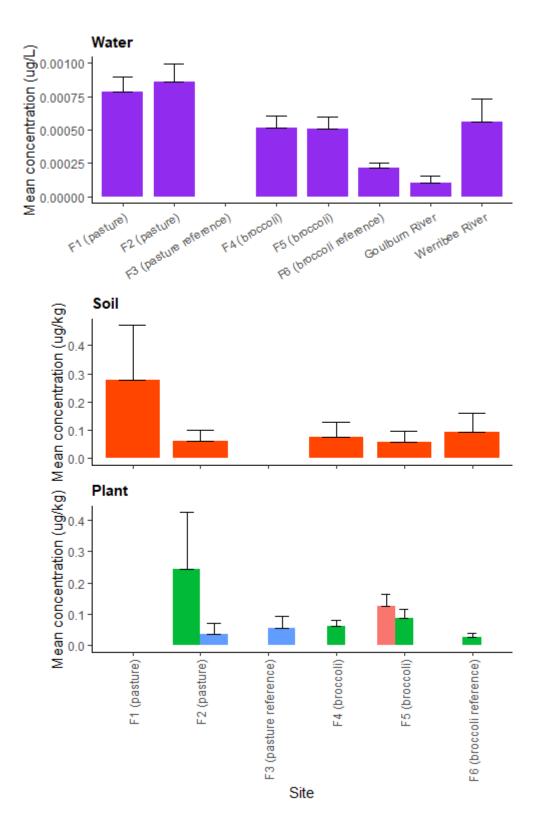


Figure 6. Mean concentrations of per- and polyfluoroalkyl substances (PFAS) detected in irrigation and river water, soil and plant samples at each site in 2024, including standard error bars. For water samples: n = 10 replicates for sites F1-F6, 2 replicates for Goulburn River, 4 replicates for Werribee River. For soil samples: n = 2 replicates for all sites. For plant samples: n = 10 replicates per sample type; red = florets, green = roots, and blue = shoots.

Distribution of PFAS at pasture farms

The 2023 sampling round identified that:

- PFDA (0.008 0.014 μ g/L), PFHpA (0.008 0.014 μ g/L), PFHxA (0.017 0.041 μ g/L), PFNA (0.008 μ g/L), and PFUdA (0.009 0.013 μ g/L) were detected in water, but not in soil or pasture samples.
- PFHxS was detected in water (0.011 0.027 μ g/L), and in roots (2.5 μ g/kg), but not in soil or pasture shoots.
- PFOA was detected in water (0.014 0.0035 μ g/L), soil (5.62 10.6 μ g/kg), and roots (15.5 21.4 μ g/kg), but not pasture shoots.
- PFOS was detected in water (0.013 0.026 μ g/L), soil (1.76 8.46 μ g/kg), and roots (4.57 5.37 μ g/kg), but not pasture shoots.
- PFBA was detected in pasture shoots in one instance (9.6 μg/kg), and PFBS was detected in pasture shoots in one instance (41 μg/kg), but neither were detected in roots.

The 2024 sampling round identified that:

- PFOA (0.0048 0.0087 μ g/L) and PFNA (0.0012 0.0033 μ g/L) were detected in water but not detected in soil, root or shoots.
- PFDA was detected in water (0.0014 0.0038 μ g/L) and in soil (0.56 0.57 μ g/kg), but not in pasture roots or shoots.
- PFHxS was detected in water (0.0040 0.0072 μ g/L) and in pasture shoots (5.83 10.58 μ g/kg) and roots (2.85 51.69 μ g/kg), but not in soil.
- PFOS was detected in water (0.0059 0.011 μ g/L) and soil (1.18 9.28 μ g/kg), but not in roots or shoots of pasture.

Distribution of PFAS at broccoli and lettuce farms

The 2023 sampling round identified that:

- PFDA (0.009 0.01 μ g/L), PFHpA (0.006 0.019 μ g/L), PFHxS (0.012 0.02 μ g/L), and PFNA (0.008 0.009 μ g/L) were detected in water, but not in soil, broccoli or lettuce samples.
- PFHxA was detected in water (0.013 0.025 μ g/L) and in one instance in broccoli shoots (4.37 μ g/kg), but not in soil or other plant samples.
- PFOS was detected in water (0.012 0.028 $\mu g/L$) and soil (1.76 4.24 $\mu g/kg$), but not in plant samples.
- PFOA was detected in water (0.01 0.028 μ g/L), soil (3.89 5.25 μ g/kg) and in one instance in broccoli roots (15.5 μ g/kg).
- PFBA was detected in broccoli florets (3.79 6.7 μ g/kg) and broccoli shoots (4.94 9.94 μ g/kg), and in lettuce shoots (6.22 8.03 μ g/kg) and lettuce roots (3.20 3.23 μ g/kg), but not in water or soil.
- PFBS was detected only in broccoli shoots (41 154 μ g/kg) and lettuce shoots (47 64 μ g/kg), and PFPeA was detected only in broccoli shoots (14.4 19.4 μ g/kg), and lettuce shoots (12.23 μ g/kg).

The 2024 sampling round identified that:

- PFBA was detected in water (0.0079 0.0091 μ g/L) at multiple sites, and in broccoli florets at one site (2.43 4.45 μ g/kg).
- PFOA (0.0010 0.0030 μ g/L) and PFHxS (0.0033 0.0047 μ g/L) were detected in water, but not in soil or broccoli plants.

- PFOS was detected in water (0.0019 0.0060 μ g/L) including at the reference site, and in soil (1.45 2.64 μ g/kg) but not in broccoli plants.
- PFBS was detected in water only at the reference site (0.0017 0.0022 μ g/L), and in broccoli roots at all sites (0.75 3.31 μ g/kg).

3.2.4 PPCPs

In 2023, PPCPs were detected in water, soil, pasture, broccoli and lettuce samples. Mean PPCP concentrations were highest at broccoli site F4 for water samples (mean \pm SD = 0.0036 \pm 0.014 μ g/L), at pasture site F2 for soil samples (0.25 \pm 4.22 μ g/kg), and in the shoots of broccoli plants at site F4 (0.081 \pm 1.06 μ g/kg) (Figure 7). The highest PPCP concentrations were for caffeine (0.61 μ g/L) and benzotriazole (0.14 μ g/L) in water, ketoprofen (84 μ g/kg) and methyl paraben (40 μ g/kg) in soil, and methyl paraben in the roots of broccoli (18 μ g/kg) and telmisartan in the shoots of broccoli (15.8 μ g/kg).

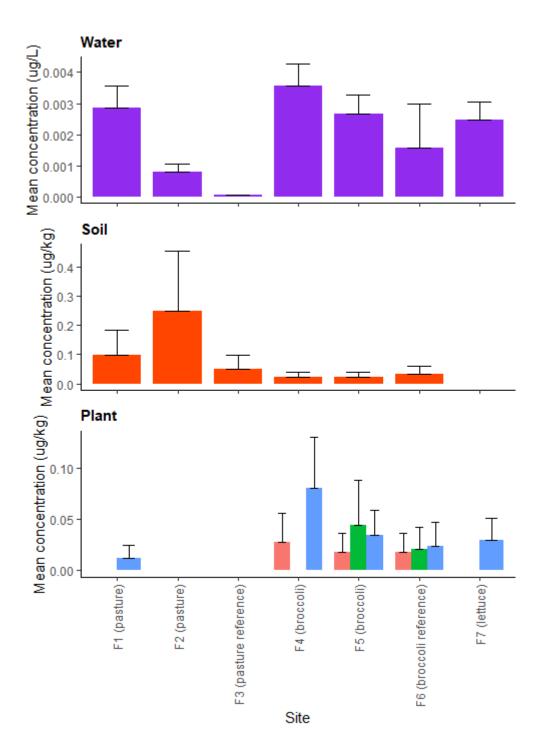


Figure 7. Mean concentrations of pharmaceuticals and personal care products (PPCPs) detected in irrigation water, soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates per sample type for sites F1, F2, F4, F5, F7, and 4 replicates per sample type for reference sites F3 and F6. For plant samples: red = florets, green = roots, and blue = shoots.

In 2024, PPCPs were only analysed in water and plant samples. In water samples, PPCPs were detected at all sites (Figure 8), and mean concentrations were highest at pasture site F1 (mean \pm SD = 0.055 \pm 0.22 μ g/L). In plant samples, PPCPs were detected at all pasture sites including the reference site, with the highest mean concentration detected in pasture shoots at site F1 (0.040 \pm 0.18 μ g/kg). PPCPs with the highest concentrations in water were benzotriazole (2.83 μ g/L) followed by lamotrigine (2.7 μ g/L), and

PPCPs with the highest concentrations in plants were carbamazepine (3.11 μ g/kg) followed by DEET (1.21 μ g/kg).

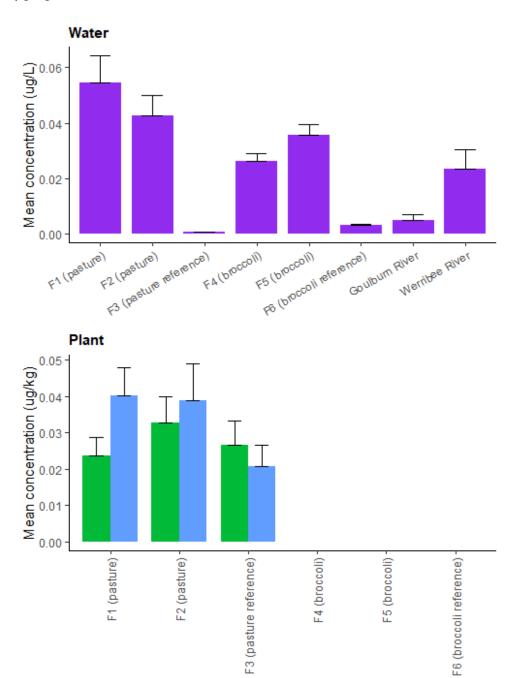


Figure 8. Mean concentrations of pharmaceuticals and personal care products (PPCPs) detected in irrigation and river water, and plant samples at each site in 2024, including standard error bars. For water samples: n = 10 replicates for sites F1-F6, 2 replicates for Goulburn River, 4 replicates for Werribee River. For plant samples: n = 10 replicates per sample type; red = florets, green = roots, and blue = shoots.

Site

3.2.5 Pesticides

In 2023, pesticides were detected in water, soil, pasture, broccoli and lettuce samples. Mean pesticide concentrations were highest at pasture site F1 for water samples (mean \pm SD = 0.0063 \pm 0.11 μ g/L), at broccoli site F5 for soil samples (2.92 \pm 30.65 μ g/kg), and in the shoots of broccoli plants at reference site F6 (41.07 \pm 520.62 μ g/kg) (Figure 9). The highest pesticide concentrations were for thiabendazole (2.5 μ g/L) and sulfometuron methyl (1.9 μ g/L) in water, prometryn (1100 μ g/kg) and pendimethalin (740 μ g/kg) in soil, and imidacloprid in the roots of lettuce plants (19000 μ g/kg).

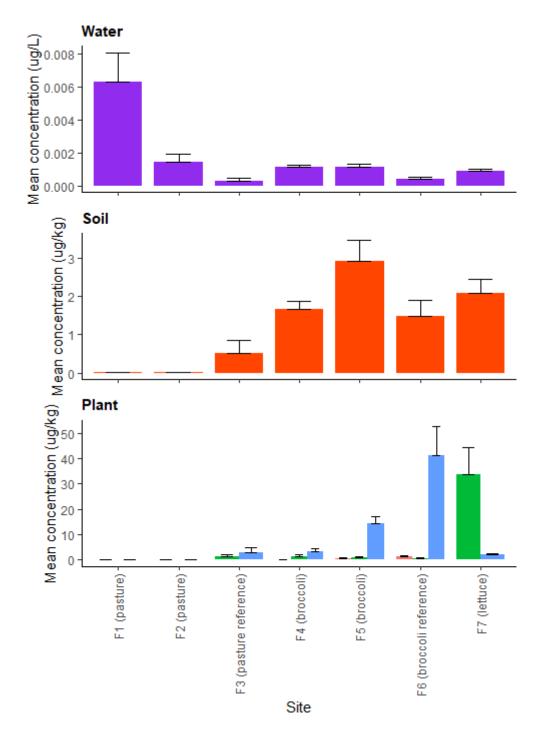


Figure 9. Mean concentrations of pesticides detected in irrigation water, soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates per sample type for sites F1, F2, F4, F5, F7, and 4 replicates per sample type for reference sites F3 and F6. For plant samples: red = florets, green = roots, and blue = shoots.

EPAVICTORIA

In 2024, pesticides were only analysed for in water samples. In water samples, pesticides were detected at all sites (Figure 10), with the highest mean concentration detected at broccoli site F5 (mean \pm SD = 0.0023 \pm 0.020 μ g/L), followed by broccoli site F4 (0.0017 \pm 0.015 μ g/L). The highest concentrations of pesticides detected were for propyzamide (0.28 μ g/L) and simazine (0.18 μ g/L).

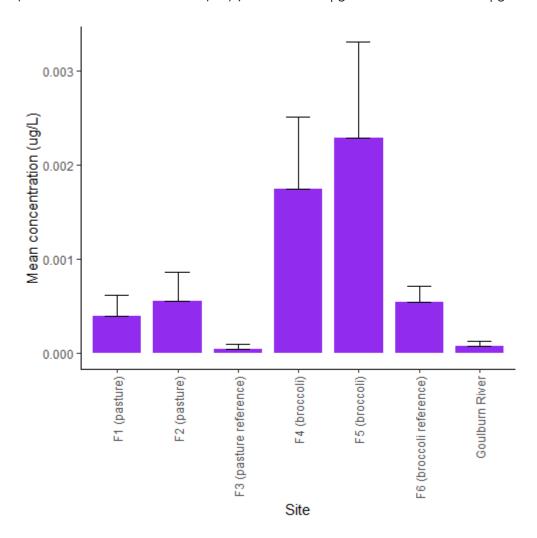


Figure 10. Mean concentrations of pesticides detected in irrigation and river water samples at each site in 2024, including standard error bars. n = 10 replicates for sites F1-F6 and 2 replicates for Goulburn River.

3.2.6 Phthalates

In 2023, phthalates were detected in water, soil, pasture, broccoli and lettuce samples. Mean phthalate concentrations were highest at pasture site F2 for both water samples (mean \pm SD = 0.022 \pm 0.098 μ g/L) and soil samples (12.17 \pm 25.99 μ g/kg), and in the roots of lettuce plants at site F7 (232.47 \pm 881.90 μ g/kg) (Figure 11). The highest phthalate concentrations were for di-n-pentyl phthalate (DnPP; 0.55 μ g/L) and dibutyl phthalate (DBP; 0.2 μ g/L) in water, di-(2-ethylbutyl) phthalate (170 μ g/kg) and di-ethylhexyl phthalate (DEHP; 71 μ g/kg) in soil, and DBP in the roots of lettuce plants (6100 μ g/kg) and DEHP in the shoots of broccoli plants (6000 μ g/kg).

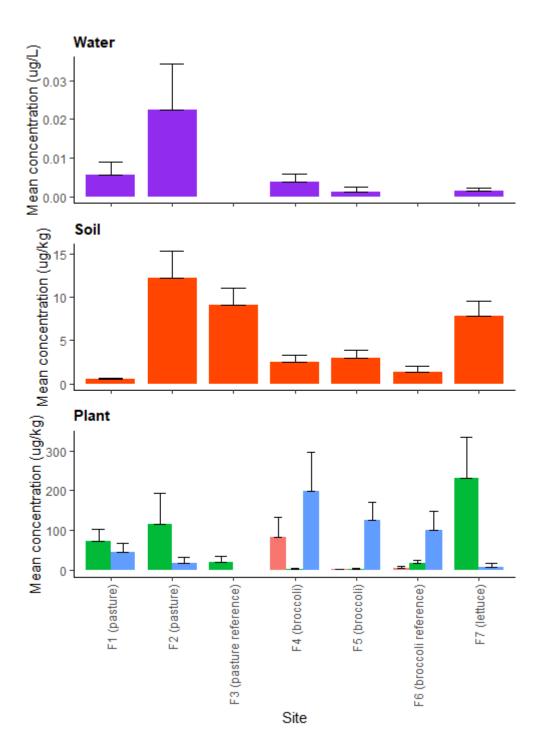


Figure 11. Mean concentrations of phthalates detected in irrigation water, soil and plant samples at each site in 2023, including standard error bars. n = 6 replicates per sample type for sites F1, F2, F4, F5, F7, and 4 replicates per sample type for reference sites F3 and F6. For plant samples: red = florets, green = roots, and blue = shoots.

In 2024, phthalates were only analysed for in water samples. Phthalates were detected at all sites in water samples (Figure 12), with the highest mean concentration detected in the Goulburn River sample (mean \pm SD = 0.030 \pm 0.067 μ g/L), followed by pasture site F2 (0.020 \pm 0.046 μ g/L). The highest concentrations of phthalates detected were for DEHP (0.26 μ g/L) and DBP (0.19 μ g/L).

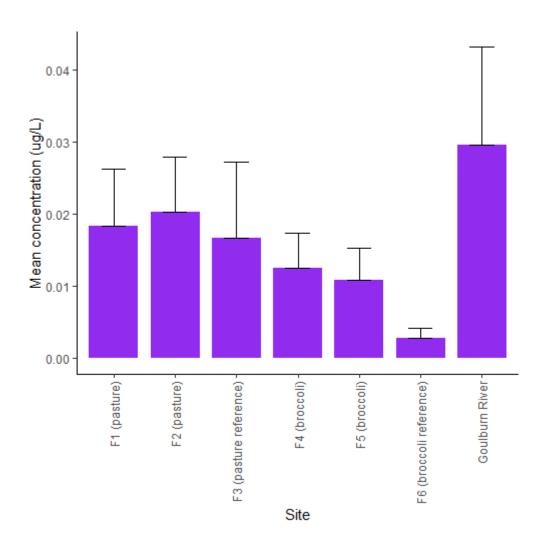


Figure 12. Mean concentrations of phthalates detected in irrigation and river water samples at each site in 2024, including standard error bars. n = 10 replicates for sites F1-F6 and 2 replicates for Goulburn River.

Conclusions and key findings

This study found that the chemical composition of recycled water used for crop irrigation was distinct from water used on the reference sites (i.e., non-recycled water sources). Consistently, across the different chemical groups, concentrations were higher in irrigation water at recycled water sites compared to reference sites. However, this trend seen in irrigation water was not as apparent in the chemical composition of soil and crops between recycled water and reference sites, indicating that there may be other site-specific sources of chemicals, such as on-farm practices. Additionally, there was limited transfer from water and soil to plant tissues for the chemicals detected.

Some variability in trends were seen between the 2023 and 2024 sampling rounds, with some chemicals being detected in one year but not the other. This could be due to the concentrations of many chemicals being close to the detection limit, differences in the limits of reporting between years, and the inherent variability in chemical concentrations in water, soil and crops across time. Several factors and uncertainties that may have also contributed to the variability of chemical concentrations between years and across sites include, the level of dilution of recycled water with other sources of water before irrigation (shandying), and the on-site application of chemicals.

Based on human health risk assessment, concentrations of PFBS detected in lettuce and broccoli samples do not present an adverse risk to human health, even for people consuming large amounts of leafy vegetables (P90 consumers). The limit of reporting used in this study (3 μ g/kg) is protective of human health for PFOA, PFHxS and PFBS, and likely to be protective of human health for PFOS. Concentrations of PFAS found in crops in this study do not present an adverse risk to human health.

Overall, our key findings for this study were:

- Recycled water consistently contained a greater number and concentration of contaminants than reference water.
- Studies found limited evidence of emerging contaminants transferring into edible plant tissues.
- No impact of recycled water on crop health was observed. Differences in plant pigments and biomass appeared linked to crop maturity, not to irrigation source.
- Some pesticides were found in edible parts of the plants from the reference farms not using recycled water for irrigation, indicating on-farm sources (e.g. direct pesticide application).
- The reference farm irrigation water for broccoli contained PPCPs, suggesting other potential sources (e.g. river water).
- Concentrations of PFAS found in edible crops do not present an adverse risk to human health.
- Based on this study, recycled water can be used for crop irrigation, if the quality of the water is regularly monitored, and use managed appropriately.
- Ongoing monitoring and the inclusion of more crop types and locations are recommended to refine risk assessments and management strategies.

References

ANZG. (2024). *Toxicant default guideline values for protecting aquatic ecosystems*. Australian and New Zealand governments, and Australian state and territory governments.

(https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/search/master-table)

Barker F., Faggian R., Hamilton AJ. (2011). A history of wastewater irrigation in Melbourne, Australia. *Journal of Water Sustainability* 1, 183-202.

HEPA. (2025). *PFAS National Environmental Management Plan Version 3.0*. Heads of EPA Australia and New Zealand 2025.

Appendix A – Data summary tables

Table S1. Summary statistics for groups of emerging contaminants detected in water samples at each site. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

Year	Analyte group	Site	Min (μg/L)	Mean (μg/L)	SD (μg/L)	Max (μg/L)	Total sample size	Detections sample size
2023	EDCs	F1 (pasture)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>63</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>63</td><td>0</td></lor<>	63	0
		F2 (pasture)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>54</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>54</td><td>0</td></lor<>	54	0
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>45</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>45</td><td>0</td></lor<>	45	0
		F4 (broccoli)	<lor< td=""><td>Ο</td><td>0</td><td><lor< td=""><td>63</td><td>0</td></lor<></td></lor<>	Ο	0	<lor< td=""><td>63</td><td>0</td></lor<>	63	0
		F5 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>54</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>54</td><td>0</td></lor<>	54	0
		F6 (broccoli reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>81</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>81</td><td>0</td></lor<>	81	0
		F7 (lettuce)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>63</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>63</td><td>0</td></lor<>	63	0
	PAHs	F1 (pasture)	<lor< td=""><td>0.0047</td><td>0.031</td><td>0.36</td><td>231</td><td>9</td></lor<>	0.0047	0.031	0.36	231	9
		F2 (pasture)	<lor< td=""><td>0.0013</td><td>0.012</td><td>0.12</td><td>198</td><td>3</td></lor<>	0.0013	0.012	0.12	198	3
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>165</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>165</td><td>0</td></lor<>	165	0
		F4 (broccoli)	<lor< td=""><td>0.00061</td><td>0.0048</td><td>0.05</td><td>231</td><td>4</td></lor<>	0.00061	0.0048	0.05	231	4
		F5 (broccoli)	<lor< td=""><td>0.0016</td><td>0.015</td><td>0.19</td><td>198</td><td>4</td></lor<>	0.0016	0.015	0.19	198	4
		F6 (broccoli reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>231</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>231</td><td>0</td></lor<>	231	0
		F7 (lettuce)	<lor< td=""><td>0.0015</td><td>0.013</td><td>0.13</td><td>231</td><td>5</td></lor<>	0.0015	0.013	0.13	231	5
	Pesticides	F1 (pasture)	<lor< td=""><td>0.0063</td><td>0.11</td><td>2.5</td><td>3584</td><td>47</td></lor<>	0.0063	0.11	2.5	3584	47
		F2 (pasture)	<lor< td=""><td>0.0014</td><td>0.027</td><td>0.83</td><td>3072</td><td>36</td></lor<>	0.0014	0.027	0.83	3072	36
		F3 (pasture reference)	<lor< td=""><td>0.00030</td><td>0.0073</td><td>0.27</td><td>2560</td><td>5</td></lor<>	0.00030	0.0073	0.27	2560	5
		F4 (broccoli)	<lor< td=""><td>0.0011</td><td>0.0093</td><td>0.19</td><td>3584</td><td>102</td></lor<>	0.0011	0.0093	0.19	3584	102
		F5 (broccoli)	<lor< td=""><td>0.0011</td><td>0.011</td><td>0.24</td><td>3072</td><td>90</td></lor<>	0.0011	0.011	0.24	3072	90
		F6 (broccoli reference)	<lor< td=""><td>0.00038</td><td>0.0075</td><td>0.25</td><td>3624</td><td>26</td></lor<>	0.00038	0.0075	0.25	3624	26
		F7 (lettuce)	<lor< td=""><td>0.00087</td><td>0.010</td><td>0.28</td><td>3584</td><td>48</td></lor<>	0.00087	0.010	0.28	3584	48
	PFAS	F1 (pasture)	<lor< td=""><td>0.0053</td><td>0.011</td><td>0.037</td><td>175</td><td>38</td></lor<>	0.0053	0.011	0.037	175	38
		F2 (pasture)	<lor< td=""><td>0.0032</td><td>0.0076</td><td>0.041</td><td>150</td><td>27</td></lor<>	0.0032	0.0076	0.041	150	27
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>125</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>125</td><td>0</td></lor<>	125	0
		F4 (broccoli)	<lor< td=""><td>0.0039</td><td>0.0076</td><td>0.028</td><td>175</td><td>43</td></lor<>	0.0039	0.0076	0.028	175	43
		F5 (broccoli)	<lor< td=""><td>0.0025</td><td>0.0053</td><td>0.016</td><td>150</td><td>29</td></lor<>	0.0025	0.0053	0.016	150	29
		F6 (broccoli reference)	<lor< td=""><td>0.00038</td><td>0.0021</td><td>0.014</td><td>125</td><td>4</td></lor<>	0.00038	0.0021	0.014	125	4
		F7 (lettuce)	<lor< td=""><td>0.0032</td><td>0.0068</td><td>0.028</td><td>175</td><td>36</td></lor<>	0.0032	0.0068	0.028	175	36
	Phthalates	F1 (pasture)	<lor< td=""><td>0.0056</td><td>0.030</td><td>0.2</td><td>77</td><td>3</td></lor<>	0.0056	0.030	0.2	77	3
		F2 (pasture)	<lor< td=""><td>0.022</td><td>0.098</td><td>0.55</td><td>66</td><td>6</td></lor<>	0.022	0.098	0.55	66	6
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>55</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>55</td><td>0</td></lor<>	55	0
		F4 (broccoli)	<lor< td=""><td>0.0039</td><td>0.018</td><td>0.1</td><td>77</td><td>4</td></lor<>	0.0039	0.018	0.1	77	4

Recycled water use in irrigated crops 2023-2025

		F5 (broccoli)	<lor< td=""><td>0.0012</td><td>0.0098</td><td>0.08</td><td>66</td><td>1</td></lor<>	0.0012	0.0098	0.08	66	1
		F6 (broccoli reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>77</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>77</td><td>0</td></lor<>	77	0
		F7 (lettuce)	<lor< td=""><td>0.0014</td><td>0.0064</td><td>0.04</td><td>77</td><td>4</td></lor<>	0.0014	0.0064	0.04	77	4
	PPCPs	F1 (pasture)	<lor< td=""><td>0.0029</td><td>0.014</td><td>0.142</td><td>385</td><td>33</td></lor<>	0.0029	0.014	0.142	385	33
		F2 (pasture)	<lor< td=""><td>0.00080</td><td>0.0044</td><td>0.044</td><td>330</td><td>15</td></lor<>	0.00080	0.0044	0.044	330	15
		F3 (pasture reference)	<lor< td=""><td>0.000040</td><td>0.00047</td><td>0.006</td><td>275</td><td>2</td></lor<>	0.000040	0.00047	0.006	275	2
		F4 (broccoli)	<lor< td=""><td>0.0036</td><td>0.014</td><td>0.129</td><td>385</td><td>44</td></lor<>	0.0036	0.014	0.129	385	44
		F5 (broccoli)	<lor< td=""><td>0.0026</td><td>0.012</td><td>0.124</td><td>330</td><td>36</td></lor<>	0.0026	0.012	0.124	330	36
		F6 (broccoli reference)	<lor< td=""><td>0.0016</td><td>0.029</td><td>0.61</td><td>433</td><td>6</td></lor<>	0.0016	0.029	0.61	433	6
		F7 (lettuce)	<lor< td=""><td>0.0025</td><td>0.012</td><td>0.118</td><td>385</td><td>38</td></lor<>	0.0025	0.012	0.118	385	38
	SVOCs	F1 (pasture)	<lor< td=""><td>0.000045</td><td>0.0015</td><td>0.06</td><td>1785</td><td>2</td></lor<>	0.000045	0.0015	0.06	1785	2
		F2 (pasture)	<lor< td=""><td>0.000013</td><td>0.00051</td><td>0.02</td><td>1530</td><td>1</td></lor<>	0.000013	0.00051	0.02	1530	1
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1275</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1275</td><td>0</td></lor<>	1275	0
		F4 (broccoli)	<lor< td=""><td>0.000022</td><td>0.00067</td><td>0.02</td><td>1785</td><td>2</td></lor<>	0.000022	0.00067	0.02	1785	2
		F5 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1530</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1530</td><td>0</td></lor<>	1530	0
		F6 (broccoli reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1785</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1785</td><td>0</td></lor<>	1785	0
		F7 (lettuce)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1785</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1785</td><td>0</td></lor<>	1785	0
2024	EDCs	F1 (pasture)	<lor< td=""><td>0.0031</td><td>0.012</td><td>0.05</td><td>32</td><td>2</td></lor<>	0.0031	0.012	0.05	32	2
		F2 (pasture)	<lor< td=""><td>0.0031</td><td>0.012</td><td>0.06</td><td>48</td><td>3</td></lor<>	0.0031	0.012	0.06	48	3
		F3 (pasture reference)	<lor< td=""><td>0.0044</td><td>0.018</td><td>0.07</td><td>16</td><td>1</td></lor<>	0.0044	0.018	0.07	16	1
		F4 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>32</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>32</td><td>0</td></lor<>	32	0
		F5 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>32</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>32</td><td>0</td></lor<>	32	0
		F6 (broccoli reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>48</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>48</td><td>0</td></lor<>	48	0
		Goulburn River	<lor< td=""><td>0.0047</td><td>0.020</td><td>0.1</td><td>32</td><td>2</td></lor<>	0.0047	0.020	0.1	32	2
		Werribee River	-	-	-	-	0	-
	PAHs	F1 (pasture)	<lor< td=""><td>0.0021</td><td>0.0098</td><td>0.06</td><td>66</td><td>4</td></lor<>	0.0021	0.0098	0.06	66	4
		F2 (pasture)	<lor< td=""><td>0.014</td><td>0.042</td><td>0.19</td><td>99</td><td>19</td></lor<>	0.014	0.042	0.19	99	19
		F3 (pasture reference)	<lor< td=""><td>0.0015</td><td>0.0071</td><td>0.04</td><td>33</td><td>2</td></lor<>	0.0015	0.0071	0.04	33	2
		F4 (broccoli)	<lor< td=""><td>0.0044</td><td>0.014</td><td>0.09</td><td>66</td><td>11</td></lor<>	0.0044	0.014	0.09	66	11
		F5 (broccoli)	<lor< td=""><td>0.0020</td><td>0.0071</td><td>0.04</td><td>66</td><td>6</td></lor<>	0.0020	0.0071	0.04	66	6
		F6 (broccoli reference)	<lor< td=""><td>0.00091</td><td>0.0038</td><td>0.02</td><td>99</td><td>6</td></lor<>	0.00091	0.0038	0.02	99	6
		Goulburn River	<lor< td=""><td>0.0055</td><td>0.017</td><td>0.11</td><td>66</td><td>9</td></lor<>	0.0055	0.017	0.11	66	9
		Werribee River	-	-	-	-	0	-
	Pesticides	F1 (pasture)	<lor< td=""><td>0.00039</td><td>0.0046</td><td>0.07</td><td>406</td><td>5</td></lor<>	0.00039	0.0046	0.07	406	5
		F2 (pasture)	<lor< td=""><td>0.00056</td><td>0.0075</td><td>0.13</td><td>609</td><td>9</td></lor<>	0.00056	0.0075	0.13	609	9
		F3 (pasture reference)	<lor< td=""><td>0.000049</td><td>0.00070</td><td>0.01</td><td>203</td><td>1</td></lor<>	0.000049	0.00070	0.01	203	1
		F4 (broccoli)	<lor< td=""><td>0.0017</td><td>0.015</td><td>0.18</td><td>406</td><td>10</td></lor<>	0.0017	0.015	0.18	406	10

EPAWICTORIA

	F5 (broccoli)	<lor< th=""><th>0.0023</th><th>0.020</th><th>0.28</th><th>406</th><th>12</th></lor<>	0.0023	0.020	0.28	406	12
	F6 (broccoli reference)	<lor< td=""><td>0.00054</td><td>0.0043</td><td>0.08</td><td>609</td><td>15</td></lor<>	0.00054	0.0043	0.08	609	15
	Goulburn River	<lor< td=""><td>0.000074</td><td>0.0011</td><td>0.02</td><td>406</td><td>2</td></lor<>	0.000074	0.0011	0.02	406	2
	Werribee River	-	-	-	-	0	-
PFAS	F1 (pasture)	<lor< td=""><td>0.00078</td><td>0.0019</td><td>0.0075</td><td>270</td><td>50</td></lor<>	0.00078	0.0019	0.0075	270	50
	F2 (pasture)	<lor< td=""><td>0.00086</td><td>0.0023</td><td>0.011</td><td>270</td><td>41</td></lor<>	0.00086	0.0023	0.011	270	41
	F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
	F4 (broccoli)	<lor< td=""><td>0.00051</td><td>0.0015</td><td>0.0091</td><td>270</td><td>33</td></lor<>	0.00051	0.0015	0.0091	270	33
	F5 (broccoli)	<lor< td=""><td>0.00050</td><td>0.0015</td><td>0.0090</td><td>270</td><td>32</td></lor<>	0.00050	0.0015	0.0090	270	32
	F6 (broccoli reference)	<lor< td=""><td>0.00021</td><td>0.00066</td><td>0.0033</td><td>270</td><td>29</td></lor<>	0.00021	0.00066	0.0033	270	29
	Goulburn River Werribee	<lor< td=""><td>0.00010</td><td>0.00038</td><td>0.0020</td><td>54</td><td>4</td></lor<>	0.00010	0.00038	0.0020	54	4
	River	<lor< td=""><td>0.00056</td><td>0.0015</td><td>0.0071</td><td>82</td><td>12</td></lor<>	0.00056	0.0015	0.0071	82	12
Phthalates	F1 (pasture)	<lor< td=""><td>0.018</td><td>0.039</td><td>0.11</td><td>24</td><td>6</td></lor<>	0.018	0.039	0.11	24	6
	F2 (pasture)	<lor< td=""><td>0.020</td><td>0.046</td><td>0.16</td><td>36</td><td>9</td></lor<>	0.020	0.046	0.16	36	9
	F3 (pasture reference)	<lor< td=""><td>0.017</td><td>0.037</td><td>0.1</td><td>12</td><td>3</td></lor<>	0.017	0.037	0.1	12	3
	F4 (broccoli)	<lor< td=""><td>0.013</td><td>0.024</td><td>0.08</td><td>24</td><td>6</td></lor<>	0.013	0.024	0.08	24	6
	F5 (broccoli)	<lor< td=""><td>0.011</td><td>0.022</td><td>0.07</td><td>24</td><td>6</td></lor<>	0.011	0.022	0.07	24	6
	F6 (broccoli reference)	<lor< td=""><td>0.0028</td><td>0.0085</td><td>0.03</td><td>36</td><td>4</td></lor<>	0.0028	0.0085	0.03	36	4
	Goulburn River Werribee	<lor< td=""><td>0.030</td><td>0.067</td><td>0.26</td><td>24</td><td>6</td></lor<>	0.030	0.067	0.26	24	6
	River	-	-	-	-	0	-
PPCPs	F1 (pasture)	<lor< td=""><td>0.055</td><td>0.22</td><td>2.83</td><td>544</td><td>115</td></lor<>	0.055	0.22	2.83	544	115
	F2 (pasture)	<lor< td=""><td>0.043</td><td>0.20</td><td>2.7</td><td>685</td><td>124</td></lor<>	0.043	0.20	2.7	685	124
	F3 (pasture reference)	<lor< td=""><td>0.00070</td><td>0.0037</td><td>0.034</td><td>506</td><td>25</td></lor<>	0.00070	0.0037	0.034	506	25
	F4 (broccoli)	<lor< td=""><td>0.026</td><td>0.071</td><td>0.38</td><td>700</td><td>148</td></lor<>	0.026	0.071	0.38	700	148
	F5 (broccoli)	<lor< td=""><td>0.036</td><td>0.10</td><td>0.90</td><td>700</td><td>151</td></lor<>	0.036	0.10	0.90	700	151
	F6 (broccoli reference) Goulburn	<lor< td=""><td>0.0030</td><td>0.013</td><td>0.18</td><td>790</td><td>92</td></lor<>	0.0030	0.013	0.18	790	92
	River Werribee	<lor< td=""><td>0.0051</td><td>0.033</td><td>0.36</td><td>284</td><td>16</td></lor<>	0.0051	0.033	0.36	284	16
	River	<lor< td=""><td>0.023</td><td>0.10</td><td>1.15</td><td>208</td><td>46</td></lor<>	0.023	0.10	1.15	208	46
SVOCs	F1 (pasture)	<lor< td=""><td>0.083</td><td>1.33</td><td>23</td><td>522</td><td>9</td></lor<>	0.083	1.33	23	522	9
	F2 (pasture)	<lor< td=""><td>0.32</td><td>5.69</td><td>150</td><td>783</td><td>19</td></lor<>	0.32	5.69	150	783	19
	F3 (pasture reference)	<lor< td=""><td>O.11</td><td>1.80</td><td>29</td><td>261</td><td>4</td></lor<>	O.11	1.80	29	261	4
	F4 (broccoli)	<lor< td=""><td>0.099</td><td>1.58</td><td>27</td><td>522</td><td>11</td></lor<>	0.099	1.58	27	522	11
	F5 (broccoli)	<lor< td=""><td>0.060</td><td>0.96</td><td>16</td><td>522</td><td>10</td></lor<>	0.060	0.96	16	522	10
	F6 (broccoli reference) Goulburn	<lor< td=""><td>0.018</td><td>0.30</td><td>6.6</td><td>783</td><td>8</td></lor<>	0.018	0.30	6.6	783	8
	River	<lor< td=""><td>0.11</td><td>1.90</td><td>40</td><td>522</td><td>9</td></lor<>	0.11	1.90	40	522	9

Recycled water use in irrigated crops 2023-2025

Werribee - - - - 0 - River

Table S2. Summary statistics for groups of emerging contaminants detected in soil samples at each site. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

Year	Analyte group	Site	Min (μg/kg)	Mean (μg/kg)	SD (μg/kg)	Max (μg/kg)	Total sample size	Detections sample size
2023	EDCs	F1 (pasture)	<lor< td=""><td>0.021</td><td>0.19</td><td>1.7</td><td>80</td><td>1</td></lor<>	0.021	0.19	1.7	80	1
		F2 (pasture)	<lor< td=""><td>0.087</td><td>0.52</td><td>3.1</td><td>71</td><td>2</td></lor<>	0.087	0.52	3.1	71	2
		F3 (pasture reference)	<lor< td=""><td>0.29</td><td>1.15</td><td>6</td><td>62</td><td>5</td></lor<>	0.29	1.15	6	62	5
		F4 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>80</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>80</td><td>0</td></lor<>	80	0
		F5 (broccoli)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>71</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>71</td><td>0</td></lor<>	71	0
		F6 (broccoli reference)	<lor< td=""><td>0.0075</td><td>0.055</td><td>0.4</td><td>53</td><td>1</td></lor<>	0.0075	0.055	0.4	53	1
		F7 (lettuce)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>63</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>63</td><td>0</td></lor<>	63	0
	PAHs	F1 (pasture)	<lor< td=""><td>1.45</td><td>4.10</td><td>24</td><td>231</td><td>70</td></lor<>	1.45	4.10	24	231	70
		F2 (pasture)	<lor< td=""><td>5.75</td><td>17.15</td><td>120</td><td>198</td><td>59</td></lor<>	5.75	17.15	120	198	59
		F3 (pasture reference)	<lor< td=""><td>8.83</td><td>16.73</td><td>100</td><td>165</td><td>64</td></lor<>	8.83	16.73	100	165	64
		F4 (broccoli)	<lor< td=""><td>0.65</td><td>1.46</td><td>10</td><td>231</td><td>88</td></lor<>	0.65	1.46	10	231	88
		F5 (broccoli)	<lor< td=""><td>1.06</td><td>2.58</td><td>17</td><td>198</td><td>77</td></lor<>	1.06	2.58	17	198	77
		F6 (broccoli reference)	<lor< td=""><td>1.50</td><td>2.95</td><td>16</td><td>132</td><td>53</td></lor<>	1.50	2.95	16	132	53
		F7 (lettuce)	<lor< td=""><td>6.31</td><td>12.41</td><td>74</td><td>231</td><td>101</td></lor<>	6.31	12.41	74	231	101
	Pesticides	F1 (pasture)	<lor< td=""><td>0.013</td><td>0.32</td><td>14</td><td>3584</td><td>32</td></lor<>	0.013	0.32	14	3584	32
		F2 (pasture)	<lor< td=""><td>0.0055</td><td>0.11</td><td>4.6</td><td>3072</td><td>16</td></lor<>	0.0055	0.11	4.6	3072	16
		F3 (pasture reference)	<lor< td=""><td>0.52</td><td>17.25</td><td>650</td><td>2560</td><td>12</td></lor<>	0.52	17.25	650	2560	12
		F4 (broccoli)	<lor< td=""><td>1.65</td><td>13.21</td><td>300</td><td>3584</td><td>156</td></lor<>	1.65	13.21	300	3584	156
		F5 (broccoli)	<lor< td=""><td>2.92</td><td>30.65</td><td>1100</td><td>3072</td><td>138</td></lor<>	2.92	30.65	1100	3072	138
		F6 (broccoli reference)	<lor< td=""><td>1.49</td><td>18.65</td><td>480</td><td>2048</td><td>55</td></lor<>	1.49	18.65	480	2048	55
		F7 (lettuce)	<lor< td=""><td>2.07</td><td>22.36</td><td>740</td><td>3584</td><td>172</td></lor<>	2.07	22.36	740	3584	172
	PFAS	F1 (pasture)	<lor< td=""><td>0.41</td><td>1.73</td><td>10.6</td><td>175</td><td>10</td></lor<>	0.41	1.73	10.6	175	10
		F2 (pasture)	<lor< td=""><td>0.13</td><td>0.69</td><td>6.53</td><td>150</td><td>7</td></lor<>	0.13	0.69	6.53	150	7
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>125</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>125</td><td>0</td></lor<>	125	0
		F4 (broccoli)	<lor< td=""><td>0.024</td><td>0.32</td><td>4.24</td><td>175</td><td>1</td></lor<>	0.024	0.32	4.24	175	1
		F5 (broccoli)	<lor< td=""><td>0.21</td><td>0.82</td><td>5.25</td><td>150</td><td>10</td></lor<>	0.21	0.82	5.25	150	10
		F6 (broccoli reference)	<lor< td=""><td>0.11</td><td>0.54</td><td>3.05</td><td>100</td><td>4</td></lor<>	0.11	0.54	3.05	100	4
		F7 (lettuce)	<lor< td=""><td>0.053</td><td>0.31</td><td>2.01</td><td>175</td><td>5</td></lor<>	0.053	0.31	2.01	175	5
	Phthalates	F1 (pasture)	<lor< td=""><td>0.52</td><td>1.46</td><td>7.6</td><td>77</td><td>12</td></lor<>	0.52	1.46	7.6	77	12
		F2 (pasture)	<lor< td=""><td>12.17</td><td>25.99</td><td>170</td><td>66</td><td>29</td></lor<>	12.17	25.99	170	66	29
		F3 (pasture reference)	<lor< td=""><td>9.12</td><td>14.62</td><td>46</td><td>55</td><td>22</td></lor<>	9.12	14.62	46	55	22
		F4 (broccoli)	<lor< td=""><td>2.43</td><td>7.12</td><td>55</td><td>77</td><td>19</td></lor<>	2.43	7.12	55	77	19

EPAVICTORIA

		F5 (broccoli)	<lor< th=""><th>2.94</th><th>8.04</th><th>50</th><th>66</th><th>15</th></lor<>	2.94	8.04	50	66	15
		F6 (broccoli reference)	<lor< td=""><td>1.38</td><td>4.39</td><td>21</td><td>44</td><td>11</td></lor<>	1.38	4.39	21	44	11
		F7 (lettuce)	<lor< td=""><td>7.81</td><td>14.86</td><td>71</td><td>77</td><td>30</td></lor<>	7.81	14.86	71	77	30
	PPCPs	F1 (pasture)	<lor< td=""><td>0.097</td><td>1.87</td><td>40</td><td>463</td><td>3</td></lor<>	0.097	1.87	40	463	3
		F2 (pasture)	<lor< td=""><td>0.25</td><td>4.22</td><td>84</td><td>408</td><td>4</td></lor<>	0.25	4.22	84	408	4
		F3 (pasture reference)	<lor< td=""><td>0.048</td><td>0.90</td><td>17</td><td>353</td><td>1</td></lor<>	0.048	0.90	17	353	1
		F4 (broccoli)	<lor< td=""><td>0.023</td><td>0.40</td><td>8.2</td><td>463</td><td>2</td></lor<>	0.023	0.40	8.2	463	2
		F5 (broccoli)	<lor< td=""><td>0.021</td><td>0.35</td><td>6.9</td><td>408</td><td>2</td></lor<>	0.021	0.35	6.9	408	2
		F6 (broccoli reference)	<lor< td=""><td>0.033</td><td>0.48</td><td>8.2</td><td>298</td><td>2</td></lor<>	0.033	0.48	8.2	298	2
		F7 (lettuce)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>385</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>385</td><td>0</td></lor<>	385	0
	SVOCs	F1 (pasture)	<lor< td=""><td>1.30</td><td>20.37</td><td>600</td><td>1785</td><td>69</td></lor<>	1.30	20.37	600	1785	69
		F2 (pasture)	<lor< td=""><td>6.47</td><td>60.47</td><td>1100</td><td>1530</td><td>79</td></lor<>	6.47	60.47	1100	1530	79
		F3 (pasture reference)	<lor< td=""><td>7.05</td><td>58.35</td><td>980</td><td>1275</td><td>81</td></lor<>	7.05	58.35	980	1275	81
		F4 (broccoli)	<lor< td=""><td>2.84</td><td>28.25</td><td>650</td><td>1785</td><td>108</td></lor<>	2.84	28.25	650	1785	108
		F5 (broccoli)	<lor< td=""><td>3.24</td><td>44.47</td><td>970</td><td>1530</td><td>93</td></lor<>	3.24	44.47	970	1530	93
		F6 (broccoli reference)	<lor< td=""><td>1.29</td><td>25.75</td><td>800</td><td>1020</td><td>54</td></lor<>	1.29	25.75	800	1020	54
		F7 (lettuce)	<lor< td=""><td>3.48</td><td>34.15</td><td>880</td><td>1785</td><td>114</td></lor<>	3.48	34.15	880	1785	114
2024	PFAS	F1 (pasture)	<lor< td=""><td>0.28</td><td>1.43</td><td>9.28</td><td>54</td><td>3</td></lor<>	0.28	1.43	9.28	54	3
		F2 (pasture)	<lor< td=""><td>0.062</td><td>0.28</td><td>1.64</td><td>54</td><td>3</td></lor<>	0.062	0.28	1.64	54	3
		F3 (pasture reference)	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>54</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>54</td><td>0</td></lor<>	54	0
		F4 (broccoli)	<lor< td=""><td>0.075</td><td>0.39</td><td>2.10</td><td>54</td><td>2</td></lor<>	0.075	0.39	2.10	54	2
		F5 (broccoli)	<lor< td=""><td>0.058</td><td>0.30</td><td>1.65</td><td>54</td><td>2</td></lor<>	0.058	0.30	1.65	54	2
		F6 (broccoli reference)	<lor< td=""><td>0.095</td><td>0.49</td><td>2.64</td><td>54</td><td>2</td></lor<>	0.095	0.49	2.64	54	2

Table S3. Summary statistics for groups of emerging contaminants detected in plant samples at each site. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

Year	Analyte group	Site	Sample type	Min (μg/kg)	Mean (μg/kg)	SD (μg/kg)	Max (μg/kg)	Total sample	Detections sample
0000		F1 (size	size
2023	EDCs	F1 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>80</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>80</td><td>0</td></lor<>	80	0
		F0 (Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>80</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>80</td><td>0</td></lor<>	80	0
		F2 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>71</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>71</td><td>0</td></lor<>	71	0
		F2 (n anti-un	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>71</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>71</td><td>0</td></lor<>	71	0
		F3 (pasture reference)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>62</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>62</td><td>0</td></lor<>	62	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>62</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>62</td><td>0</td></lor<>	62	0
		F4 (broccoli)	Floret	<lor< td=""><td>3</td><td>26.83</td><td>240</td><td>80</td><td>1</td></lor<>	3	26.83	240	80	1
			Root	<lor< td=""><td>0.16</td><td>1.45</td><td>13</td><td>80</td><td>1</td></lor<>	0.16	1.45	13	80	1
			Shoot	<lor< td=""><td>0.16</td><td>1.45</td><td>13</td><td>80</td><td>1</td></lor<>	0.16	1.45	13	80	1
		F5 (broccoli)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>71</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>71</td><td>0</td></lor<>	71	0
			Root	<lor< td=""><td>0.68</td><td>2.98</td><td>17</td><td>71</td><td>4</td></lor<>	0.68	2.98	17	71	4
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>71</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>71</td><td>0</td></lor<>	71	0
		F6 (broccoli reference)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>53</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>53</td><td>0</td></lor<>	53	0
			Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>53</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>53</td><td>0</td></lor<>	53	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>53</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>53</td><td>0</td></lor<>	53	0
		F7 (lettuce)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>80</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>80</td><td>0</td></lor<>	80	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>80</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>80</td><td>0</td></lor<>	80	0
	PAHs	F1 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>231</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>231</td><td>0</td></lor<>	231	0
		•	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>231</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>231</td><td>0</td></lor<>	231	0
		F2 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>198</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>198</td><td>0</td></lor<>	198	0
		·	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>198</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>198</td><td>0</td></lor<>	198	0
		F3 (pasture reference)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>165</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>165</td><td>0</td></lor<>	165	0
		reference)	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>165</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>165</td><td>0</td></lor<>	165	0
		F4 (broccoli)	Floret	<lor< td=""><td>6.49</td><td>33.73</td><td>240</td><td>231</td><td>11</td></lor<>	6.49	33.73	240	231	11
		(Root	<lor< td=""><td>3.11</td><td>15.78</td><td>135</td><td>231</td><td>16</td></lor<>	3.11	15.78	135	231	16
			Shoot	<lor< td=""><td>19.83</td><td>83.34</td><td>580</td><td>231</td><td>25</td></lor<>	19.83	83.34	580	231	25
		F5 (broccoli)	Floret	<lor< td=""><td>15.28</td><td>58.84</td><td>350</td><td>198</td><td>25</td></lor<>	15.28	58.84	350	198	25
		10 (51000011)	Root	<lor< td=""><td>1.60</td><td>10.81</td><td>90</td><td>198</td><td>6</td></lor<>	1.60	10.81	90	198	6
			Shoot	<lor< td=""><td>21.32</td><td>89.41</td><td>760</td><td>198</td><td>27</td></lor<>	21.32	89.41	760	198	27
		F6 (broccoli reference)	Floret	<lor< td=""><td>13.61</td><td>59.18</td><td>330</td><td>132</td><td>8</td></lor<>	13.61	59.18	330	132	8
		reference)	Root	<lor< td=""><td>0.62</td><td>6.32</td><td>72</td><td>132</td><td>2</td></lor<>	0.62	6.32	72	132	2
			Shoot	<lor< td=""><td>16.64</td><td>87.25</td><td>680</td><td>132</td><td>8</td></lor<>	16.64	87.25	680	132	8
		F7 (lettuce)	Root	<lor <lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>231</td><td>0</td></lor<></td></lor<></lor 	0	0	<lor< td=""><td>231</td><td>0</td></lor<>	231	0
		i-/ (lettuce)	Shoot	<lor <lor< td=""><td>0</td><td>0</td><td><lor <lor< td=""><td>231</td><td>0</td></lor<></lor </td></lor<></lor 	0	0	<lor <lor< td=""><td>231</td><td>0</td></lor<></lor 	231	0
	Dootinida -	[1 (past: ::s)							
	Pesticides	F1 (pasture)	Root	<lor< td=""><td>0.019</td><td>0.46</td><td>21</td><td>3584</td><td>10</td></lor<>	0.019	0.46	21	3584	10
		FO (**	Shoot	<lor< td=""><td>0.020</td><td>0.64</td><td>35 74</td><td>3584</td><td>9</td></lor<>	0.020	0.64	35 74	3584	9
		F2 (pasture)	Root	<lor< td=""><td>0.040</td><td>1.41</td><td>74</td><td>3072</td><td>5</td></lor<>	0.040	1.41	74	3072	5
			Shoot	<lor< td=""><td>0.0086</td><td>0.29</td><td>13</td><td>3072</td><td>3</td></lor<>	0.0086	0.29	13	3072	3

	F3 (pasture reference)	Root	<lor< th=""><th>1.17</th><th>37.64</th><th>1600</th><th>2555</th><th>7</th></lor<>	1.17	37.64	1600	2555	7
	reference)	Shoot	<lor< td=""><td>2.93</td><td>106.29</td><td>4700</td><td>2555</td><td>5</td></lor<>	2.93	106.29	4700	2555	5
	F4 (broccoli)	Floret	<lor< td=""><td>0.010</td><td>0.46</td><td>25</td><td>3584</td><td>2</td></lor<>	0.010	0.46	25	3584	2
	1 4 (5) 000011)	Root	<lor< td=""><td>1.48</td><td>38.19</td><td>1700</td><td>3584</td><td>26</td></lor<>	1.48	38.19	1700	3584	26
		Shoot	<lor< td=""><td>3.43</td><td>63.39</td><td>2300</td><td>3584</td><td>58</td></lor<>	3.43	63.39	2300	3584	58
	F5 (broccoli)	Floret	<lor< td=""><td>0.58</td><td>11.09</td><td>480</td><td>3072</td><td>24</td></lor<>	0.58	11.09	480	3072	24
	13 (broccon)	Root	<lor< td=""><td>0.93</td><td>19.23</td><td>790</td><td>3072</td><td>29</td></lor<>	0.93	19.23	790	3072	29
		Shoot	<lor< td=""><td>14.19</td><td>161.91</td><td>4700</td><td>3072</td><td>72</td></lor<>	14.19	161.91	4700	3072	72
	F6 (broccoli reference)	Floret	<lor< td=""><td>1.33</td><td>25.68</td><td>990</td><td>2042</td><td>14</td></lor<>	1.33	25.68	990	2042	14
		Root	<lor< td=""><td>0.67</td><td>13.63</td><td>395</td><td>2048</td><td>8</td></lor<>	0.67	13.63	395	2048	8
		Shoot	<lor< td=""><td>41.07</td><td>520.62</td><td>11000</td><td>2048</td><td>40</td></lor<>	41.07	520.62	11000	2048	40
	F7 (lettuce)	Root	<lor< td=""><td>33.61</td><td>642.99</td><td>19000</td><td>3584</td><td>131</td></lor<>	33.61	642.99	19000	3584	131
		Shoot	<lor< td=""><td>2.11</td><td>25.07</td><td>860</td><td>3584</td><td>98</td></lor<>	2.11	25.07	860	3584	98
PFAS	F1 (pasture)	Root	<lor< td=""><td>0.28</td><td>2.06</td><td>21.4</td><td>175</td><td>5</td></lor<>	0.28	2.06	21.4	175	5
		Shoot	<lor< td=""><td>0.23</td><td>3.10</td><td>41</td><td>175</td><td>1</td></lor<>	0.23	3.10	41	175	1
	F2 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>150</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>150</td><td>0</td></lor<>	150	0
	4	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>150</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>150</td><td>0</td></lor<>	150	0
	F3 (pasture							
	reference)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>125</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>125</td><td>0</td></lor<>	125	0
		Shoot	<lor< td=""><td>0.077</td><td>0.86</td><td>9.6</td><td>125</td><td>1</td></lor<>	0.077	0.86	9.6	125	1
	F4 (broccoli)	Floret	<lor< td=""><td>0.20</td><td>1.01</td><td>6.7</td><td>175</td><td>7</td></lor<>	0.20	1.01	6.7	175	7
		Root	<lor< td=""><td>0.089</td><td>1.17</td><td>15.5</td><td>175</td><td>1</td></lor<>	0.089	1.17	15.5	175	1
		Shoot	<lor< td=""><td>0.28</td><td>1.42</td><td>9.94</td><td>175</td><td>7</td></lor<>	0.28	1.42	9.94	175	7
	F5 (broccoli)	Floret	<lor< td=""><td>0.173</td><td>0.95</td><td>6.61</td><td>150</td><td>5</td></lor<>	0.173	0.95	6.61	150	5
		Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>150</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>150</td><td>0</td></lor<>	150	0
		Shoot	<lor< td=""><td>2.96</td><td>16.74</td><td>154</td><td>150</td><td>13</td></lor<>	2.96	16.74	154	150	13
	F6 (broccoli reference)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>100</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>100</td><td>0</td></lor<>	100	0
		Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>100</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>100</td><td>0</td></lor<>	100	0
		Shoot	<lor< td=""><td>1.24</td><td>7.77</td><td>66</td><td>100</td><td>5</td></lor<>	1.24	7.77	66	100	5
	F7 (lettuce)	Root	<lor< td=""><td>0.037</td><td>0.34</td><td>3.23</td><td>175</td><td>2</td></lor<>	0.037	0.34	3.23	175	2
		Shoot	<lor< td=""><td>1.23</td><td>7.46</td><td>64</td><td>175</td><td>9</td></lor<>	1.23	7.46	64	175	9
Phthalates	F1 (pasture)	Root	<lor< td=""><td>74.29</td><td>263.70</td><td>1300</td><td>77</td><td>7</td></lor<>	74.29	263.70	1300	77	7
		Shoot	<lor< td=""><td>45.19</td><td>212.79</td><td>1200</td><td>77</td><td>4</td></lor<>	45.19	212.79	1200	77	4
	F2 (pasture)	Root	<lor< td=""><td>116.97</td><td>630.55</td><td>4800</td><td>66</td><td>4</td></lor<>	116.97	630.55	4800	66	4
		Shoot	<lor< td=""><td>19.24</td><td>111.86</td><td>760</td><td>66</td><td>2</td></lor<>	19.24	111.86	760	66	2
	F3 (pasture reference)	Root	<lor< td=""><td>21.09</td><td>109.84</td><td>620</td><td>55</td><td>2</td></lor<>	21.09	109.84	620	55	2
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>55</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>55</td><td>0</td></lor<>	55	0
	F4 (broccoli)	Floret	<lor< td=""><td>83.77</td><td>437.84</td><td>2900</td><td>77</td><td>7</td></lor<>	83.77	437.84	2900	77	7
		Root	<lor< td=""><td>4.45</td><td>16.94</td><td>100</td><td>77</td><td>7</td></lor<>	4.45	16.94	100	77	7
		Shoot	<lor< td=""><td>198.44</td><td>851.42</td><td>6000</td><td>77</td><td>12</td></lor<>	198.44	851.42	6000	77	12
	F5 (broccoli)	Floret	<lor< td=""><td>2.38</td><td>9.34</td><td>58</td><td>66</td><td>5</td></lor<>	2.38	9.34	58	66	5
		Root	<lor< td=""><td>3.61</td><td>12.85</td><td>70</td><td>66</td><td>6</td></lor<>	3.61	12.85	70	66	6
		Shoot	<lor< td=""><td>125.47</td><td>372.54</td><td>1850</td><td>66</td><td>13</td></lor<>	125.47	372.54	1850	66	13
	F6 (broccoli reference)	Floret	<lor< td=""><td>6.36</td><td>28.50</td><td>180</td><td>44</td><td>4</td></lor<>	6.36	28.50	180	44	4
		Root	<lor< td=""><td>17.43</td><td>56.95</td><td>320</td><td>44</td><td>7</td></lor<>	17.43	56.95	320	44	7

Recycled water use in irrigated crops 2023-2025

			Shoot	<lor< td=""><td>100.59</td><td>312.35</td><td>1970</td><td>44</td><td>12</td></lor<>	100.59	312.35	1970	44	12
		F7 (lettuce)	Root	<lor< td=""><td>232.47</td><td>881.90</td><td>6100</td><td>77</td><td>7</td></lor<>	232.47	881.90	6100	77	7
			Shoot	<lor< td=""><td>8.83</td><td>77.49</td><td>680</td><td>77</td><td>1</td></lor<>	8.83	77.49	680	77	1
	PPCPs	F1 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>463</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>463</td><td>0</td></lor<>	463	0
			Shoot	<lor< td=""><td>0.012</td><td>0.27</td><td>5.76</td><td>463</td><td>1</td></lor<>	0.012	0.27	5.76	463	1
		F2 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>408</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>408</td><td>0</td></lor<>	408	0
		•	Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>408</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>408</td><td>0</td></lor<>	408	0
		F3 (pasture				0			
		reference)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>353</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>353</td><td>0</td></lor<>	353	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>353</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>353</td><td>0</td></lor<>	353	0
		F4 (broccoli)	Floret	<lor< td=""><td>0.028</td><td>0.60</td><td>13</td><td>463</td><td>1</td></lor<>	0.028	0.60	13	463	1
			Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>463</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>463</td><td>0</td></lor<>	463	0
			Shoot	<lor< td=""><td>0.081</td><td>1.06</td><td>15.8</td><td>463</td><td>3</td></lor<>	0.081	1.06	15.8	463	3
		F5 (broccoli)	Floret	<lor< td=""><td>0.018</td><td>0.37</td><td>7.4</td><td>408</td><td>1</td></lor<>	0.018	0.37	7.4	408	1
			Root	<lor< td=""><td>0.044</td><td>0.89</td><td>18</td><td>408</td><td>1</td></lor<>	0.044	0.89	18	408	1
			Shoot	<lor< td=""><td>0.034</td><td>0.49</td><td>7.95</td><td>408</td><td>2</td></lor<>	0.034	0.49	7.95	408	2
		F6 (broccoli reference)	Floret	<lor< td=""><td>0.018</td><td>0.31</td><td>5.4</td><td>298</td><td>1</td></lor<>	0.018	0.31	5.4	298	1
			Root	<lor< td=""><td>0.021</td><td>0.36</td><td>6.3</td><td>298</td><td>1</td></lor<>	0.021	0.36	6.3	298	1
			Shoot	<lor< td=""><td>0.023</td><td>0.41</td><td>7</td><td>298</td><td>1</td></lor<>	0.023	0.41	7	298	1
		F7 (lettuce)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>463</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>463</td><td>0</td></lor<>	463	0
			Shoot	<lor< td=""><td>0.030</td><td>0.46</td><td>8.03</td><td>463</td><td>2</td></lor<>	0.030	0.46	8.03	463	2
	SVOCs	F1 (pasture)	Root	<lor< td=""><td>9.19</td><td>166.78</td><td>5100</td><td>1785</td><td>10</td></lor<>	9.19	166.78	5100	1785	10
			Shoot	<lor< td=""><td>8.57</td><td>177.41</td><td>6800</td><td>1785</td><td>10</td></lor<>	8.57	177.41	6800	1785	10
		F2 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1530</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1530</td><td>0</td></lor<>	1530	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>1530</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>1530</td><td>0</td></lor<>	1530	0
		F3 (pasture reference)	Root	<lor< td=""><td>0.016</td><td>0.59</td><td>21</td><td>1275</td><td>1</td></lor<>	0.016	0.59	21	1275	1
			Shoot	<lor< td=""><td>2.51</td><td>59.51</td><td>1500</td><td>1275</td><td>4</td></lor<>	2.51	59.51	1500	1275	4
		F4 (broccoli)	Floret	<lor< td=""><td>28.65</td><td>525.26</td><td>18044</td><td>1785</td><td>35</td></lor<>	28.65	525.26	18044	1785	35
			Root	<lor< td=""><td>5.62</td><td>73.37</td><td>1500</td><td>1785</td><td>30</td></lor<>	5.62	73.37	1500	1785	30
			Shoot	<lor< td=""><td>24.07</td><td>193.26</td><td>3610</td><td>1785</td><td>54</td></lor<>	24.07	193.26	3610	1785	54
		F5 (broccoli)	Floret	<lor< td=""><td>42.69</td><td>478.25</td><td>12820</td><td>1530</td><td>54</td></lor<>	42.69	478.25	12820	1530	54
			Root	<lor< td=""><td>10.35</td><td>107.91</td><td>2000</td><td>1530</td><td>41</td></lor<>	10.35	107.91	2000	1530	41
			Shoot	<lor< td=""><td>53.22</td><td>344.72</td><td>5320</td><td>1530</td><td>66</td></lor<>	53.22	344.72	5320	1530	66
		F6 (broccoli reference)	Floret	<lor< td=""><td>78.96</td><td>949.31</td><td>18009</td><td>1020</td><td>36</td></lor<>	78.96	949.31	18009	1020	36
			Root	<lor< td=""><td>4.06</td><td>39.52</td><td>650</td><td>1020</td><td>30</td></lor<>	4.06	39.52	650	1020	30
			Shoot	<lor< td=""><td>45.41</td><td>288.57</td><td>3700</td><td>1020</td><td>42</td></lor<>	45.41	288.57	3700	1020	42
		F7 (lettuce)	Root	<lor< td=""><td>4.43</td><td>87.61</td><td>2300</td><td>1785</td><td>11</td></lor<>	4.43	87.61	2300	1785	11
			Shoot	<lor< td=""><td>4.75</td><td>82.84</td><td>2300</td><td>1785</td><td>13</td></lor<>	4.75	82.84	2300	1785	13
2024	PFAS	F1 (pasture)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>297</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>297</td><td>0</td></lor<>	297	0
			Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>297</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>297</td><td>0</td></lor<>	297	0
		F2 (pasture)	Root	<lor< td=""><td>0.25</td><td>3.10</td><td>51.69</td><td>297</td><td>4</td></lor<>	0.25	3.10	51.69	297	4
			Shoot	<lor< td=""><td>0.036</td><td>0.61</td><td>10.58</td><td>297</td><td>1</td></lor<>	0.036	0.61	10.58	297	1
		F3 (pasture reference)	Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>297</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>297</td><td>0</td></lor<>	297	0
			Shoot	<lor< td=""><td>0.054</td><td>0.68</td><td>10.27</td><td>297</td><td>2</td></lor<>	0.054	0.68	10.27	297	2
		F4 (broccoli)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
		·						_	

EPAVICTORIA

		Root	<lor< th=""><th>0.062</th><th>0.33</th><th>2.39</th><th>270</th><th>10</th></lor<>	0.062	0.33	2.39	270	10
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
	F5 (broccoli)	Floret	<lor< td=""><td>0.13</td><td>0.65</td><td>4.45</td><td>270</td><td>10</td></lor<>	0.13	0.65	4.45	270	10
		Root	<lor< td=""><td>0.087</td><td>0.47</td><td>3.31</td><td>270</td><td>10</td></lor<>	0.087	0.47	3.31	270	10
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
	F6 (broccoli reference)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
		Root	<lor< td=""><td>0.028</td><td>0.20</td><td>1.89</td><td>270</td><td>6</td></lor<>	0.028	0.20	1.89	270	6
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>270</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>270</td><td>0</td></lor<>	270	0
PPCPs	F1 (pasture)	Root	<lor< td=""><td>0.024</td><td>0.12</td><td>0.81</td><td>572</td><td>20</td></lor<>	0.024	0.12	0.81	572	20
		Shoot	<lor< td=""><td>0.040</td><td>0.18</td><td>1.21</td><td>572</td><td>27</td></lor<>	0.040	0.18	1.21	572	27
	F2 (pasture)	Root	<lor< td=""><td>0.033</td><td>0.17</td><td>1.73</td><td>572</td><td>23</td></lor<>	0.033	0.17	1.73	572	23
		Shoot	<lor< td=""><td>0.039</td><td>0.24</td><td>3.11</td><td>572</td><td>19</td></lor<>	0.039	0.24	3.11	572	19
	F3 (pasture reference)	Root	<lor< td=""><td>0.027</td><td>0.16</td><td>1.47</td><td>572</td><td>17</td></lor<>	0.027	0.16	1.47	572	17
		Shoot	<lor< td=""><td>0.021</td><td>0.14</td><td>1.26</td><td>568</td><td>13</td></lor<>	0.021	0.14	1.26	568	13
	F4 (broccoli)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
	F5 (broccoli)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
	F6 (broccoli reference)	Floret	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Root	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0
		Shoot	<lor< td=""><td>0</td><td>0</td><td><lor< td=""><td>520</td><td>0</td></lor<></td></lor<>	0	0	<lor< td=""><td>520</td><td>0</td></lor<>	520	0

Table S4. Summary statistics for individual emerging contaminants detected in water samples for each sampling year and at each type of site (i.e., recycled water irrigated site, reference site, or river water samples). Where a chemical was not detected in any samples at a sampling point, it was excluded from this table. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

⁄ear	Analyte group	Analyte	Site type	Min (μg/L)	Mean (μg/L)	SD (μg/L)	Max (μg/L)	Total sample size	Detections sample size
2023	PAHs	C2 alkyl napthalenes	Recycled water	<lor< td=""><td>0.027</td><td>0.071</td><td>0.36</td><td>33</td><td>6</td></lor<>	0.027	0.071	0.36	33	6
		C3 alkyl napthalenes	Recycled water	<lor< td=""><td>0.0096</td><td>0.033</td><td>0.15</td><td>33</td><td>5</td></lor<>	0.0096	0.033	0.15	33	5
		Naphthalene	Recycled water	<lor< td=""><td>0.0078</td><td>0.019</td><td>0.09</td><td>33</td><td>6</td></lor<>	0.0078	0.019	0.09	33	6
		1-Methyl naphthalene	Recycled water	<lor< td=""><td>0.010</td><td>0.035</td><td>0.19</td><td>33</td><td>5</td></lor<>	0.010	0.035	0.19	33	5
		2-Methyl naphthalene	Recycled water	<lor< td=""><td>0.0093</td><td>0.038</td><td>0.21</td><td>33</td><td>3</td></lor<>	0.0093	0.038	0.21	33	3
	Pesticides	Clopyralid	Reference	0.054	0.057	0.0042	0.06	2	2
		Dichloroprop	Reference	0.008	0.0085	0.00070	0.009	2	2
		Diuron	Recycled water	0.01	0.030	0.019	0.09	33	33
		Epoxiconazole	Recycled water	<lor< td=""><td>0.0075</td><td>0.010</td><td>0.03</td><td>33</td><td>14</td></lor<>	0.0075	0.010	0.03	33	14
		Fipronil	Recycled water	<lor< td=""><td>0.0054</td><td>0.0075</td><td>0.02</td><td>33</td><td>13</td></lor<>	0.0054	0.0075	0.02	33	13
		Flutriafol	Recycled water	<lor< td=""><td>0.056</td><td>0.052</td><td>0.25</td><td>33</td><td>32</td></lor<>	0.056	0.052	0.25	33	32
			Reference	<lor< td=""><td>0.005</td><td>0.0067</td><td>0.02</td><td>12</td><td>5</td></lor<>	0.005	0.0067	0.02	12	5
		Imidacloprid	Recycled water	<lor< td=""><td>0.018</td><td>0.016</td><td>0.04</td><td>33</td><td>20</td></lor<>	0.018	0.016	0.04	33	20
		MCPA	Reference	0.006	0.006	0	0.006	2	2
		Mesosulfuron methyl	Recycled water	<lor< td=""><td>0.012</td><td>0.019</td><td>0.06</td><td>33</td><td>10</td></lor<>	0.012	0.019	0.06	33	10
		Metalaxyl	Recycled water	<lor< td=""><td>0.0072</td><td>0.010</td><td>0.04</td><td>33</td><td>15</td></lor<>	0.0072	0.010	0.04	33	15
		Metolachlor	Recycled water	<lor< td=""><td>0.0063</td><td>0.0082</td><td>0.03</td><td>33</td><td>15</td></lor<>	0.0063	0.0082	0.03	33	15
		Metsulfuron methyl	Recycled water	<lor< td=""><td>0.010</td><td>0.019</td><td>0.06</td><td>33</td><td>9</td></lor<>	0.010	0.019	0.06	33	9
		Propargite	Reference	<lor< td=""><td>0.0058</td><td>0.015</td><td>0.05</td><td>12</td><td>2</td></lor<>	0.0058	0.015	0.05	12	2
		Propiconazole	Recycled water	<lor< td=""><td>0.00027</td><td>0.0022</td><td>0.018</td><td>66</td><td>1</td></lor<>	0.00027	0.0022	0.018	66	1
		Propyzamide	Recycled water	<lor< td=""><td>0.073</td><td>0.087</td><td>0.28</td><td>33</td><td>20</td></lor<>	0.073	0.087	0.28	33	20
			Reference	<lor< td=""><td>0.0041</td><td>0.0099</td><td>0.03</td><td>12</td><td>2</td></lor<>	0.0041	0.0099	0.03	12	2
		Pyrimethanil	Recycled water	<lor< td=""><td>0.0027</td><td>0.0057</td><td>0.02</td><td>33</td><td>7</td></lor<>	0.0027	0.0057	0.02	33	7
		Sebuthylazin	Recycled water	<lor< td=""><td>0.0039</td><td>0.0049</td><td>0.01</td><td>33</td><td>13</td></lor<>	0.0039	0.0049	0.01	33	13
		Simazine	Recycled water	<lor< td=""><td>0.022</td><td>0.016</td><td>0.08</td><td>33</td><td>32</td></lor<>	0.022	0.016	0.08	33	32
		Spirotetramat	Recycled water	<lor< td=""><td>0.0036</td><td>0.0048</td><td>0.01</td><td>33</td><td>12</td></lor<>	0.0036	0.0048	0.01	33	12
		Spirotetramat.enol	Recycled water	<lor< td=""><td>0.0039</td><td>0.0049</td><td>0.01</td><td>33</td><td>13</td></lor<>	0.0039	0.0049	0.01	33	13
		Sulfentrazone	Recycled water	<lor< td=""><td>0.15</td><td>0.39</td><td>1.7</td><td>33</td><td>5</td></lor<>	0.15	0.39	1.7	33	5
		Sulfometuron methyl	Recycled water	<lor< td=""><td>0.24</td><td>0.47</td><td>1.9</td><td>33</td><td>20</td></lor<>	0.24	0.47	1.9	33	20
			Reference	<lor< td=""><td>0.14</td><td>0.086</td><td>0.27</td><td>12</td><td>10</td></lor<>	0.14	0.086	0.27	12	10
		Tebuthiuron	Recycled water	<lor< td=""><td>0.049</td><td>0.049</td><td>0.17</td><td>33</td><td>20</td></lor<>	0.049	0.049	0.17	33	20
		Terbuthylazine	Recycled water	<lor< td=""><td>0.0057</td><td>0.0083</td><td>0.03</td><td>33</td><td>13</td></lor<>	0.0057	0.0083	0.03	33	13
		Thiabendazole	Recycled water	<lor< td=""><td>0.41</td><td>0.82</td><td>2.5</td><td>33</td><td>7</td></lor<>	0.41	0.82	2.5	33	7
		Trichlopyr	Reference	0.016	0.019	0.0049	0.023	2	2
		2,4 D	Reference	0.01	0.015	0.0070	0.02	2	2
		2,6 D	Reference	0.02	0.02	0	0.02	2	2
	PFAS	PFDA	Recycled water	<lor< td=""><td>0.0029</td><td>0.0046</td><td>0.014</td><td>33</td><td>10</td></lor<>	0.0029	0.0046	0.014	33	10
		PFHpA	Recycled water	<lor< td=""><td>0.0094</td><td>0.0038</td><td>0.019</td><td>33</td><td>31</td></lor<>	0.0094	0.0038	0.019	33	31
			Reference	<lor< td=""><td>0.0009</td><td>0.0028</td><td>0.009</td><td>10</td><td>1</td></lor<>	0.0009	0.0028	0.009	10	1
		PFHxA	Recycled water	0.013	0.024	0.0081	0.041	33	33

Recycled water use in irrigated crops 2023-2025

	PFHxS	Recycled water	<lor< td=""><td>0.014</td><td>0.0074</td><td>0.027</td><td>33</td><td>28</td></lor<>	0.014	0.0074	0.027	33	28
		Reference	<lor< td=""><td>0.0014</td><td>0.0044</td><td>0.014</td><td>10</td><td>1</td></lor<>	0.0014	0.0044	0.014	10	1
	PFNA	Recycled water	<lor< td=""><td>0.0012</td><td>0.0029</td><td>0.009</td><td>33</td><td>5</td></lor<>	0.0012	0.0029	0.009	33	5
	PFOA	Recycled water	<lor< td=""><td>0.018</td><td>0.0084</td><td>0.035</td><td>33</td><td>32</td></lor<>	0.018	0.0084	0.035	33	32
		Reference	<lor< td=""><td>0.0012</td><td>0.0037</td><td>0.012</td><td>10</td><td>1</td></lor<>	0.0012	0.0037	0.012	10	1
	PFOS	Recycled water	<lor< td=""><td>0.019</td><td>0.0053</td><td>0.028</td><td>33</td><td>32</td></lor<>	0.019	0.0053	0.028	33	32
		Reference	<lor< td=""><td>0.0012</td><td>0.0037</td><td>0.012</td><td>10</td><td>1</td></lor<>	0.0012	0.0037	0.012	10	1
	PFUdA	Recycled water	<lor< td=""><td>0.00066</td><td>0.0027</td><td>0.013</td><td>33</td><td>2</td></lor<>	0.00066	0.0027	0.013	33	2
Phthalates	DnPP	Recycled water	<lor< td=""><td>0.038</td><td>0.13</td><td>0.55</td><td>33</td><td>3</td></lor<>	0.038	0.13	0.55	33	3
	DBP	Recycled water	<lor< td=""><td>0.011</td><td>0.036</td><td>0.2</td><td>33</td><td>6</td></lor<>	0.011	0.036	0.2	33	6
	DCHP	Recycled water	<lor< td=""><td>0.0024</td><td>0.013</td><td>0.08</td><td>33</td><td>1</td></lor<>	0.0024	0.013	0.08	33	1
	DEP	Recycled water	<lor< td=""><td>0.0090</td><td>0.025</td><td>0.1</td><td>33</td><td>4</td></lor<>	0.0090	0.025	0.1	33	4
	DIBP	Recycled water	<lor< td=""><td>0.011</td><td>0.035</td><td>0.17</td><td>33</td><td>4</td></lor<>	0.011	0.035	0.17	33	4
PPCPs	Benzotriazole	Recycled water	<lor< td=""><td>0.049</td><td>0.046</td><td>0.142</td><td>33</td><td>24</td></lor<>	0.049	0.046	0.142	33	24
		Reference	<lor< td=""><td>0.0027</td><td>0.0043</td><td>0.01</td><td>10</td><td>3</td></lor<>	0.0027	0.0043	0.01	10	3
	Benzotriazole 4,5methyl	Recycled water	<lor< td=""><td>0.0023</td><td>0.0050</td><td>0.019</td><td>33</td><td>8</td></lor<>	0.0023	0.0050	0.019	33	8
	Caffeine	Recycled water	<lor< td=""><td>0.0068</td><td>0.012</td><td>0.051</td><td>33</td><td>11</td></lor<>	0.0068	0.012	0.051	33	11
		Reference	<lor< td=""><td>0.050</td><td>0.17</td><td>0.61</td><td>12</td><td>1</td></lor<>	0.050	0.17	0.61	12	1
	Carbamazepine	Recycled water	<lor< td=""><td>0.00097</td><td>0.0038</td><td>0.021</td><td>33</td><td>3</td></lor<>	0.00097	0.0038	0.021	33	3
	DEET	Recycled water	<lor< td=""><td>0.0022</td><td>0.0078</td><td>0.06</td><td>66</td><td>14</td></lor<>	0.0022	0.0078	0.06	66	14
	Fluconazole	Recycled water	<lor< td=""><td>0.022</td><td>0.017</td><td>0.055</td><td>33</td><td>28</td></lor<>	0.022	0.017	0.055	33	28
	Galaxolide	Recycled water	<lor< td=""><td>0.0056</td><td>0.012</td><td>0.0416</td><td>33</td><td>6</td></lor<>	0.0056	0.012	0.0416	33	6
	Lamotrigine	Recycled water	<lor< td=""><td>0.0084</td><td>0.021</td><td>0.107</td><td>33</td><td>10</td></lor<>	0.0084	0.021	0.107	33	10
	Metoprolol	Recycled water	<lor< td=""><td>0.0017</td><td>0.0041</td><td>0.0176</td><td>33</td><td>6</td></lor<>	0.0017	0.0041	0.0176	33	6
	Paraben Propyl	Recycled water	<lor< td=""><td>0.0052</td><td>0.017</td><td>0.073</td><td>33</td><td>4</td></lor<>	0.0052	0.017	0.073	33	4
	Tebuconazole	Recycled water	<lor< td=""><td>0.0083</td><td>0.015</td><td>0.06</td><td>66</td><td>20</td></lor<>	0.0083	0.015	0.06	66	20
	Tebuconazole	Reference	<lor< td=""><td>0.0019</td><td>0.0065</td><td>0.028</td><td>22</td><td>2</td></lor<>	0.0019	0.0065	0.028	22	2
	Telmisartan	Recycled water	<lor< td=""><td>0.010</td><td>0.021</td><td>0.12</td><td>33</td><td>18</td></lor<>	0.010	0.021	0.12	33	18
	Triclosan	Recycled water	<lor< td=""><td>0.0026</td><td>0.0035</td><td>0.009</td><td>33</td><td>13</td></lor<>	0.0026	0.0035	0.009	33	13
		Reference	<lor< td=""><td>0.00091</td><td>0.0021</td><td>0.006</td><td>12</td><td>2</td></lor<>	0.00091	0.0021	0.006	12	2
SVOCs	Biphenyl	Recycled water	<lor< td=""><td>0.0042</td><td>0.011</td><td>0.06</td><td>33</td><td>5</td></lor<>	0.0042	0.011	0.06	33	5
EDCs	Bisphenol A	Recycled water	<lor< td=""><td>0.027</td><td>0.026</td><td>0.06</td><td>9</td><td>5</td></lor<>	0.027	0.026	0.06	9	5
		Reference	<lor< td=""><td>0.017</td><td>0.035</td><td>0.07</td><td>4</td><td>1</td></lor<>	0.017	0.035	0.07	4	1
		River water samples	0.05	0.075	0.035	0.1	2	2
PAHs	Acenaphthene	Recycled water	<lor< td=""><td>0.0066</td><td>0.0086</td><td>0.02</td><td>9</td><td>4</td></lor<>	0.0066	0.0086	0.02	9	4
		Reference	<lor< td=""><td>0.0025</td><td>0.005</td><td>0.01</td><td>4</td><td>1</td></lor<>	0.0025	0.005	0.01	4	1
		River water samples	0.01	0.02	0.014	0.03	2	2
	Acenaphthylene	Recycled water	<lor< td=""><td>0.012</td><td>0.015</td><td>0.04</td><td>9</td><td>4</td></lor<>	0.012	0.015	0.04	9	4
		Reference	<lor< td=""><td>0.01</td><td>0.0081</td><td>0.02</td><td>4</td><td>3</td></lor<>	0.01	0.0081	0.02	4	3
	C1 alkyl fluorenes	Recycled water	<lor< td=""><td>0.052</td><td>0.076</td><td>0.19</td><td>9</td><td>5</td></lor<>	0.052	0.076	0.19	9	5
	C2 alkyl fluorenes	Recycled water	<lor< td=""><td>0.028</td><td>0.056</td><td>0.17</td><td>9</td><td>4</td></lor<>	0.028	0.056	0.17	9	4
	C2 alkyl napthalenes	Recycled water	<lor< td=""><td>0.0066</td><td>0.016</td><td>0.05</td><td>9</td><td>2</td></lor<>	0.0066	0.016	0.05	9	2
		River water samples	<lor< td=""><td>0.03</td><td>0.042</td><td>0.06</td><td>2</td><td>1</td></lor<>	0.03	0.042	0.06	2	1
	C3 alkyl fluorenes	Recycled water	0.03	0.087	0.061	0.19	9	9
		Reference	0.01	0.022	0.012	0.04	4	4
		River water	0.02	0.065	0.063	0.11	2	2
		samples					_	_
								•

Recycled water use in irrigated crops 2023-2025

2024

	C3 alkyl napthalenes	Recycled water	<lor< td=""><td>0.0011</td><td>0.0033</td><td>0.01</td><td>9</td><td>1</td></lor<>	0.0011	0.0033	0.01	9	1
		River water samples	<lor< td=""><td>0.015</td><td>0.021</td><td>0.03</td><td>2</td><td>1</td></lor<>	0.015	0.021	0.03	2	1
	C3 alkyl phenanthrenes	Recycled water	<lor< td=""><td>0.0033</td><td>0.01</td><td>0.03</td><td>9</td><td>1</td></lor<>	0.0033	0.01	0.03	9	1
	Naphthalene	River water samples	<lor< td=""><td>0.01</td><td>0.014</td><td>0.02</td><td>2</td><td>1</td></lor<>	0.01	0.014	0.02	2	1
	1-Methyl naphthalene	Recycled water	<lor< td=""><td>0.0061</td><td>0.0091</td><td>0.03</td><td>18</td><td>7</td></lor<>	0.0061	0.0091	0.03	18	7
		River water samples	<lor< td=""><td>0.01</td><td>0.02</td><td>0.04</td><td>4</td><td>1</td></lor<>	0.01	0.02	0.04	4	1
	2-Methylnaphthalene	Recycled water	<lor< td=""><td>0.0027</td><td>0.0066</td><td>0.02</td><td>18</td><td>3</td></lor<>	0.0027	0.0066	0.02	18	3
		River water samples	<lor< td=""><td>0.01</td><td>0.02</td><td>0.04</td><td>4</td><td>1</td></lor<>	0.01	0.02	0.04	4	1
Pesticides	Atrazine	Recycled water	<lor< td=""><td>0.0022</td><td>0.0044</td><td>0.01</td><td>9</td><td>2</td></lor<>	0.0022	0.0044	0.01	9	2
	Azoxystrobin	Recycled water	<lor< td=""><td>0.0088</td><td>0.010</td><td>0.03</td><td>9</td><td>5</td></lor<>	0.0088	0.010	0.03	9	5
	Boscalid	Recycled water	<lor< td=""><td>0.011</td><td>0.014</td><td>0.04</td><td>9</td><td>4</td></lor<>	0.011	0.014	0.04	9	4
		Reference	<lor< td=""><td>0.017</td><td>0.012</td><td>0.03</td><td>4</td><td>3</td></lor<>	0.017	0.012	0.03	4	3
	Chlorantraniliprole	Recycled water	<lor< td=""><td>0.0055</td><td>0.0072</td><td>0.02</td><td>9</td><td>4</td></lor<>	0.0055	0.0072	0.02	9	4
		Reference	<lor< td=""><td>0.0025</td><td>0.005</td><td>0.01</td><td>4</td><td>1</td></lor<>	0.0025	0.005	0.01	4	1
	DCPA	Reference	<lor< td=""><td>0.0075</td><td>0.005</td><td>0.01</td><td>4</td><td>3</td></lor<>	0.0075	0.005	0.01	4	3
	DDD.p.p	Reference	<lor< td=""><td>0.005</td><td>0.01</td><td>0.02</td><td>4</td><td>1</td></lor<>	0.005	0.01	0.02	4	1
	DDT.p.p	Reference	<lor< td=""><td>0.02</td><td>0.04</td><td>0.08</td><td>4</td><td>1</td></lor<>	0.02	0.04	0.08	4	1
	Propiconazole	Recycled water	<lor< td=""><td>0.26</td><td>0.24</td><td>0.89</td><td>35</td><td>27</td></lor<>	0.26	0.24	0.89	35	27
		Reference River water	0.0022 <lor< td=""><td>0.0039 0.045</td><td>0.00098</td><td>0.0072 0.069</td><td>18 6</td><td>18 5</td></lor<>	0.0039 0.045	0.00098	0.0072 0.069	18 6	18 5
	Propyzamide	samples Recycled water	<lor< td=""><td>0.087</td><td>0.11</td><td>0.28</td><td>9</td><td>4</td></lor<>	0.087	0.11	0.28	9	4
	Fropyzamiae	Reference	<lor< td=""><td>0.015</td><td>0.01</td><td>0.28</td><td>4</td><td>3</td></lor<>	0.015	0.01	0.28	4	3
	Pyrimethanil	Recycled water	<lor< td=""><td>0.0011</td><td>0.0033</td><td>0.01</td><td>9</td><td>1</td></lor<>	0.0011	0.0033	0.01	9	1
	Simazine	Recycled water	<lor< td=""><td>0.11</td><td>0.057</td><td>0.18</td><td>9</td><td>8</td></lor<>	0.11	0.057	0.18	9	8
	omidante	Reference	0.01	0.017	0.005	0.02	4	4
		River water samples	0.01	0.015	0.0070	0.02	2	2
	Simetryn	Recycled water	<lor< td=""><td>0.0044</td><td>0.0052</td><td>0.01</td><td>9</td><td>4</td></lor<>	0.0044	0.0052	0.01	9	4
	Terbuthylazine	Recycled water	<lor< td=""><td>0.0044</td><td>0.0052</td><td>0.01</td><td>9</td><td>4</td></lor<>	0.0044	0.0052	0.01	9	4
	Thiabendazole	Recycled water	<lor< td=""><td>0.12</td><td>0.25</td><td>0.64</td><td>9</td><td>5</td></lor<>	0.12	0.25	0.64	9	5
		River water samples	<lor< td=""><td>0.023</td><td>0.033</td><td>0.047</td><td>2</td><td>1</td></lor<>	0.023	0.033	0.047	2	1
PFAS	PFBA	Recycled water	<lor< td=""><td>0.0010</td><td>0.0028</td><td>0.0091</td><td>40</td><td>5</td></lor<>	0.0010	0.0028	0.0091	40	5
	PFBS	Reference	<lor< td=""><td>0.00099</td><td>0.0010</td><td>0.0021</td><td>20</td><td>10</td></lor<>	0.00099	0.0010	0.0021	20	10
		River water samples	<lor< td=""><td>0.00093</td><td>0.00085</td><td>0.0016</td><td>5</td><td>3</td></lor<>	0.00093	0.00085	0.0016	5	3
	PFDA	Recycled water	<lor< td=""><td>0.0010</td><td>0.0011</td><td>0.0037</td><td>40</td><td>19</td></lor<>	0.0010	0.0011	0.0037	40	19
		River water samples	<lor< td=""><td>0.00017</td><td>0.00039</td><td>0.00089</td><td>5</td><td>1</td></lor<>	0.00017	0.00039	0.00089	5	1
	PFHxS	Recycled water	<lor< td=""><td>0.0046</td><td>0.0015</td><td>0.0071</td><td>40</td><td>38</td></lor<>	0.0046	0.0015	0.0071	40	38
		River water samples	<lor< td=""><td>0.0033</td><td>0.0025</td><td>0.0053</td><td>5</td><td>4</td></lor<>	0.0033	0.0025	0.0053	5	4
	PFNA	Recycled water	<lor< td=""><td>0.00087</td><td>0.0010</td><td>0.0032</td><td>40</td><td>18</td></lor<>	0.00087	0.0010	0.0032	40	18
	PFOA	Recycled water	<lor< td=""><td>0.0042</td><td>0.0024</td><td>0.0086</td><td>40</td><td>38</td></lor<>	0.0042	0.0024	0.0086	40	38
		Reference	<lor< td=""><td>0.00051</td><td>0.00058</td><td>0.0013</td><td>20</td><td>9</td></lor<>	0.00051	0.00058	0.0013	20	9
	550	River water samples	<lor< td=""><td>0.0017</td><td>0.0010</td><td>0.0026</td><td>5</td><td>4</td></lor<>	0.0017	0.0010	0.0026	5	4
	PFOS	Recycled water	<lor< td=""><td>0.0060</td><td>0.0021</td><td>0.010</td><td>40</td><td>38</td></lor<>	0.0060	0.0021	0.010	40	38

		Reference	<lor< th=""><th>0.0013</th><th>0.0014</th><th>0.0033</th><th>20</th><th>10</th></lor<>	0.0013	0.0014	0.0033	20	10
		River water samples	<lor< td=""><td>0.0040</td><td>0.0029</td><td>0.0071</td><td>5</td><td>4</td></lor<>	0.0040	0.0029	0.0071	5	4
Phthalates	DEHP	Recycled water	0.06	0.093	0.035	0.16	9	9
		Reference	0.03	0.047	0.035	0.1	4	4
		River water samples	0.08	0.17	0.12	0.26	2	2
	DBP	Recycled water	0.04	0.082	0.036	0.14	9	9
		Reference	<lor< td=""><td>0.025</td><td>0.043</td><td>0.09</td><td>4</td><td>2</td></lor<>	0.025	0.043	0.09	4	2
		River water samples	0.09	0.14	0.070	0.19	2	2
	DEP	Recycled water	<lor< td=""><td>0.0083</td><td>0.010</td><td>0.04</td><td>18</td><td>9</td></lor<>	0.0083	0.010	0.04	18	9
		Reference	<lor< td=""><td>0.0012</td><td>0.0035</td><td>0.01</td><td>8</td><td>1</td></lor<>	0.0012	0.0035	0.01	8	1
		River water samples	<lor< td=""><td>0.022</td><td>0.033</td><td>0.07</td><td>4</td><td>2</td></lor<>	0.022	0.033	0.07	4	2
PPCPs	Acetaminophen	Recycled water	<lor< td=""><td>0.12</td><td>0.36</td><td>1.1</td><td>9</td><td>1</td></lor<>	0.12	0.36	1.1	9	1
	Amoxicillin	Recycled water	<lor< td=""><td>0.05</td><td>0.1</td><td>0.25</td><td>9</td><td>2</td></lor<>	0.05	0.1	0.25	9	2
	Amphetamine	Recycled water	<lor< td=""><td>0.013</td><td>0.021</td><td>0.054</td><td>9</td><td>3</td></lor<>	0.013	0.021	0.054	9	3
	Atenolol	Recycled water	<lor< td=""><td>0.0021</td><td>0.0075</td><td>0.037</td><td>44</td><td>4</td></lor<>	0.0021	0.0075	0.037	44	4
	Benzotriazole	Recycled water	<lor< td=""><td>0.57</td><td>0.55</td><td>2.83</td><td>35</td><td>33</td></lor<>	0.57	0.55	2.83	35	33
		Reference	<lor< td=""><td>0.010</td><td>0.010</td><td>0.023</td><td>18</td><td>10</td></lor<>	0.010	0.010	0.023	18	10
		River water samples	<lor< td=""><td>0.14</td><td>0.11</td><td>0.35</td><td>6</td><td>5</td></lor<>	0.14	0.11	0.35	6	5
	Benzotriazole 4,5methyl	Recycled water	<lor< td=""><td>0.21</td><td>0.11</td><td>0.46</td><td>35</td><td>33</td></lor<>	0.21	0.11	0.46	35	33
		Reference	<lor< td=""><td>0.010</td><td>0.0098</td><td>0.021</td><td>18</td><td>10</td></lor<>	0.010	0.0098	0.021	18	10
		River water samples	<lor< td=""><td>0.052</td><td>0.028</td><td>0.086</td><td>6</td><td>5</td></lor<>	0.052	0.028	0.086	6	5
	Benzoylecgonine	Recycled water	<lor< td=""><td>0.012</td><td>0.014</td><td>0.038</td><td>9</td><td>6</td></lor<>	0.012	0.014	0.038	9	6
	Caffeine	Recycled water	<lor< td=""><td>0.13</td><td>0.12</td><td>0.38</td><td>44</td><td>27</td></lor<>	0.13	0.12	0.38	44	27
		Reference	<lor< td=""><td>0.017</td><td>0.018</td><td>0.052</td><td>22</td><td>11</td></lor<>	0.017	0.018	0.052	22	11
		River water samples	<lor< td=""><td>0.33</td><td>0.42</td><td>1.14</td><td>8</td><td>4</td></lor<>	0.33	0.42	1.14	8	4
	Carbamazepine	Recycled water	0.01	0.25	0.25	0.85	44	44
		Reference	<lor< td=""><td>0.0043</td><td>0.0048</td><td>0.010</td><td>22</td><td>10</td></lor<>	0.0043	0.0048	0.010	22	10
		River water samples	<lor< td=""><td>0.013</td><td>0.019</td><td>0.051</td><td>8</td><td>4</td></lor<>	0.013	0.019	0.051	8	4
	Cetrazine	Recycled water	<lor< td=""><td>0.007</td><td>0.019</td><td>0.058</td><td>9</td><td>2</td></lor<>	0.007	0.019	0.058	9	2
	Clindamycin	Recycled water	<lor< td=""><td>0.011</td><td>0.016</td><td>0.04</td><td>9</td><td>4</td></lor<>	0.011	0.016	0.04	9	4
	DEET	Recycled water	0.018	0.12	0.068	0.25	35	35
		Reference	0.013	0.030	0.013	0.046	18	18
		River water samples	0.018	0.038	0.019	0.076	6	6
	Desmethlycitalopram	Recycled water	<lor< td=""><td>0.015</td><td>0.011</td><td>0.029</td><td>9</td><td>6</td></lor<>	0.015	0.011	0.029	9	6
	Diatrizoate	Recycled water	<lor< td=""><td>0.025</td><td>0.070</td><td>0.3</td><td>44</td><td>6</td></lor<>	0.025	0.070	0.3	44	6
		Reference	<lor< td=""><td>0.0030</td><td>0.0080</td><td>0.028</td><td>22</td><td>3</td></lor<>	0.0030	0.0080	0.028	22	3
		River water samples	<lor< td=""><td>0.018</td><td>0.053</td><td>0.15</td><td>8</td><td>1</td></lor<>	0.018	0.053	0.15	8	1
	Diltiazem	Recycled water	<lor< td=""><td>0.00019</td><td>0.00069</td><td>0.0036</td><td>35</td><td>3</td></lor<>	0.00019	0.00069	0.0036	35	3
	Doxylamine	Recycled water	<lor< td=""><td>0.016</td><td>0.033</td><td>0.082</td><td>9</td><td>2</td></lor<>	0.016	0.033	0.082	9	2
	Fluconazole	Recycled water River water	0.0028	0.043 0.0070	0.026	0.10	35 6	35 5
		samples	<lor< td=""><td></td><td>0.0038</td><td>0.011</td><td></td><td></td></lor<>		0.0038	0.011		
	Gabapentin	Recycled water	<lor< td=""><td>0.066</td><td>0.17</td><td>0.8</td><td>44</td><td>21</td></lor<>	0.066	0.17	0.8	44	21

		Reference	<lor< th=""><th>0.0045</th><th>0.012</th><th>0.045</th><th>22</th><th>3</th></lor<>	0.0045	0.012	0.045	22	3
		River water samples	<lor< td=""><td>0.02</td><td>0.056</td><td>0.16</td><td>8</td><td>1</td></lor<>	0.02	0.056	0.16	8	1
	Lamotrigine	Recycled water	<lor< td=""><td>0.49</td><td>0.59</td><td>2.7</td><td>44</td><td>40</td></lor<>	0.49	0.59	2.7	44	40
		River water samples	<lor< td=""><td>0.12</td><td>0.10</td><td>0.33</td><td>8</td><td>6</td></lor<>	0.12	0.10	0.33	8	6
	Lidocaine	Recycled water	0.0028	0.013	0.018	0.10	35	35
		River water samples	<lor< td=""><td>0.017</td><td>0.013</td><td>0.027</td><td>6</td><td>5</td></lor<>	0.017	0.013	0.027	6	5
	Methamphetamine	Recycled water	<lor< td=""><td>0.0041</td><td>0.0052</td><td>0.013</td><td>9</td><td>4</td></lor<>	0.0041	0.0052	0.013	9	4
	Metoprolol	Recycled water	<lor< td=""><td>0.082</td><td>0.070</td><td>0.26</td><td>44</td><td>35</td></lor<>	0.082	0.070	0.26	44	35
		River water samples	<lor< td=""><td>0.0054</td><td>0.0088</td><td>0.021</td><td>8</td><td>3</td></lor<>	0.0054	0.0088	0.021	8	3
	Octocrylene	Recycled water	<lor< td=""><td>0.17</td><td>0.08</td><td>0.31</td><td>9</td><td>8</td></lor<>	0.17	0.08	0.31	9	8
		Reference	<lor< td=""><td>0.11</td><td>0.080</td><td>0.18</td><td>4</td><td>3</td></lor<>	0.11	0.080	0.18	4	3
	Oxazepam	Recycled water	<lor< td=""><td>0.015</td><td>0.021</td><td>0.05</td><td>9</td><td>4</td></lor<>	0.015	0.021	0.05	9	4
	Paraben Propyl	Recycled water	<lor< td=""><td>0.077</td><td>0.18</td><td>0.88</td><td>35</td><td>17</td></lor<>	0.077	0.18	0.88	35	17
		Reference	<lor< td=""><td>0.028</td><td>0.0097</td><td>0.044</td><td>18</td><td>17</td></lor<>	0.028	0.0097	0.044	18	17
		River water samples	<lor< td=""><td>0.00092</td><td>0.0022</td><td>0.0055</td><td>6</td><td>1</td></lor<>	0.00092	0.0022	0.0055	6	1
	Phenytoin	Recycled water	<lor< td=""><td>0.0081</td><td>0.010</td><td>0.026</td><td>9</td><td>4</td></lor<>	0.0081	0.010	0.026	9	4
	Tebuconazole	Recycled water	<lor< td=""><td>0.062</td><td>0.056</td><td>0.16</td><td>44</td><td>37</td></lor<>	0.062	0.056	0.16	44	37
		Reference River water	<lor <lor< td=""><td>0.0060 0.028</td><td>0.0049</td><td>0.014 0.062</td><td>22 8</td><td>14 5</td></lor<></lor 	0.0060 0.028	0.0049	0.014 0.062	22 8	14 5
		samples						
	Temazepam	Recycled water	<lor< td=""><td>0.051</td><td>0.047</td><td>0.13</td><td>9</td><td>7</td></lor<>	0.051	0.047	0.13	9	7
	Tramadol	Recycled water	<lor< td=""><td>0.018</td><td>0.0089</td><td>0.043</td><td>44</td><td>40</td></lor<>	0.018	0.0089	0.043	44	40
		River water samples	<lor< td=""><td>0.012</td><td>0.012</td><td>0.026</td><td>8</td><td>5</td></lor<>	0.012	0.012	0.026	8	5
	Valsartan	Recycled water	<lor< td=""><td>0.053</td><td>0.042</td><td>0.11</td><td>9</td><td>7</td></lor<>	0.053	0.042	0.11	9	7
	Venlafaxine	Recycled water	<lor< td=""><td>0.00013</td><td>0.00090</td><td>0.006</td><td>44</td><td>1</td></lor<>	0.00013	0.00090	0.006	44	1
SVOCs	Benzaldehyde	Recycled water	0.01	0.16	0.23	0.61	9	9
		Reference River water	<lor 0.01</lor 	0.01 0.085	0.011 0.10	0.02 0.16	4 2	2
	C1 allord binds and	samples						
	C1 alkyl biphenyls	Recycled water River water	<lor <lor< td=""><td>0.001 0.01</td><td>0.0033 0.014</td><td>0.01</td><td>9</td><td>1</td></lor<></lor 	0.001 0.01	0.0033 0.014	0.01	9	1
	C1 alkyl	samples Recycled water	<lor< td=""><td>0.0011</td><td>0.0033</td><td>0.01</td><td>9</td><td>1</td></lor<>	0.0011	0.0033	0.01	9	1
	dibenzothiophenes C2 alkyl biphenyls	Recycled water	<lor< td=""><td>0.014</td><td>0.026</td><td>0.08</td><td>9</td><td>4</td></lor<>	0.014	0.026	0.08	9	4
	C3 alkyl biphenyls	Recycled water	<lor< td=""><td>0.0088</td><td>0.026</td><td>0.08</td><td>9</td><td>1</td></lor<>	0.0088	0.026	0.08	9	1
	Mestranol	Recycled water	<lor< td=""><td>2.55</td><td>10.84</td><td>46</td><td>18</td><td>1</td></lor<>	2.55	10.84	46	18	1
	Phenol	Recycled water	<lor< td=""><td>0.22</td><td>0.66</td><td>2</td><td>9</td><td>3</td></lor<>	0.22	0.66	2	9	3
	THEHOI	Reference	<lor< td=""><td>0.0025</td><td>0.005</td><td>0.01</td><td>4</td><td>1</td></lor<>	0.0025	0.005	0.01	4	1
	2,4.Di.tert.butyl.phenol	Recycled water	15	19.11	4.53	27	9	9
	2,4.Di.tert.butyi.phenor	Reference	2.5	10.7	12.31	29	4	4
		River water samples	17	28.5	16.26	40	2	2
	2,6.Dichlorophenol	Recycled water	<lor< td=""><td>0.0011</td><td>0.0032</td><td>0.01</td><td>18</td><td>2</td></lor<>	0.0011	0.0032	0.01	18	2
	3.Ethyl.phenol	Recycled water	<lor< td=""><td>16.68</td><td>49.99</td><td>150</td><td>9</td><td>5</td></lor<>	16.68	49.99	150	9	5
		Reference	<lor< td=""><td>0.01</td><td>0.02</td><td>0.04</td><td>4</td><td>1</td></lor<>	0.01	0.02	0.04	4	1
		River water	0.01	0.015	0.0070	0.02	2	2
		samples	0.01	0.010	0.0070	0.02	-	

EPAVICTORIA

7,9.Di.tert.butyl.1.oxaspiro .4.5.deca.6.9.diene.2.8.dione	Recycled water	<lor< th=""><th>0.091</th><th>0.11</th><th>0.29</th><th>9</th><th>4</th></lor<>	0.091	0.11	0.29	9	4
	Reference	<lor< td=""><td>0.042</td><td>0.034</td><td>0.07</td><td>4</td><td>3</td></lor<>	0.042	0.034	0.07	4	3

Table S5. Summary statistics for individual emerging contaminants detected in soil samples for each sampling year and at each type of site (i.e., recycled water irrigated site or reference site). Where a chemical was not detected in any samples at a sampling point, it was excluded from this table. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

Soil sa	mples								
Year	Analyte group	Analyte	Site type	Min (μg/kg)	Mean (μg/kg)	SD (μg/kg)	Max (μg/kg)	Total sample size	Detections sample size
2023	EDCs	Progesterone	Recycled water	<lor< td=""><td>0.045</td><td>0.27</td><td>1.7</td><td>37</td><td>1</td></lor<>	0.045	0.27	1.7	37	1
			Reference	<lor< td=""><td>0.10</td><td>0.36</td><td>1.2</td><td>11</td><td>1</td></lor<>	0.10	0.36	1.2	11	1
		tert-octyl phenol	Recycled water	<lor< td=""><td>0.16</td><td>0.71</td><td>3.1</td><td>37</td><td>2</td></lor<>	0.16	0.71	3.1	37	2
			Reference	<lor< td=""><td>1.58</td><td>2.38</td><td>6</td><td>11</td><td>5</td></lor<>	1.58	2.38	6	11	5
	PAHs	Acenaphthene	Recycled water	<lor< td=""><td>0.17</td><td>0.54</td><td>2.2</td><td>33</td><td>4</td></lor<>	0.17	0.54	2.2	33	4
		Acenaphthylene	Recycled water	<lor< td=""><td>0.024</td><td>0.083</td><td>0.4</td><td>33</td><td>3</td></lor<>	0.024	0.083	0.4	33	3
		Anthracene	Recycled water	<lor< td=""><td>0.52</td><td>0.81</td><td>2.5</td><td>33</td><td>12</td></lor<>	0.52	0.81	2.5	33	12
			Reference	<lor< td=""><td>0.38</td><td>0.90</td><td>2.7</td><td>9</td><td>2</td></lor<>	0.38	0.90	2.7	9	2
		Benz(a)anthracene	Recycled water	<lor< td=""><td>3.43</td><td>8.83</td><td>49</td><td>33</td><td>19</td></lor<>	3.43	8.83	49	33	19
			Reference	<lor< td=""><td>4.85</td><td>5.70</td><td>14</td><td>9</td><td>6</td></lor<>	4.85	5.70	14	9	6
		Benzo(a)pyrene	Recycled water	<lor< td=""><td>4.25</td><td>11.57</td><td>65</td><td>33</td><td>21</td></lor<>	4.25	11.57	65	33	21
			Reference	<lor< td=""><td>6.6</td><td>7.74</td><td>21</td><td>9</td><td>6</td></lor<>	6.6	7.74	21	9	6
		Benzo(b,J)fluoranthene	Recycled water	<lor< td=""><td>3.85</td><td>10.57</td><td>59</td><td>33</td><td>22</td></lor<>	3.85	10.57	59	33	22
			Reference	<lor< td=""><td>6.2</td><td>6.74</td><td>16</td><td>9</td><td>6</td></lor<>	6.2	6.74	16	9	6
		Benzo(c)phenanthrene	Recycled water	<lor< td=""><td>0.060</td><td>0.24</td><td>1.1</td><td>33</td><td>2</td></lor<>	0.060	0.24	1.1	33	2
			Reference	<lor< td=""><td>0.044</td><td>0.13</td><td>0.4</td><td>9</td><td>1</td></lor<>	0.044	0.13	0.4	9	1
		Benzo(e)pyrene	Recycled water	<lor< td=""><td>2.76</td><td>7.24</td><td>40</td><td>33</td><td>21</td></lor<>	2.76	7.24	40	33	21
			Reference	<lor< td=""><td>4.03</td><td>4.34</td><td>12</td><td>9</td><td>6</td></lor<>	4.03	4.34	12	9	6
		Benzo(ghi)perylene	Recycled water	<lor< td=""><td>4.55</td><td>10.26</td><td>40</td><td>33</td><td>20</td></lor<>	4.55	10.26	40	33	20
			Reference	<lor< td=""><td>16.72</td><td>19.50</td><td>50</td><td>9</td><td>7</td></lor<>	16.72	19.50	50	9	7
		Benzo(k)fluoranthene	Recycled water	<lor< td=""><td>0.95</td><td>4.05</td><td>23</td><td>33</td><td>8</td></lor<>	0.95	4.05	23	33	8
			Reference	<lor< td=""><td>0.26</td><td>0.8</td><td>2.4</td><td>9</td><td>1</td></lor<>	0.26	0.8	2.4	9	1
		C1 alkyl phenanthrenes	Recycled water	<lor< td=""><td>0.78</td><td>2.90</td><td>16</td><td>33</td><td>4</td></lor<>	0.78	2.90	16	33	4
			Reference	<lor< td=""><td>0.68</td><td>1.39</td><td>3.7</td><td>9</td><td>2</td></lor<>	0.68	1.39	3.7	9	2
		C2 alkyl napthalenes	Recycled water	<lor< td=""><td>9.04</td><td>10.09</td><td>31</td><td>33</td><td>26</td></lor<>	9.04	10.09	31	33	26
			Reference	<lor< td=""><td>9.66</td><td>9.94</td><td>25</td><td>9</td><td>8</td></lor<>	9.66	9.94	25	9	8
		C2 alkyl phenanthrenes	Reference	<lor< td=""><td>0.2</td><td>0.6</td><td>1.8</td><td>9</td><td>1</td></lor<>	0.2	0.6	1.8	9	1
			Reference	<lor< td=""><td>0.13</td><td>0.4</td><td>1.2</td><td>9</td><td>1</td></lor<>	0.13	0.4	1.2	9	1
		Chrysene	Recycled water	<lor< td=""><td>4.97</td><td>12.98</td><td>74</td><td>33</td><td>28</td></lor<>	4.97	12.98	74	33	28
			Reference	<lor< td=""><td>7.85</td><td>6.41</td><td>19</td><td>9</td><td>8</td></lor<>	7.85	6.41	19	9	8
		Dibenz(ah)anthracene	Recycled water	<lor< td=""><td>3.63</td><td>20.88</td><td>120</td><td>33</td><td>1</td></lor<>	3.63	20.88	120	33	1
			Reference	<lor< td=""><td>28.11</td><td>40.39</td><td>100</td><td>9</td><td>4</td></lor<>	28.11	40.39	100	9	4
		Dibenzo(a.e)pyrene	Recycled water	<lor< td=""><td>0.5</td><td>2.8</td><td>18</td><td>66</td><td>2</td></lor<>	0.5	2.8	18	66	2
			Reference	<lor< td=""><td>0.23</td><td>0.73</td><td>2.9</td><td>18</td><td>2</td></lor<>	0.23	0.73	2.9	18	2
		Dibenzo(a.i)pyrene	Reference	<lor< td=""><td>0.61</td><td>1.25</td><td>3.4</td><td>9</td><td>2</td></lor<>	0.61	1.25	3.4	9	2

	Fluoranthene	Recycled water	<lor< td=""><td>6.40</td><td>11.67</td><td>66</td><td>33</td><td>29</td></lor<>	6.40	11.67	66	33	29
		Reference	<lor< td=""><td>13.86</td><td>11.55</td><td>33</td><td>9</td><td>8</td></lor<>	13.86	11.55	33	9	8
	Fluorene	Recycled water	<lor< td=""><td>0.75</td><td>1.52</td><td>6</td><td>33</td><td>10</td></lor<>	0.75	1.52	6	33	10
		Reference	<lor< td=""><td>0.033</td><td>0.1</td><td>0.3</td><td>9</td><td>1</td></lor<>	0.033	0.1	0.3	9	1
	Indeno(1.2.3.c.d)pyrene	Recycled water	<lor< td=""><td>2.54</td><td>6.23</td><td>35</td><td>33</td><td>19</td></lor<>	2.54	6.23	35	33	19
		Reference	<lor< td=""><td>5.75</td><td>5.28</td><td>14</td><td>9</td><td>7</td></lor<>	5.75	5.28	14	9	7
	Naphthalene	Recycled water	<lor< td=""><td>20.05</td><td>29.47</td><td>110</td><td>33</td><td>31</td></lor<>	20.05	29.47	110	33	31
		Reference	<lor< td=""><td>33.68</td><td>31.75</td><td>75</td><td>9</td><td>8</td></lor<>	33.68	31.75	75	9	8
	Perylene	Recycled water	<lor< td=""><td>0.5</td><td>2.09</td><td>12</td><td>33</td><td>6</td></lor<>	0.5	2.09	12	33	6
		Reference	<lor< td=""><td>0.36</td><td>0.59</td><td>1.6</td><td>9</td><td>3</td></lor<>	0.36	0.59	1.6	9	3
	Phenanthrene	Recycled water	<lor< td=""><td>2.60</td><td>3.87</td><td>19</td><td>33</td><td>26</td></lor<>	2.60	3.87	19	33	26
		Reference	<lor< td=""><td>6.55</td><td>5.77</td><td>16</td><td>9</td><td>7</td></lor<>	6.55	5.77	16	9	7
	Pyrene	Recycled water	<lor< td=""><td>12.63</td><td>15.44</td><td>74</td><td>33</td><td>30</td></lor<>	12.63	15.44	74	33	30
		Reference	<lor< td=""><td>18.3</td><td>11.05</td><td>36</td><td>9</td><td>8</td></lor<>	18.3	11.05	36	9	8
	1-Methyl naphthalene	Recycled water	<lor< td=""><td>3.9</td><td>4.29</td><td>12</td><td>33</td><td>24</td></lor<>	3.9	4.29	12	33	24
		Reference	<lor< td=""><td>5.7</td><td>6.18</td><td>16</td><td>9</td><td>5</td></lor<>	5.7	6.18	16	9	5
	2-Methyl naphthalene	Recycled water	<lor< td=""><td>9.76</td><td>9.97</td><td>30</td><td>33</td><td>26</td></lor<>	9.76	9.97	30	33	26
		Reference	<lor< td=""><td>12.56</td><td>12.47</td><td>32</td><td>9</td><td>7</td></lor<>	12.56	12.47	32	9	7
	5-Nitroacenaphthene	Recycled water	<lor< td=""><td>0.42</td><td>2.43</td><td>14</td><td>33</td><td>1</td></lor<>	0.42	2.43	14	33	1
Pesticides	Azoxystrobin	Recycled water	<lor< td=""><td>51.21</td><td>62.64</td><td>200</td><td>33</td><td>27</td></lor<>	51.21	62.64	200	33	27
		Reference	<lor< td=""><td>12.08</td><td>34.10</td><td>103</td><td>9</td><td>4</td></lor<>	12.08	34.10	103	9	4
	Boscalid	Recycled water	<lor< td=""><td>56.39</td><td>50.0</td><td>130</td><td>33</td><td>20</td></lor<>	56.39	50.0	130	33	20
		Reference	<lor< td=""><td>7.3</td><td>21.62</td><td>65</td><td>9</td><td>3</td></lor<>	7.3	21.62	65	9	3
	Carbaryl	Recycled water	<lor< td=""><td>0.018</td><td>0.10</td><td>0.6</td><td>33</td><td>1</td></lor<>	0.018	0.10	0.6	33	1
	·	Reference	<lor< td=""><td>0.055</td><td>0.16</td><td>0.5</td><td>9</td><td>1</td></lor<>	0.055	0.16	0.5	9	1
	Chlorantraniliprole	Recycled water	<lor< td=""><td>9.41</td><td>8.30</td><td>23</td><td>33</td><td>21</td></lor<>	9.41	8.30	23	33	21
	·	Reference	<lor< td=""><td>1.94</td><td>5.64</td><td>17</td><td>9</td><td>2</td></lor<>	1.94	5.64	17	9	2
	Chlorpyriphos	Recycled water	<lor< td=""><td>0.49</td><td>1.11</td><td>5.6</td><td>33</td><td>11</td></lor<>	0.49	1.11	5.6	33	11
	., .	Reference	<lor< td=""><td>0.6</td><td>1.04</td><td>2.5</td><td>9</td><td>3</td></lor<>	0.6	1.04	2.5	9	3
	Cyazofamid	Recycled water	<lor< td=""><td>3.88</td><td>10.24</td><td>51</td><td>33</td><td>12</td></lor<>	3.88	10.24	51	33	12
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Reference	<lor< td=""><td>1.7</td><td>4.97</td><td>15</td><td>9</td><td>2</td></lor<>	1.7	4.97	15	9	2
	Cyprodinil	Recycled water	<lor< td=""><td>18.77</td><td>37.97</td><td>200</td><td>33</td><td>20</td></lor<>	18.77	37.97	200	33	20
	,,	Reference	<lor< td=""><td>0.48</td><td>1.46</td><td>4.4</td><td>9</td><td>1</td></lor<>	0.48	1.46	4.4	9	1
	DDD.p.p	Recycled water	<lor< td=""><td>0.86</td><td>1.77</td><td>5.9</td><td>33</td><td>7</td></lor<>	0.86	1.77	5.9	33	7
	DDE.p.p	Recycled water	<lor< td=""><td>24.24</td><td>49.93</td><td>150</td><td>33</td><td>11</td></lor<>	24.24	49.93	150	33	11
	DDT.p.p	Recycled water	<lor< td=""><td>0.039</td><td>0.12</td><td>0.5</td><td>33</td><td>3</td></lor<>	0.039	0.12	0.5	33	3
	Deltamethrin	Recycled water	<lor< td=""><td>0.27</td><td>0.94</td><td>4.6</td><td>33</td><td>3</td></lor<>	0.27	0.94	4.6	33	3
	Diflufenican	Recycled water	<lor< td=""><td>0.93</td><td>3.14</td><td>14</td><td>33</td><td>7</td></lor<>	0.93	3.14	14	33	7
	Epoxiconazole	Reference	<lor< td=""><td>0.077</td><td>0.23</td><td>0.7</td><td>9</td><td>1</td></lor<>	0.077	0.23	0.7	9	1
	Ethofumesate	Recycled water	<lor< td=""><td>0.086</td><td>0.25</td><td>1.2</td><td>33</td><td>4</td></lor<>	0.086	0.25	1.2	33	4
		Reference	<lor< td=""><td>146.33</td><td>266.78</td><td>650</td><td>9</td><td>5</td></lor<>	146.33	266.78	650	9	5
	Fipronil	Recycled water	<lor< td=""><td>0.51</td><td>0.92</td><td>4.1</td><td>33</td><td>13</td></lor<>	0.51	0.92	4.1	33	13
		Reference	<lor< td=""><td>10.33</td><td>21.16</td><td>57</td><td>9</td><td>2</td></lor<>	10.33	21.16	57	9	2
	Floupicolide	Recycled water	<lor< td=""><td>70.06</td><td>90.42</td><td>300</td><td>33</td><td>20</td></lor<>	70.06	90.42	300	33	20
		Reference	<lor< td=""><td>112.22</td><td>184.37</td><td>480</td><td>9</td><td>3</td></lor<>	112.22	184.37	480	9	3
	Flubendiamide	Recycled water	<lor< td=""><td>39.66</td><td>37.46</td><td>120</td><td>33</td><td>20</td></lor<>	39.66	37.46	120	33	20
		Reference	<lor< td=""><td>7</td><td>21</td><td>63</td><td>9</td><td>1</td></lor<>	7	21	63	9	1
	Fludioxonil	Recycled water	<lor< td=""><td>53.6</td><td>58.72</td><td>270</td><td>33</td><td>20</td></lor<>	53.6	58.72	270	33	20
		,		00.0	33 <u>2</u>			7

	Reference	<lor< th=""><th>4.77</th><th>14.33</th><th>43</th><th>9</th><th>1</th></lor<>	4.77	14.33	43	9	1
Flutriafol	Recycled water	<lor< td=""><td>0.28</td><td>0.36</td><td>1.3</td><td>33</td><td>15</td></lor<>	0.28	0.36	1.3	33	15
	Reference	<lor< td=""><td>0.36</td><td>0.30</td><td>1</td><td>9</td><td>7</td></lor<>	0.36	0.30	1	9	7
Imidacloprid	Recycled water	<lor< td=""><td>54.86</td><td>74.19</td><td>270</td><td>33</td><td>26</td></lor<>	54.86	74.19	270	33	26
	Reference	<lor< td=""><td>22.43</td><td>43.40</td><td>116</td><td>9</td><td>3</td></lor<>	22.43	43.40	116	9	3
Indoxacarb	Recycled water	<lor< td=""><td>26.33</td><td>28.55</td><td>92</td><td>33</td><td>20</td></lor<>	26.33	28.55	92	33	20
	Reference	<lor< td=""><td>5</td><td>15</td><td>45</td><td>9</td><td>1</td></lor<>	5	15	45	9	1
Metalaxyl	Recycled water	<lor< td=""><td>0.20</td><td>0.44</td><td>1.6</td><td>33</td><td>7</td></lor<>	0.20	0.44	1.6	33	7
, , , , , , , , , , , , , , , , , , , ,	Reference	<lor< td=""><td>0.76</td><td>1.6</td><td>4.5</td><td>9</td><td>2</td></lor<>	0.76	1.6	4.5	9	2
Methomyl	Recycled water	<lor< td=""><td>0.03</td><td>0.10</td><td>0.4</td><td>33</td><td>3</td></lor<>	0.03	0.10	0.4	33	3
Metolachlor	Recycled water	<lor< td=""><td>7.46</td><td>11.98</td><td>60</td><td>33</td><td>20</td></lor<>	7.46	11.98	60	33	20
	Reference	<lor< td=""><td>4.76</td><td>7.43</td><td>18</td><td>9</td><td>3</td></lor<>	4.76	7.43	18	9	3
Novaluron	Recycled water	<lor< td=""><td>6.9</td><td>7.1</td><td>24</td><td>33</td><td>20</td></lor<>	6.9	7.1	24	33	20
	Reference	<lor< td=""><td>1.22</td><td>3.66</td><td>11</td><td>9</td><td>1</td></lor<>	1.22	3.66	11	9	1
Oxadixyl	Recycled water	<lor< td=""><td>0.18</td><td>0.3</td><td>1.2</td><td>33</td><td>8</td></lor<>	0.18	0.3	1.2	33	8
Pendimethalin	Recycled water	<lor< td=""><td>129.393</td><td>184.80</td><td>740</td><td>33</td><td>20</td></lor<>	129.393	184.80	740	33	20
	Reference	<lor< td=""><td>57.77</td><td>88.70</td><td>200</td><td>9</td><td>3</td></lor<>	57.77	88.70	200	9	3
Pentachlorophenol	Recycled water	<lor< td=""><td>0.33</td><td>1.47</td><td>8.3</td><td>33</td><td>3</td></lor<>	0.33	1.47	8.3	33	3
Prochloraz	Recycled water	<lor< td=""><td>4.19</td><td>4.49</td><td>13</td><td>33</td><td>20</td></lor<>	4.19	4.49	13	33	20
	Reference	<lor< td=""><td>0.64</td><td>1.93</td><td>5.8</td><td>9</td><td>1</td></lor<>	0.64	1.93	5.8	9	1
Procymidone	Recycled water	<lor< td=""><td>0.12</td><td>0.27</td><td>1</td><td>33</td><td>6</td></lor<>	0.12	0.27	1	33	6
Prometryn	Recycled water	<lor< td=""><td>96.24</td><td>233.75</td><td>1100</td><td>33</td><td>13</td></lor<>	96.24	233.75	1100	33	13
,	Reference	<lor< td=""><td>34.44</td><td>103.33</td><td>310</td><td>9</td><td>1</td></lor<>	34.44	103.33	310	9	1
Propamocarb	Reference	<lor< td=""><td>0.033</td><td>0.1</td><td>0.3</td><td>9</td><td>1</td></lor<>	0.033	0.1	0.3	9	1
Propiconazole	Recycled water	<lor< td=""><td>0.23</td><td>0.44</td><td>1.9</td><td>66</td><td>19</td></lor<>	0.23	0.44	1.9	66	19
.,	Reference	<lor< td=""><td>0.077</td><td>0.22</td><td>0.8</td><td>18</td><td>2</td></lor<>	0.077	0.22	0.8	18	2
Propyzamide	Recycled water	<lor< td=""><td>2.34</td><td>3.00</td><td>14</td><td>33</td><td>20</td></lor<>	2.34	3.00	14	33	20
1,7	Reference	<lor< td=""><td>0.6</td><td>1.96</td><td>5.9</td><td>9</td><td>1</td></lor<>	0.6	1.96	5.9	9	1
Pymetrozine	Recycled water	<lor< td=""><td>0.024</td><td>0.10</td><td>0.5</td><td>33</td><td>2</td></lor<>	0.024	0.10	0.5	33	2
•	Reference	<lor< td=""><td>0.066</td><td>0.2</td><td>0.6</td><td>9</td><td>1</td></lor<>	0.066	0.2	0.6	9	1
Pyraclostrobin	Recycled water	<lor< td=""><td>17.44</td><td>23.84</td><td>82</td><td>33</td><td>20</td></lor<>	17.44	23.84	82	33	20
•	Reference	<lor< td=""><td>51.44</td><td>93.38</td><td>220</td><td>9</td><td>3</td></lor<>	51.44	93.38	220	9	3
Spinosad A	Recycled water	<lor< td=""><td>0.018</td><td>0.072</td><td>0.3</td><td>33</td><td>2</td></lor<>	0.018	0.072	0.3	33	2
Spinosad D	Recycled water	<lor< td=""><td>0.087</td><td>0.1</td><td>0.6</td><td>33</td><td>7</td></lor<>	0.087	0.1	0.6	33	7
•	Reference	<lor< td=""><td>0.41</td><td>0.73</td><td>1.8</td><td>9</td><td>3</td></lor<>	0.41	0.73	1.8	9	3
Spirotetramat	Recycled water	<lor< td=""><td>0.030</td><td>0.12</td><td>0.6</td><td>33</td><td>2</td></lor<>	0.030	0.12	0.6	33	2
Spirotetramat.enol	Recycled water	<lor< td=""><td>0.1</td><td>0.21</td><td>0.8</td><td>33</td><td>7</td></lor<>	0.1	0.21	0.8	33	7
Tebuthiuron	Recycled water	<lor< td=""><td>0.23</td><td>0.3</td><td>1.1</td><td>33</td><td>13</td></lor<>	0.23	0.3	1.1	33	13
	Reference	<lor< td=""><td>0.033</td><td>0.1</td><td>0.3</td><td>9</td><td>1</td></lor<>	0.033	0.1	0.3	9	1
Thiabendazole	Recycled water	<lor< td=""><td>0.0090</td><td>0.052</td><td>0.3</td><td>33</td><td>1</td></lor<>	0.0090	0.052	0.3	33	1
Triadimenol	Reference	<lor< td=""><td>0.022</td><td>0.094</td><td>0.4</td><td>18</td><td>1</td></lor<>	0.022	0.094	0.4	18	1
Trifloxystrobin	Recycled water	<lor< td=""><td>0.22</td><td>0.33</td><td>1.1</td><td>33</td><td>12</td></lor<>	0.22	0.33	1.1	33	12
,	Reference	<lor< td=""><td>0.066</td><td>0.2</td><td>0.6</td><td>9</td><td>1</td></lor<>	0.066	0.2	0.6	9	1
Triflumuron	Reference	<lor< td=""><td>0.077</td><td>0.1</td><td>0.4</td><td>9</td><td>2</td></lor<>	0.077	0.1	0.4	9	2
Trifluralin	Recycled water	<lor< td=""><td>0.17</td><td>0.32</td><td>0.8</td><td>33</td><td>8</td></lor<>	0.17	0.32	0.8	33	8
PFOA	Recycled water	<lor< td=""><td>1.42</td><td>2.76</td><td>10.6</td><td>33</td><td>8</td></lor<>	1.42	2.76	10.6	33	8
PFOS	Recycled water	<lor< td=""><td>2.70</td><td>2.57</td><td>8.46</td><td>33</td><td>25</td></lor<>	2.70	2.57	8.46	33	25
	Reference	<lor< td=""><td>1.21</td><td>1.45</td><td>3.05</td><td>9</td><td>4</td></lor<>	1.21	1.45	3.05	9	4
							_

Recycled water use in irrigated crops 2023-2025

PFAS

BEBP	Phthalates	BBP	Reference	<lor< th=""><th>0.12</th><th>0.36</th><th>1.1</th><th>9</th><th>1</th></lor<>	0.12	0.36	1.1	9	1
DEHP		BEBP	Recycled water	<lor< td=""><td>5.15</td><td>29.59</td><td>170</td><td>33</td><td>1</td></lor<>	5.15	29.59	170	33	1
Part		DMEP	Recycled water	<lor< td=""><td>0.66</td><td>3.82</td><td>22</td><td>33</td><td>1</td></lor<>	0.66	3.82	22	33	1
DNOP		DEHP	Recycled water	<lor< td=""><td>21.78</td><td>22.92</td><td>71</td><td>33</td><td>26</td></lor<>	21.78	22.92	71	33	26
DBP			Reference	<lor< td=""><td>28.711</td><td>16.97</td><td>46</td><td>9</td><td>8</td></lor<>	28.711	16.97	46	9	8
DBP		DnOP	Recycled water	<lor< td=""><td>7.18</td><td>12.17</td><td>38</td><td>33</td><td>13</td></lor<>	7.18	12.17	38	33	13
DEP			Reference	<lor< td=""><td>15.88</td><td>15.31</td><td>33</td><td>9</td><td>5</td></lor<>	15.88	15.31	33	9	5
PEP		DBP	Recycled water	<lor< td=""><td>14.58</td><td>14.44</td><td>50</td><td>33</td><td>27</td></lor<>	14.58	14.44	50	33	27
Pich Per Per			Reference	<lor< td=""><td>10.31</td><td>12.46</td><td>40</td><td>9</td><td>8</td></lor<>	10.31	12.46	40	9	8
DIEP		DEP	Recycled water	<lor< td=""><td>0.61</td><td>1.31</td><td>5.4</td><td>33</td><td>9</td></lor<>	0.61	1.31	5.4	33	9
PPCPs			Reference	<lor< td=""><td>0.54</td><td>0.95</td><td>2.4</td><td>9</td><td>3</td></lor<>	0.54	0.95	2.4	9	3
PPCPs		DIBP	Recycled water	<lor< td=""><td>4.97</td><td>6.8</td><td>26</td><td>33</td><td>23</td></lor<>	4.97	6.8	26	33	23
PPCPs			Reference	<lor< td=""><td>6.75</td><td>8.1</td><td>20</td><td>9</td><td>7</td></lor<>	6.75	8.1	20	9	7
PPCPs		DMP	Recycled water	<lor< td=""><td>0.34</td><td>0.95</td><td>4.4</td><td>33</td><td>5</td></lor<>	0.34	0.95	4.4	33	5
Reference LOR 0.1 0.48 1.6 11 1 1 1 1 1 1 1 1			Reference	<lor< td=""><td>0.1</td><td>0.3</td><td>0.9</td><td>9</td><td>1</td></lor<>	0.1	0.3	0.9	9	1
Retoprofen Recycled water LOR Commons Commons	PPCPs	Carbamazepine	Recycled water	<lor< td=""><td>0.21</td><td>0.6</td><td>2.3</td><td>37</td><td>4</td></lor<>	0.21	0.6	2.3	37	4
Lamotrigine Recycled water 4.0R 0.11 0.52 3 37 2			Reference	<lor< td=""><td>0.1</td><td>0.48</td><td>1.6</td><td>11</td><td>1</td></lor<>	0.1	0.48	1.6	11	1
Paraben methyl Recycled water 6.9 17.27 15.46 40 4 4 2 2 2 2 2 2 2 2		Ketoprofen	Recycled water	<lor< td=""><td>2.27</td><td>13.80</td><td>84</td><td>37</td><td>1</td></lor<>	2.27	13.80	84	37	1
SVOCs a.Naphthylamine Reference 8.2 12.6 6.22 17 2 2 SVOCs a.Naphthylamine Recycled water 4.0R 0.11 0.66 3.8 33 1 a.Terpineal Recycled water 4.0R 2.62 9.85 45 33 4 Acetophenone Recycled water 4.0R 3.21 5.84 20 33 10 Reference 4.0R 9.88 9.79 23 9 5 Benzothiazole Reference 4.0R 493.88 378.30 980 9 8 Biphenyl Recycled water 4.0R 2.72 4.04 14 33 12 Reference 4.0R 0.17 0.53 1.6 9 1 Bis 2.chloroethoxy.methane Reference 4.0R 0.15 0.32 0.9 9 2 Bis 2.chloroethyl.ether Reference 4.0R 0.17 0.53 1.6 9 1 <td></td> <td>Lamotrigine</td> <td>Recycled water</td> <td><lor< td=""><td>0.11</td><td>0.52</td><td>3</td><td>37</td><td>2</td></lor<></td>		Lamotrigine	Recycled water	<lor< td=""><td>0.11</td><td>0.52</td><td>3</td><td>37</td><td>2</td></lor<>	0.11	0.52	3	37	2
SVOCs a.Naphthylamine Recycled water 4.OR 0.11 0.66 3.8 33 1 a.Terpineol Recycled water 4.OR 2.62 9.85 45 33 4 Acetophenone Recycled water 4.OR 3.21 5.84 20 33 10 Reference 4.OR 9.88 9.79 23 9 5 Benzothiazole Reference 4.OR 493.88 378.30 980 9 8 Bisphenyl Recycled water 4.OR 2.93 2.04 14 33 12 Reference 4.OR 2.88 2.84 7 9 5 Bis.2-chloroethoxy.methane Reference 4.OR 0.17 0.53 1.6 9 1 Bis.2-chloroethyl.ether Reference 4.OR 0.15 0.32 0.9 9 2 Bis.ethylhexyl.esbacate Recycled water 4.OR 3.84 121 400 9 7 <tr< td=""><td></td><td>Paraben methyl</td><td>Recycled water</td><td>6.9</td><td>17.27</td><td>15.46</td><td>40</td><td>4</td><td>4</td></tr<>		Paraben methyl	Recycled water	6.9	17.27	15.46	40	4	4
a.Terpineol Recycled water 4.OR 2.62 9.85 45 33 4 Acetophenone Recycled water 4.OR 3.21 5.84 20 33 10 Reference 4.OR 9.88 9.79 23 9 5 Benzothiazole Reference 4.OR 493.88 378.30 980 9 8 Biphenyl Recycled water 4.OR 2.72 4.04 14 33 12 Reference 4.OR 2.0R 2.88 2.84 7 9 5 Bis.2.chloroethoxy.methane Reference 4.OR 0.17 0.53 1.6 9 1 Bis.2.chloroethyl.ether Reference 4.OR 0.15 0.32 0.9 9 2 Bis.ethylhexyl.sebacate Reference 4.OR 0.15 0.32 0.9 9 2 Bis.ethylhexyl.sebacate Recycled water 4.OR 38.36 123.44 420 33 20 Reference 4.OR 181.05 174.17 400 9 7 <td></td> <td></td> <td>Reference</td> <td>8.2</td> <td>12.6</td> <td>6.22</td> <td>17</td> <td>2</td> <td>2</td>			Reference	8.2	12.6	6.22	17	2	2
Acetophenone Recycled water COR 3.21 5.84 20 33 10	SVOCs	a.Naphthylamine	Recycled water	<lor< td=""><td>0.11</td><td>0.66</td><td>3.8</td><td>33</td><td>1</td></lor<>	0.11	0.66	3.8	33	1
Reference		a.Terpineol	Recycled water	<lor< td=""><td>2.62</td><td>9.85</td><td>45</td><td>33</td><td>4</td></lor<>	2.62	9.85	45	33	4
Benzothiazole Recycled water 97 418.63 289.30 1100 33 33 33 Reference 4LOR 493.88 378.30 980 9 8 8 8 8 8 8 9 8 8		Acetophenone	Recycled water	<lor< td=""><td>3.21</td><td>5.84</td><td>20</td><td>33</td><td>10</td></lor<>	3.21	5.84	20	33	10
Reference			Reference	<lor< td=""><td>9.88</td><td>9.79</td><td>23</td><td>9</td><td>5</td></lor<>	9.88	9.79	23	9	5
Biphenyl Recycled water <lor 12="" 14="" 2.72="" 33="" 4.04="" td="" ="" <=""><td></td><td>Benzothiazole</td><td>Recycled water</td><td>97</td><td>418.63</td><td>289.30</td><td>1100</td><td>33</td><td>33</td></lor>		Benzothiazole	Recycled water	97	418.63	289.30	1100	33	33
Reference			Reference	<lor< td=""><td>493.88</td><td>378.30</td><td>980</td><td>9</td><td>8</td></lor<>	493.88	378.30	980	9	8
Bis.2.chloroethoxy.methane Reference LOR 0.17 0.53 1.6 9 1		Biphenyl	Recycled water		2.72	4.04	14	33	12
Bis.2chloroethylether Reference <lor< th=""> 0.15 0.32 0.9 9 2 Bis.ethylhexyl.sebacate Recycled water <lor< td=""> 83.63 123.44 420 33 20 Reference <lor< td=""> 181.05 174.17 400 9 7 Bumetrizole Recycled water <lor< td=""> 3.84 9.11 38 33 12 Reference <lor< td=""> 0.88 2.66 8 9 1 Butylhydroxyanisole (BHA) Recycled water <lor< td=""> 5.60 26.62 150 33 2 Butylhydroxytoluene (BHT) Recycled water <lor< td=""> 0.015 0.061 0.3 33 2 Reference <lor< td=""> 0.044 0.13 0.4 9 1 C1 alkyl biphenyls Recycled water <lor< td=""> 0.27 1.58 9.1 33 1 C2 alkyl biphenyls Reference <lor< td=""> 0.24 0.73 2.2 9 1 C3 alk</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>			Reference	<lor< td=""><td>2.88</td><td>2.84</td><td>7</td><td>9</td><td>5</td></lor<>	2.88	2.84	7	9	5
Bis.ethylhexyl.sebacate Recycled water <lor (bha)="" (bht)="" 0.015="" 0.042="" 0.044="" 0.046="" 0.047="" 0.061="" 0.13="" 0.23="" 0.24="" 0.27="" 0.3="" 0.4="" 0.47="" 0.66="" 0.7="" 0.73="" 0.77="" 0.88="" 1="" 1.4="" 1.58="" 1.66="" 1.8="" 12="" 123.44="" 150="" 174.17="" 181.05="" 2="" 2.1="" 2.2="" 2.66="" 2.86="" 20="" 26.62="" 3.84="" 33="" 38="" 4="" 400="" 420="" 5.60="" 6.84="" 7="" 8="" 83.63="" 9="" 9.1="" 9.11="" <lor="" alkyl="" biphenyls="" bumetrizole="" butylhydroxyanisole="" butylhydroxytoluene="" c1="" c2="" c3="" carbazole="" cumene="" naphthalenes="" recycled="" reference="" td="" water="" ="" <=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>9</td><td>1</td></lor>		•						9	1
Reference		•							2
Bumetrizole Recycled water Reference <lor< th=""> 3.84 9.11 38 33 12 Reference <lor< td=""> 0.88 2.66 8 9 1 Butylhydroxyanisole (BHA) Recycled water <lor< td=""> 5.60 26.62 150 33 2 Butylhydroxytoluene (BHT) Recycled water <lor< td=""> 0.015 0.061 0.3 33 2 Reference <lor< td=""> 0.044 0.13 0.4 9 1 C1 alkyl biphenyls Recycled water <lor< td=""> 0.27 1.58 9.1 33 1 Reference <lor< td=""> 0.24 0.73 2.2 9 1 C2 alkyl biphenyls Reference <lor< td=""> 0.23 0.7 2.1 9 1 C3 alkyl naphthalenes Recycled water <lor< td=""> 2.86 6.84 38 33 20 Reference <lor< td=""> 2.1 1.66 4 9 8 Carbazole Recycled water</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>		Bis.ethylhexyl.sebacate						33	20
Reference Section Reference Section Recycled water Section Sec									
Butylhydroxyanisole (BHA) Recycled water <lor< th=""> 5.60 26.62 150 33 2 Butylhydroxytoluene (BHT) Recycled water <lor< td=""> 0.015 0.061 0.3 33 2 Reference <lor< td=""> 0.044 0.13 0.4 9 1 C1 alkyl biphenyls Recycled water <lor< td=""> 0.27 1.58 9.1 33 1 Reference <lor< td=""> 0.24 0.73 2.2 9 1 C2 alkyl biphenyls Reference <lor< td=""> 0.23 0.7 2.1 9 1 C3 alkyl naphthalenes Recycled water <lor< td=""> 2.86 6.84 38 33 20 Reference <lor< td=""> 2.1 1.66 4 9 8 Carbazole Recycled water <lor< td=""> 0.042 0.24 1.4 33 1 Reference <lor< td=""> 0.16 0.33 0.9 9 2 Cumene Reference <lor< t<="" td=""><td></td><td>Bumetrizole</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>		Bumetrizole							
Butylhydroxytoluene (BHT) Recycled water <lor 0.015="" 0.042="" 0.044="" 0.061="" 0.13="" 0.16="" 0.23="" 0.24="" 0.26="" 0.27="" 0.3="" 0.33="" 0.4="" 0.47="" 0.66="" 0.7="" 0.73="" 0.9="" 1="" 1.4="" 1.58="" 1.66="" 1.8="" 12="" 2="" 2.1="" 2.2="" 2.86="" 20="" 2<="" 33="" 38="" 4="" 6.84="" 8="" 9="" 9.1="" <lor="" alkyl="" biphenyls="" c1="" c2="" c3="" carbazole="" cumene="" naphthalenes="" recycled="" reference="" td="" water=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor>									
Reference LOR 0.044 0.13 0.4 9 1		, , ,	,						
C1 alkyl biphenyls Recycled water <lor 0.042="" 0.13="" 0.16="" 0.23="" 0.24="" 0.26="" 0.27="" 0.33="" 0.47="" 0.66="" 0.7="" 0.73="" 0.9="" 1="" 1.4="" 1.58="" 1.66="" 1.8="" 12="" 2="" 2.1="" 2.2="" 2.86="" 20="" 2<="" 33="" 38="" 4="" 6.84="" 8="" 9="" 9.1="" <lor="" alkyl="" biphenyls="" c2="" c3="" carbazole="" cumene="" naphthalenes="" recycled="" reference="" td="" water=""><td></td><td>Butylhydroxytoluene (BHT)</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td></lor>		Butylhydroxytoluene (BHT)	,						
Reference <lor< th=""> 0.24 0.73 2.2 9 1 C2 alkyl biphenyls Reference <lor< td=""> 0.23 0.7 2.1 9 1 C3 alkyl naphthalenes Recycled water <lor< td=""> 2.86 6.84 38 33 20 Reference <lor< td=""> 2.1 1.66 4 9 8 Carbazole Recycled water <lor< td=""> 0.042 0.24 1.4 33 1 Reference <lor< td=""> 0.16 0.33 0.9 9 2 Cumene Recycled water <lor< td=""> 0.47 0.66 1.8 33 12 Reference <lor< td=""> 0.13 0.26 0.7 9 2</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>									
C2 alkyl biphenyls Reference <lor< th=""> 0.23 0.7 2.1 9 1 C3 alkyl naphthalenes Recycled water <lor< td=""> 2.86 6.84 38 33 20 Reference <lor< td=""> 2.1 1.66 4 9 8 Carbazole Recycled water <lor< td=""> 0.042 0.24 1.4 33 1 Reference <lor< td=""> 0.16 0.33 0.9 9 2 Cumene Recycled water <lor< td=""> 0.47 0.66 1.8 33 12 Reference <lor< td=""> 0.13 0.26 0.7 9 2</lor<></lor<></lor<></lor<></lor<></lor<></lor<>		C1 alkyl biphenyls							
C3 alkyl naphthalenes Recycled water <lor< th=""> 2.86 6.84 38 33 20 Reference <lor< td=""> 2.1 1.66 4 9 8 Carbazole Recycled water <lor< td=""> 0.042 0.24 1.4 33 1 Reference <lor< td=""> 0.16 0.33 0.9 9 2 Cumene Recycled water <lor< td=""> 0.47 0.66 1.8 33 12 Reference <lor< td=""> 0.13 0.26 0.7 9 2</lor<></lor<></lor<></lor<></lor<></lor<>									
Reference <lor 0.042="" 0.13="" 0.16="" 0.24="" 0.26="" 0.33="" 0.47="" 0.66="" 0.7="" 0.9="" 1="" 1.4="" 1.66="" 1.8="" 12="" 2="" 2.1="" 2<="" 33="" 4="" 8="" 9="" <lor="" carbazole="" cumene="" recycled="" reference="" td="" water=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor>									
Carbazole Recycled water <lor< th=""> 0.042 0.24 1.4 33 1 Reference <lor< td=""> 0.16 0.33 0.9 9 2 Cumene Recycled water <lor< td=""> 0.47 0.66 1.8 33 12 Reference <lor< td=""> 0.13 0.26 0.7 9 2</lor<></lor<></lor<></lor<>		C3 alkyl naphthalenes	,						
Reference <lor 0.13="" 0.16="" 0.26="" 0.33="" 0.47="" 0.66="" 0.7="" 0.9="" 1.8="" 12="" 2="" 2<="" 33="" 9="" <lor="" cumene="" recycled="" reference="" td="" water=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor>									
Cumene Recycled water <lor< th=""> 0.47 0.66 1.8 33 12 Reference <lor< td=""> 0.13 0.26 0.7 9 2</lor<></lor<>		Carbazole							
Reference <lor 0.13="" 0.26="" 0.7="" 2<="" 9="" td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor>		_							
		Cumene	,						
Decamethyl- Recycled water <lor 1.66="" 28="" 33="" 4<="" 5.83="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor>									
		Decamethyl-	Recycled water	<lor< td=""><td>1.66</td><td>5.83</td><td>28</td><td>33</td><td>4</td></lor<>	1.66	5.83	28	33	4

cyclopentasiloxane							
Dibenzofuran	Recycled water	<lor< td=""><td>0.55</td><td>1.50</td><td>6.7</td><td>33</td><td>9</td></lor<>	0.55	1.50	6.7	33	9
Dibenzoraran	Reference	<lor< td=""><td>0.14</td><td>0.30</td><td>0.8</td><td>9</td><td>2</td></lor<>	0.14	0.30	0.8	9	2
Dioctyl.adipate (DOA)	Recycled water	<lor< td=""><td>51.75</td><td>57.75</td><td>180</td><td>33</td><td>21</td></lor<>	51.75	57.75	180	33	21
bloctyl.ddipate (box)	Reference	<lor< td=""><td>45.66</td><td>40.23</td><td>100</td><td>9</td><td>7</td></lor<>	45.66	40.23	100	9	7
Diphenyl.amine	Recycled water	<lor< td=""><td>0.17</td><td>1.02</td><td>5.9</td><td>33</td><td>1</td></lor<>	0.17	1.02	5.9	33	1
E.Caprolactam	Recycled water	<lor< td=""><td>153.54</td><td>232.11</td><td>710</td><td>33</td><td>22</td></lor<>	153.54	232.11	710	33	22
E.Caprolactam	Reference	<lor< td=""><td>215.77</td><td>263.99</td><td>700</td><td>9</td><td>6</td></lor<>	215.77	263.99	700	9	6
laanharana	Recycled water		1.24	4.47	25	33	7
Isophorone	•	<lor< td=""><td></td><td></td><td></td><td></td><td>2</td></lor<>					2
m n Crosol	Reference	<lor< td=""><td>1.1 2.3</td><td>2.20 3.82</td><td>5.6 14</td><td>9 33</td><td>24</td></lor<>	1.1 2.3	2.20 3.82	5.6 14	9 33	24
m.p.Cresol	Recycled water Reference	<lor< td=""><td></td><td></td><td>14</td><td>9</td><td>7</td></lor<>			14	9	7
Mathylagaralastam		<lor< td=""><td>4.94</td><td>5.61 0.73</td><td>4.2</td><td>33</td><td>1</td></lor<>	4.94	5.61 0.73	4.2	33	1
Methyl.caprolactam	Recycled water Reference	<lor< td=""><td>0.12</td><td></td><td></td><td>9</td><td></td></lor<>	0.12			9	
NI Nitropodi NI butulamino		<lor< td=""><td>0.36</td><td>1.1</td><td>3.3</td><td></td><td>1 9</td></lor<>	0.36	1.1	3.3		1 9
N.Nitrosodi.N.butylamine	Recycled water	<lor< td=""><td>5.54</td><td>13.38</td><td>65</td><td>33</td><td></td></lor<>	5.54	13.38	65	33	
O at a second by the transition of	Reference	<lor< td=""><td>7.55</td><td>15.12</td><td>38</td><td>9</td><td>2</td></lor<>	7.55	15.12	38	9	2
Octamethyltetrasiloxane	Recycled water	<lor< td=""><td>0.03</td><td>0.13</td><td>0.7</td><td>33</td><td>3</td></lor<>	0.03	0.13	0.7	33	3
Phenol	Recycled water Reference	<lor< td=""><td>3.18</td><td>3.68</td><td>14</td><td>33 9</td><td>30</td></lor<>	3.18	3.68	14	33 9	30
Ctagramida		<lor< td=""><td>6.75</td><td>6.38</td><td>15</td><td></td><td>7</td></lor<>	6.75	6.38	15		7
Stearamide	Recycled water	<lor< td=""><td>22.81</td><td>21.55</td><td>70</td><td>33</td><td>32</td></lor<>	22.81	21.55	70	33	32
Churana	Reference	<lor< td=""><td>29.06</td><td>27.04</td><td>71</td><td>9</td><td>8</td></lor<>	29.06	27.04	71	9	8
Styrene	Recycled water	<lor< td=""><td>26.27</td><td>31.20</td><td>140</td><td>33</td><td>30</td></lor<>	26.27	31.20	140	33	30
tout Duty I Danson	Reference	<lor< td=""><td>44.77</td><td>40.71</td><td>110</td><td>9</td><td>8</td></lor<>	44.77	40.71	110	9	8
tert.Butyl.Benzene	Recycled water	<lor< td=""><td>0.027</td><td>0.11</td><td>0.6</td><td>33</td><td>2</td></lor<>	0.027	0.11	0.6	33	2
Tetramethyl.phenol.isomers	Recycled water	<lor< td=""><td>0.28</td><td>1.61</td><td>9.3</td><td>33</td><td>1</td></lor<>	0.28	1.61	9.3	33	1
Tris.2.4.di.tert.	Reference	<lor< td=""><td>3.11</td><td>9.33</td><td>28</td><td>9</td><td>1</td></lor<>	3.11	9.33	28	9	1
butylphenyl.phosphate	Recycled water	<lor< td=""><td>24.45</td><td>70.99</td><td>400</td><td>33</td><td>13</td></lor<>	24.45	70.99	400	33	13
	Reference	<lor< td=""><td>25.77</td><td>35.52</td><td>110</td><td>9</td><td>5</td></lor<>	25.77	35.52	110	9	5
Tris.2.4.dimethylphenyl. phosphate	Recycled water	<lor< td=""><td>29.15</td><td>152.9</td><td>880</td><td>33</td><td>5</td></lor<>	29.15	152.9	880	33	5
p cop con	Reference	<lor< td=""><td>54.444</td><td>109.44</td><td>280</td><td>9</td><td>2</td></lor<>	54.444	109.44	280	9	2
1.2.4.Trimethyl.benzene	Recycled water	<lor< td=""><td>0.99</td><td>1.54</td><td>4.6</td><td>33</td><td>12</td></lor<>	0.99	1.54	4.6	33	12
	Reference	<lor< td=""><td>0.33</td><td>0.69</td><td>1.9</td><td>9</td><td>2</td></lor<>	0.33	0.69	1.9	9	2
1.2.Dichlorobenzene	Recycled water	<lor< td=""><td>0.56</td><td>0.75</td><td>2.4</td><td>33</td><td>20</td></lor<>	0.56	0.75	2.4	33	20
	Reference	<lor< td=""><td>0.93</td><td>1.21</td><td>3</td><td>9</td><td>7</td></lor<>	0.93	1.21	3	9	7
1.3.Di.tert.butylbenzene	Recycled water	<lor< td=""><td>0.28</td><td>0.80</td><td>3</td><td>33</td><td>5</td></lor<>	0.28	0.80	3	33	5
1.3.Dichlorobenzene	Recycled water	<lor< td=""><td>0.94</td><td>2.48</td><td>10</td><td>33</td><td>6</td></lor<>	0.94	2.48	10	33	6
	Reference	<lor< td=""><td>0.73</td><td>1.45</td><td>3.5</td><td>9</td><td>2</td></lor<>	0.73	1.45	3.5	9	2
1.4.Dichlorobenzene	Recycled water	<lor< td=""><td>0.96</td><td>1.33</td><td>6</td><td>33</td><td>21</td></lor<>	0.96	1.33	6	33	21
	Reference	<lor< td=""><td>0.25</td><td>0.42</td><td>1.2</td><td>9</td><td>3</td></lor<>	0.25	0.42	1.2	9	3
1.4.Dinitrobenzene	Reference	<lor< td=""><td>2.16</td><td>3.75</td><td>10</td><td>9</td><td>3</td></lor<>	2.16	3.75	10	9	3
1H.Benzotriazole	Recycled water	<lor< td=""><td>0.090</td><td>0.40</td><td>2.2</td><td>33</td><td>2</td></lor<>	0.090	0.40	2.2	33	2
	Reference	<lor< td=""><td>2.88</td><td>6.16</td><td>19</td><td>9</td><td>4</td></lor<>	2.88	6.16	19	9	4
2.4.6.Trichlorophenol	Recycled water	<lor< td=""><td>6.37</td><td>13.53</td><td>60</td><td>33</td><td>16</td></lor<>	6.37	13.53	60	33	16
	Reference	<lor< td=""><td>0.81</td><td>2.21</td><td>6.7</td><td>9</td><td>2</td></lor<>	0.81	2.21	6.7	9	2
2.4.Di.tert.butyl.phenol	Recycled water	<lor< td=""><td>0.19</td><td>0.46</td><td>2</td><td>33</td><td>6</td></lor<>	0.19	0.46	2	33	6
	Reference	<lor< td=""><td>1.08</td><td>2.97</td><td>9</td><td>9</td><td>2</td></lor<>	1.08	2.97	9	9	2
2.4.Dichlorophenol	Recycled water	<lor< td=""><td>0.50</td><td>1.56</td><td>8.1</td><td>33</td><td>9</td></lor<>	0.50	1.56	8.1	33	9
							7

			Reference	<lor< th=""><th>0.033</th><th>0.1</th><th>0.3</th><th>9</th><th>1</th></lor<>	0.033	0.1	0.3	9	1
		2.4.Dimethyl.phenol	Recycled water	<lor< td=""><td>0.29</td><td>1.14</td><td>6.2</td><td>33</td><td>3</td></lor<>	0.29	1.14	6.2	33	3
		2.Chlorophenol	Recycled water	<lor< td=""><td>0.24</td><td>1.00</td><td>5</td><td>33</td><td>2</td></lor<>	0.24	1.00	5	33	2
		2.Cresol	Recycled water	<lor< td=""><td>3.41</td><td>12.71</td><td>65</td><td>33</td><td>10</td></lor<>	3.41	12.71	65	33	10
			Reference	<lor< td=""><td>1.01</td><td>2.33</td><td>7.1</td><td>9</td><td>3</td></lor<>	1.01	2.33	7.1	9	3
		2.tert.Butyl.phenol	Recycled water	<lor< td=""><td>0.36</td><td>2.08</td><td>12</td><td>33</td><td>1</td></lor<>	0.36	2.08	12	33	1
			Reference	<lor< td=""><td>3.88</td><td>11.66</td><td>35</td><td>9</td><td>1</td></lor<>	3.88	11.66	35	9	1
		2.Toluidine	Recycled water	<lor< td=""><td>0.030</td><td>0.12</td><td>0.6</td><td>33</td><td>2</td></lor<>	0.030	0.12	0.6	33	2
		2.Toluidine	Reference	<lor< td=""><td>0.088</td><td>0.17</td><td>0.4</td><td>9</td><td>2</td></lor<>	0.088	0.17	0.4	9	2
		4.Chloro.3.cresol	Recycled water	<lor< td=""><td>0.42</td><td>1.37</td><td>7.1</td><td>33</td><td>4</td></lor<>	0.42	1.37	7.1	33	4
			Reference	<lor< td=""><td>0.12</td><td>0.36</td><td>1.1</td><td>9</td><td>1</td></lor<>	0.12	0.36	1.1	9	1
2024	PFAS	PFDA	Recycled water	<lor< td=""><td>0.14</td><td>0.26</td><td>0.57</td><td>8</td><td>2</td></lor<>	0.14	0.26	0.57	8	2
		PFOS	Recycled water	1.18	3.03	2.7	9.27	8	8
			Reference	<lor< td=""><td>1.28</td><td>1.47</td><td>2.64</td><td>4</td><td>2</td></lor<>	1.28	1.47	2.64	4	2

Table S6. Summary statistics for individual emerging contaminants detected in plant samples for each sampling year and at each type of site (i.e., recycled water irrigated site or reference site). Where a chemical was not detected in any samples at a sampling point, it was excluded from this table. Min = minimum; SD = standard deviation; Max = Maximum. LOR = Limit of reporting.

Plant s	amples								
Year	Analyte group	Analyte	Site type	Min (μg/kg)	Mean (μg/kg)	SD (μg/kg)	Max (μg/kg)	Total sample size	Detections sample size
2023	EDCs	tert-octyl phenol	Recycled water	<lor< td=""><td>3.45</td><td>25.27</td><td>240</td><td>91</td><td>7</td></lor<>	3.45	25.27	240	91	7
	PAHs	Acenaphthene	Recycled water	<lor< td=""><td>10.16</td><td>21.49</td><td>78</td><td>79</td><td>17</td></lor<>	10.16	21.49	78	79	17
			Reference	<lor< td=""><td>5.136</td><td>16.68</td><td>61</td><td>22</td><td>2</td></lor<>	5.136	16.68	61	22	2
		Acenaphthylene	Recycled water	<lor< td=""><td>1.32</td><td>7.20</td><td>51</td><td>79</td><td>3</td></lor<>	1.32	7.20	51	79	3
		Benz(a)anthracene	Recycled water	<lor< td=""><td>0.93</td><td>8.32</td><td>74</td><td>79</td><td>1</td></lor<>	0.93	8.32	74	79	1
		Benzo(a)pyrene	Recycled water	<lor< td=""><td>0.17</td><td>1.57</td><td>14</td><td>79</td><td>1</td></lor<>	0.17	1.57	14	79	1
		Benzo(b,J)fluoranthene	Recycled water	<lor< td=""><td>0.63</td><td>5.62</td><td>50</td><td>79</td><td>1</td></lor<>	0.63	5.62	50	79	1
		Benzo(e)pyrene	Recycled water	<lor< td=""><td>0.50</td><td>4.50</td><td>40</td><td>79</td><td>1</td></lor<>	0.50	4.50	40	79	1
		Benzo(k)fluoranthene	Recycled water	<lor< td=""><td>0.98</td><td>8.77</td><td>78</td><td>79</td><td>1</td></lor<>	0.98	8.77	78	79	1
			Reference	<lor< td=""><td>3.27</td><td>15.35</td><td>72</td><td>22</td><td>1</td></lor<>	3.27	15.35	72	22	1
		C2 alkyl napthalenes	Recycled water	<lor< td=""><td>0.65</td><td>5.85</td><td>52</td><td>79</td><td>1</td></lor<>	0.65	5.85	52	79	1
		Chrysene	Recycled water	<lor< td=""><td>1.70</td><td>15.18</td><td>135</td><td>79</td><td>1</td></lor<>	1.70	15.18	135	79	1
		Fluoranthene	Recycled water	<lor< td=""><td>0.21</td><td>1.45</td><td>12</td><td>79</td><td>2</td></lor<>	0.21	1.45	12	79	2
		Fluorene	Recycled water	<lor< td=""><td>40.37</td><td>116.79</td><td>580</td><td>79</td><td>10</td></lor<>	40.37	116.79	580	79	10
			Reference	<lor< td=""><td>23.63</td><td>76.75</td><td>280</td><td>22</td><td>2</td></lor<>	23.63	76.75	280	22	2
		Naphthalene	Recycled water	<lor< td=""><td>100.82</td><td>169.25</td><td>760</td><td>79</td><td>31</td></lor<>	100.82	169.25	760	79	31
			Reference	<lor< td=""><td>142.27</td><td>208.64</td><td>680</td><td>22</td><td>9</td></lor<>	142.27	208.64	680	22	9
		Phenanthrene	Recycled water	<lor< td=""><td>15.93</td><td>30.51</td><td>120</td><td>79</td><td>21</td></lor<>	15.93	30.51	120	79	21
			Reference	<lor< td=""><td>10.95</td><td>24.48</td><td>75</td><td>22</td><td>4</td></lor<>	10.95	24.48	75	22	4
		Pyrene	Recycled water	<lor< td=""><td>0.10</td><td>0.90</td><td>8</td><td>79</td><td>1</td></lor<>	0.10	0.90	8	79	1
		1-Methyl naphthalene	Recycled water	<lor< td=""><td>3.24</td><td>13.43</td><td>77</td><td>79</td><td>7</td></lor<>	3.24	13.43	77	79	7
		2-Methyl naphthalene	Recycled water	<lor< td=""><td>3.97</td><td>11.88</td><td>64</td><td>79</td><td>11</td></lor<>	3.97	11.88	64	79	11
	Pesticides	Acetamiprid	Recycled water	<lor< td=""><td>0.13</td><td>0.85</td><td>5.6</td><td>79</td><td>2</td></lor<>	0.13	0.85	5.6	79	2
		Azoxystrobin	Recycled water	<lor< td=""><td>152.64</td><td>548.30</td><td>3200</td><td>79</td><td>14</td></lor<>	152.64	548.30	3200	79	14

Boscalid	Recycled water	<lor< td=""><td>50.38</td><td>164.88</td><td>870</td><td>79</td><td>25</td></lor<>	50.38	164.88	870	79	25
Buprofezin	Recycled water	<lor< td=""><td>0.044</td><td>0.39</td><td>3.5</td><td>79</td><td>1</td></lor<>	0.044	0.39	3.5	79	1
Chlorantraniliprole	Recycled water	<lor< td=""><td>0.98</td><td>2.42</td><td>9.2</td><td>79</td><td>12</td></lor<>	0.98	2.42	9.2	79	12
Chlorpyriphos	Recycled water	<lor< td=""><td>3.46</td><td>17.43</td><td>140</td><td>79</td><td>11</td></lor<>	3.46	17.43	140	79	11
Cyazofamid	Recycled water	<lor< td=""><td>113.07</td><td>513.48</td><td>4100</td><td>79</td><td>10</td></lor<>	113.07	513.48	4100	79	10
Cyprodinil	Recycled water	<lor< td=""><td>15.89</td><td>46.80</td><td>210</td><td>79</td><td>14</td></lor<>	15.89	46.80	210	79	14
DCPA	Recycled water	<lor< td=""><td>16.95</td><td>63.56</td><td>400</td><td>79</td><td>16</td></lor<>	16.95	63.56	400	79	16
	Reference	<lor< td=""><td>2.18</td><td>5.01</td><td>18</td><td>22</td><td>4</td></lor<>	2.18	5.01	18	22	4
DDE.p.p	Recycled water	<lor< td=""><td>24.92</td><td>55.60</td><td>340</td><td>79</td><td>33</td></lor<>	24.92	55.60	340	79	33
	Reference	<lor< td=""><td>2.04</td><td>4.59</td><td>14</td><td>22</td><td>4</td></lor<>	2.04	4.59	14	22	4
Diflufenican	Recycled water	<lor< td=""><td>0.2</td><td>1.48</td><td>12</td><td>79</td><td>3</td></lor<>	0.2	1.48	12	79	3
Dimethoate	Recycled water	<lor< td=""><td>0.48</td><td>3.94</td><td>35</td><td>79</td><td>2</td></lor<>	0.48	3.94	35	79	2
Epoxiconazole	Reference	<lor< td=""><td>0.26</td><td>1.25</td><td>5.9</td><td>22</td><td>1</td></lor<>	0.26	1.25	5.9	22	1
Ethiofencarb sulfoxide	Recycled water	<lor< td=""><td>2.88</td><td>12.27</td><td>77</td><td>79</td><td>5</td></lor<>	2.88	12.27	77	79	5
Ethofumesate	Recycled water	<lor< td=""><td>2.94</td><td>9.14</td><td>74</td><td>79</td><td>22</td></lor<>	2.94	9.14	74	79	22
	Reference	<lor< td=""><td>476.04</td><td>1144.53</td><td>4700</td><td>22</td><td>10</td></lor<>	476.04	1144.53	4700	22	10
Fipronil	Recycled water	<lor< td=""><td>14.77</td><td>37.16</td><td>180</td><td>79</td><td>16</td></lor<>	14.77	37.16	180	79	16
	Reference	<lor< td=""><td>22.36</td><td>50.17</td><td>170</td><td>22</td><td>4</td></lor<>	22.36	50.17	170	22	4
Floupicolide	Recycled water	<lor< td=""><td>112.27</td><td>280.29</td><td>1300</td><td>79</td><td>38</td></lor<>	112.27	280.29	1300	79	38
	Reference	<lor< td=""><td>1514.27</td><td>3434.74</td><td>11000</td><td>22</td><td>12</td></lor<>	1514.27	3434.74	11000	22	12
Flubendiamide	Recycled water	<lor< td=""><td>68.27</td><td>193.45</td><td>1300</td><td>79</td><td>23</td></lor<>	68.27	193.45	1300	79	23
Fludioxonil	Recycled water	<lor< td=""><td>21.037</td><td>59.43</td><td>400</td><td>79</td><td>21</td></lor<>	21.037	59.43	400	79	21
Imidacloprid	Recycled water	<lor< td=""><td>1369.94</td><td>4107.96</td><td>19000</td><td>79</td><td>28</td></lor<>	1369.94	4107.96	19000	79	28
	Reference	<lor< td=""><td>14.81</td><td>38.35</td><td>120</td><td>22</td><td>3</td></lor<>	14.81	38.35	120	22	3
Indoxacarb	Recycled water	<lor< td=""><td>119.52</td><td>329.97</td><td>2100</td><td>79</td><td>30</td></lor<>	119.52	329.97	2100	79	30
Metalaxyl	Recycled water	<lor< td=""><td>5.82</td><td>15.37</td><td>86</td><td>79</td><td>14</td></lor<>	5.82	15.37	86	79	14
	Reference	<lor< td=""><td>79.54</td><td>184.60</td><td>660</td><td>22</td><td>4</td></lor<>	79.54	184.60	660	22	4
Methomyl	Recycled water	<lor< td=""><td>1.30</td><td>6.10</td><td>39</td><td>79</td><td>6</td></lor<>	1.30	6.10	39	79	6
Metolachlor	Recycled water	<lor< td=""><td>1.40</td><td>5.09</td><td>31</td><td>79</td><td>7</td></lor<>	1.40	5.09	31	79	7
Novaluron	Recycled water	<lor< td=""><td>56.32</td><td>197.37</td><td>1500</td><td>79</td><td>21</td></lor<>	56.32	197.37	1500	79	21
Pendimethalin	Recycled water	<lor< td=""><td>7.489</td><td>27.33</td><td>180</td><td>79</td><td>12</td></lor<>	7.489	27.33	180	79	12
Pentachlorophenol	Recycled water	<lor< td=""><td>3.49</td><td>10.59</td><td>50</td><td>79</td><td>9</td></lor<>	3.49	10.59	50	79	9
	Reference	<lor< td=""><td>1.45</td><td>6.82</td><td>32</td><td>22</td><td>1</td></lor<>	1.45	6.82	32	22	1
Permethrin 1R-cis	Reference	<lor< td=""><td>325</td><td>718.7</td><td>2600</td><td>22</td><td>5</td></lor<>	325	718.7	2600	22	5
Permethrin 1R-trans	Reference	<lor< td=""><td>188.63</td><td>416.83</td><td>1500</td><td>22</td><td>5</td></lor<>	188.63	416.83	1500	22	5
Prometryn	Recycled water	<lor< td=""><td>16.47</td><td>60.82</td><td>380</td><td>79</td><td>13</td></lor<>	16.47	60.82	380	79	13
	Reference	<lor< td=""><td>0.13</td><td>0.63</td><td>3</td><td>22</td><td>1</td></lor<>	0.13	0.63	3	22	1
Propamocarb	Recycled water	<lor< td=""><td>246.10</td><td>767.80</td><td>4700</td><td>79</td><td>14</td></lor<>	246.10	767.80	4700	79	14
	Reference	<lor< td=""><td>1274.18</td><td>2855.38</td><td>9000</td><td>22</td><td>8</td></lor<>	1274.18	2855.38	9000	22	8
Propyzamide	Recycled water	<lor< td=""><td>2.32</td><td>7.96</td><td>37</td><td>79</td><td>7</td></lor<>	2.32	7.96	37	79	7
Pyraclostrobin	Recycled water	<lor< td=""><td>5.53</td><td>17.1</td><td>100</td><td>79</td><td>14</td></lor<>	5.53	17.1	100	79	14
	Reference	<lor< td=""><td>583.72</td><td>1171.75</td><td>4000</td><td>22</td><td>12</td></lor<>	583.72	1171.75	4000	22	12
Spirotetramat	Recycled water	<lor< td=""><td>0.75</td><td>4.34</td><td>36</td><td>79</td><td>4</td></lor<>	0.75	4.34	36	79	4
Spirotetramat.enol	Recycled water	<lor< td=""><td>19.55</td><td>69.37</td><td>460</td><td>79</td><td>14</td></lor<>	19.55	69.37	460	79	14
Spirotetramat.enol.glucoside	Recycled water	<lor< td=""><td>0.56</td><td>2.27</td><td>16</td><td>79</td><td>6</td></lor<>	0.56	2.27	16	79	6
PFBA	Recycled water	<lor< td=""><td>2.48</td><td>3.20</td><td>9.94</td><td>79</td><td>32</td></lor<>	2.48	3.20	9.94	79	32
	Reference	<lor< td=""><td>1.20</td><td>2.72</td><td>9.6</td><td>22</td><td>4</td></lor<>	1.20	2.72	9.6	22	4
PFBS	Recycled water	<lor< td=""><td>7</td><td>25.12</td><td>154</td><td>79</td><td>7</td></lor<>	7	25.12	154	79	7
							,

Recycled water use in irrigated crops 2023-2025

PFAS

		Reference	<lor< td=""><td>4.86</td><td>16.20</td><td>66</td><td>22</td><td>2</td></lor<>	4.86	16.20	66	22	2
	PFHxA	Recycled water	<lor< td=""><td>0.055</td><td>0.49</td><td>4.37</td><td>79</td><td>1</td></lor<>	0.055	0.49	4.37	79	1
	PFHxS	Recycled water	<lor< td=""><td>0.031</td><td>0.28</td><td>2.5</td><td>79</td><td>1</td></lor<>	0.031	0.28	2.5	79	1
	PFOA	Recycled water	<lor< td=""><td>0.66</td><td>3.40</td><td>21.4</td><td>79</td><td>3</td></lor<>	0.66	3.40	21.4	79	3
	PFOS	Recycled water	<lor< td=""><td>0.12</td><td>0.7</td><td>5.37</td><td>79</td><td>2</td></lor<>	0.12	0.7	5.37	79	2
	PFPeA	Recycled water	<lor< td=""><td>0.78</td><td>3.47</td><td>19.4</td><td>79</td><td>4</td></lor<>	0.78	3.47	19.4	79	4
Phthalates	DEHP	Recycled water	<lor< td=""><td>350.18</td><td>951.48</td><td>6000</td><td>79</td><td>24</td></lor<>	350.18	951.48	6000	79	24
		Reference	<lor< td=""><td>148.86</td><td>421.34</td><td>1970</td><td>22</td><td>8</td></lor<>	148.86	421.34	1970	22	8
	DnOP	Recycled water	<lor< td=""><td>1.26</td><td>11.25</td><td>100</td><td>79</td><td>1</td></lor<>	1.26	11.25	100	79	1
	DBP	Recycled water	<lor< td=""><td>380.34</td><td>924.81</td><td>6100</td><td>79</td><td>30</td></lor<>	380.34	924.81	6100	79	30
		Reference	<lor< td=""><td>140.90</td><td>199.35</td><td>620</td><td>22</td><td>12</td></lor<>	140.90	199.35	620	22	12
	DEP	Recycled water	<lor< td=""><td>62.11</td><td>166.51</td><td>800</td><td>79</td><td>19</td></lor<>	62.11	166.51	800	79	19
		Reference	<lor< td=""><td>11.36</td><td>27.55</td><td>95</td><td>22</td><td>4</td></lor<>	11.36	27.55	95	22	4
	DMP	Recycled water	<lor< td=""><td>60.75</td><td>540.04</td><td>4800</td><td>79</td><td>1</td></lor<>	60.75	540.04	4800	79	1
		Reference	<lor< td=""><td>0.36</td><td>1.70</td><td>8</td><td>22</td><td>1</td></lor<>	0.36	1.70	8	22	1
PPCPs	Azithromycin	Recycled water	<lor< td=""><td>0.087</td><td>0.83</td><td>7.95</td><td>91</td><td>1</td></lor<>	0.087	0.83	7.95	91	1
	DEET	Recycled water	<lor< td=""><td>0.12</td><td>0.9</td><td>8.033</td><td>158</td><td>3</td></lor<>	0.12	0.9	8.033	158	3
	Paraben methyl	Recycled water	<lor< td=""><td>4.26</td><td>6.11</td><td>18</td><td>12</td><td>5</td></lor<>	4.26	6.11	18	12	5
		Reference	<lor< td=""><td>3.74</td><td>3.4</td><td>7</td><td>5</td><td>3</td></lor<>	3.74	3.4	7	5	3
	Telmisartan	Recycled water	<lor< td=""><td>0.38</td><td>2.42</td><td>15.8</td><td>79</td><td>2</td></lor<>	0.38	2.42	15.8	79	2
SVOCs	Acetophenone	Recycled water	<lor< td=""><td>177.21</td><td>455.01</td><td>2130</td><td>79</td><td>17</td></lor<>	177.21	455.01	2130	79	17
		Reference	<lor< td=""><td>225.5</td><td>491.83</td><td>1401</td><td>22</td><td>5</td></lor<>	225.5	491.83	1401	22	5
	Benzaldehyde	Recycled water	<lor< td=""><td>36.32</td><td>176.64</td><td>1300</td><td>79</td><td>5</td></lor<>	36.32	176.64	1300	79	5
	Benzothiazole	Recycled water	<lor< td=""><td>40.68</td><td>98.70</td><td>710</td><td>79</td><td>19</td></lor<>	40.68	98.70	710	79	19
		Reference	<lor< td=""><td>90.36</td><td>114.13</td><td>430</td><td>22</td><td>11</td></lor<>	90.36	114.13	430	22	11
	Biphenyl	Recycled water	<lor< td=""><td>202.17</td><td>394.35</td><td>1800</td><td>79</td><td>21</td></lor<>	202.17	394.35	1800	79	21
		Reference	<lor< td=""><td>292.72</td><td>418.44</td><td>1160</td><td>22</td><td>8</td></lor<>	292.72	418.44	1160	22	8
	Dibenzofuran	Recycled water	<lor< td=""><td>0.077</td><td>0.68</td><td>6.1</td><td>79</td><td>1</td></lor<>	0.077	0.68	6.1	79	1
	Dioctyl.adipate (DOA)	Recycled water	<lor< td=""><td>612.15</td><td>2317.76</td><td>12820</td><td>79</td><td>11</td></lor<>	612.15	2317.76	12820	79	11
		Reference	<lor< td=""><td>2983.13</td><td>5812.46</td><td>18009</td><td>22</td><td>8</td></lor<>	2983.13	5812.46	18009	22	8
	E.Caprolactam	Recycled water	<lor< td=""><td>149.36</td><td>675.93</td><td>5100</td><td>79</td><td>5</td></lor<>	149.36	675.93	5100	79	5
		Reference	<lor< td=""><td>25</td><td>117.26</td><td>550</td><td>22</td><td>1</td></lor<>	25	117.26	550	22	1
	Irganox 1076	Reference	<lor< td=""><td>168.63</td><td>547.18</td><td>1980</td><td>22</td><td>2</td></lor<>	168.63	547.18	1980	22	2
	Isophorone	Recycled water	<lor< td=""><td>535.69</td><td>1065.77</td><td>5320</td><td>79</td><td>22</td></lor<>	535.69	1065.77	5320	79	22
		Reference	<lor< td=""><td>544.45</td><td>991.57</td><td>3190</td><td>22</td><td>7</td></lor<>	544.45	991.57	3190	22	7
	m.p.Cresol	Recycled water	<lor< td=""><td>189.10</td><td>274.21</td><td>1280</td><td>79</td><td>47</td></lor<>	189.10	274.21	1280	79	47
		Reference	<lor< td=""><td>127</td><td>189.92</td><td>690</td><td>22</td><td>11</td></lor<>	127	189.92	690	22	11
	Phenol	Recycled water	<lor< td=""><td>316.20</td><td>590.28</td><td>2900</td><td>79</td><td>34</td></lor<>	316.20	590.28	2900	79	34
		Reference	<lor< td=""><td>187.72</td><td>306.48</td><td>1090</td><td>22</td><td>8</td></lor<>	187.72	306.48	1090	22	8
	Stearamide	Recycled water	<lor< td=""><td>116.59</td><td>231.40</td><td>1100</td><td>79</td><td>26</td></lor<>	116.59	231.40	1100	79	26
		Reference	<lor< td=""><td>146.22</td><td>228.65</td><td>660</td><td>22</td><td>11</td></lor<>	146.22	228.65	660	22	11
	Styrene	Recycled water	<lor< td=""><td>105.27</td><td>201.42</td><td>640</td><td>79</td><td>22</td></lor<>	105.27	201.42	640	79	22
	T : 0 4 II : 1	Reference	<lor< td=""><td>140.86</td><td>215.62</td><td>670</td><td>22</td><td>12</td></lor<>	140.86	215.62	670	22	12
	Tris.2.4.di.tert. butylphenyl.phosphate	Recycled water	<lor< td=""><td>224.05</td><td>571.59</td><td>2300</td><td>79</td><td>12</td></lor<>	224.05	571.59	2300	79	12
		Reference	<lor< td=""><td>139.54</td><td>440.52</td><td>1500</td><td>22</td><td>4</td></lor<>	139.54	440.52	1500	22	4
	Tris.2.4.dimethylphenyl.	Recycled water	<lor< td=""><td>2.15</td><td>18.02</td><td>160</td><td>79</td><td>2</td></lor<>	2.15	18.02	160	79	2
	phosphate	,						
	1.2.Dichlorobenzene	Recycled water	<lor< td=""><td>1.45</td><td>5.42</td><td>30</td><td>79</td><td>6</td></lor<>	1.45	5.42	30	79	6
								_

			Reference	<lor< th=""><th>2.86</th><th>6.2</th><th>18</th><th>22</th><th>4</th></lor<>	2.86	6.2	18	22	4
		1.3.Di.tert.butylbenzene	Recycled water	<lor< td=""><td>0.55</td><td>4.95</td><td>44</td><td>79</td><td>1</td></lor<>	0.55	4.95	44	79	1
			Reference	<lor< td=""><td>2.09</td><td>9.8</td><td>46</td><td>22</td><td>1</td></lor<>	2.09	9.8	46	22	1
		1.4.Dichlorobenzene	Recycled water	<lor< td=""><td>3.16</td><td>9.24</td><td>44</td><td>79</td><td>9</td></lor<>	3.16	9.24	44	79	9
			Reference	<lor< td=""><td>2.22</td><td>7.40</td><td>30</td><td>22</td><td>2</td></lor<>	2.22	7.40	30	22	2
		1.4.Dinitrobenzene	Recycled water	<lor< td=""><td>0.45</td><td>4.05</td><td>36</td><td>79</td><td>1</td></lor<>	0.45	4.05	36	79	1
			Reference	<lor< td=""><td>2.5</td><td>8.10</td><td>29</td><td>22</td><td>2</td></lor<>	2.5	8.10	29	22	2
		2.4.Di.tert.butyl.phenol	Recycled water	<lor< td=""><td>359.92</td><td>2034.68</td><td>18044</td><td>79</td><td>19</td></lor<>	359.92	2034.68	18044	79	19
			Reference	<lor< td=""><td>72.72</td><td>167.42</td><td>550</td><td>22</td><td>4</td></lor<>	72.72	167.42	550	22	4
		2.4.Dichlorophenol	Recycled water	<lor< td=""><td>150</td><td>797.03</td><td>6800</td><td>79</td><td>7</td></lor<>	150	797.03	6800	79	7
		2.6.Di.tert.butyl.phenol	Reference	<lor< td=""><td>20</td><td>93.80</td><td>440</td><td>22</td><td>1</td></lor<>	20	93.80	440	22	1
		2.Chlorophenol	Recycled water	<lor< td=""><td>5.93</td><td>21.61</td><td>150</td><td>79</td><td>9</td></lor<>	5.93	21.61	150	79	9
			Reference	<lor< td=""><td>7.72</td><td>24.50</td><td>109</td><td>22</td><td>3</td></lor<>	7.72	24.50	109	22	3
		2.Cresol	Recycled water	<lor< td=""><td>756.45</td><td>1201.39</td><td>4210</td><td>79</td><td>28</td></lor<>	756.45	1201.39	4210	79	28
			Reference	<lor< td=""><td>920</td><td>1291.45</td><td>3700</td><td>22</td><td>8</td></lor<>	920	1291.45	3700	22	8
2024	PFAS	PFBA	Recycled water	<lor< td=""><td>0.32</td><td>1.019</td><td>4.45</td><td>104</td><td>10</td></lor<>	0.32	1.019	4.45	104	10
		PFBS	Recycled water	<lor< td=""><td>0.38</td><td>0.85</td><td>3.30</td><td>104</td><td>20</td></lor<>	0.38	0.85	3.30	104	20
			Reference	<lor< td=""><td>0.14</td><td>0.42</td><td>1.89</td><td>52</td><td>6</td></lor<>	0.14	0.42	1.89	52	6
		PFHxS	Recycled water	<lor< td=""><td>0.80</td><td>5.30</td><td>51.69</td><td>104</td><td>5</td></lor<>	0.80	5.30	51.69	104	5
			Reference	<lor< td=""><td>0.30</td><td>1.62</td><td>10.26</td><td>52</td><td>2</td></lor<>	0.30	1.62	10.26	52	2
	PPCPs	Carbamazepine	Recycled water	<lor< td=""><td>0.41</td><td>0.59</td><td>3.11</td><td>104</td><td>42</td></lor<>	0.41	0.59	3.11	104	42
			Reference	<lor< td=""><td>0.24</td><td>0.50</td><td>1.47</td><td>52</td><td>10</td></lor<>	0.24	0.50	1.47	52	10
		DEET	Recycled water	<lor< td=""><td>0.15</td><td>0.32</td><td>1.20</td><td>104</td><td>21</td></lor<>	0.15	0.32	1.20	104	21
			Reference	<lor< td=""><td>0.17</td><td>0.32</td><td>1.04</td><td>52</td><td>12</td></lor<>	0.17	0.32	1.04	52	12
		Tebuconazole	Recycled water	<lor< td=""><td>0.0067</td><td>0.068</td><td>0.70</td><td>104</td><td>1</td></lor<>	0.0067	0.068	0.70	104	1
			Reference	<lor< td=""><td>0.10</td><td>0.24</td><td>0.72</td><td>52</td><td>8</td></lor<>	0.10	0.24	0.72	52	8
		Tramadol	Recycled water	<lor< td=""><td>0.16</td><td>0.29</td><td>0.89</td><td>104</td><td>25</td></lor<>	0.16	0.29	0.89	104	25

Accessibility

Contact us if you need this information in an accessible format such as large print or audio. Please telephone 1300 372 842 or email contact@epa.vic.gov.au

Interpreter assistance

If you need interpreter assistance or want this document translated, please call 131 450 and advise your preferred language. If you are deaf, or have a hearing or speech impairment, contact us through the **National Relay Service**.

epa.vic.gov.au

Environment Protection Authority Victoria GPO BOX 4395 Melbourne VIC 3001 1300 372 842

